TOSHIBA

TENTATIVE

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC9271F, TC9271N

MODULATION / TRANSMISSION IC FOR DIGITAL AUDIO INTERFACE

TC9271F and TC9271N are modulation / transmission ICs for digital audio interface based on EIAJ CP-1201 standards.

FEATURES

- Based on EIAJ CP-1201 standards.
- Data input format selectable between MSB first or LSB first. Data length is 24bit max.
- Two modes : 2 channel and 4 channel
- Channel status data easily set with external pins. The data can be input serially by microcontroller.
- User data can be transmitted.
- Double-speed operation
- Selectable LRCK polarity
- Two packages : 28-pin flat package, 28-pin shrink DIP package

980910EBA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

<u>TOSHIBA</u>

PIN CONNECTION

BLOCK DIAGRAM

TOSHIBA

PIN FUNCTION

PIN No.	SYMBOL	1/0	FUNCTION	REMARKS
1	BLOCK	0	Block top position output pin	
2	UBDA	1	User bit data input pin	
3	LRS	1	LRCK polarity selection pin	With pull-up resistor
			LRSLRCKLHL levelR channel dataL channel dataH levelL channel dataR channel data	
4	LRCK	1	LR clock input pin	
5	ВСК	1	Bit clock input pin	
6	DATA	1	2ch Data input pin 4ch Data input pin 1	
7	VLDY	1	2ch Correction flag input pin 4ch Data input pin 1	
8	EMPH	1	Emphasis flag setting pin	With pull-up resistor
9	COPY	1	P Copy flag setting pin S Fixes to high.	With pull-up resistor
10	FS1	1	Sampling frequency setting pin 1	With pull-up resistor
11	FS2	1	Sampling frequency setting pin 2	With pull-up resistor
12	СКЅ	1	Clock divider selection pin	With pull-up resistor
13	XI	1	Clock input pin	
14	Vss	—	Ground pin	
15	DO1	0	Digital data output pin 1	
16	DO2	0	Digital data output pin 2	
17	M1	I	Channel mode setting pin 1 Select 2ch or 4ch	With pull-up resistor
18	M2	I	Channel mode setting pin 2 mode.	With pull-up resistor
19	IS1	1	Data input mode setting pin 1	With pull-up resistor
20	IS2	I	Data input mode setting pin 2	With pull-up resistor
21	CTG1	1	P Category code setting pin 1 S Data input pin	With pull-up resistor
22	CTG2	Ι	P Category code setting pin 2 S Clock input pin	With pull-up resistor
23	CTG3	I	P Category code setting pin 3 S Latch pulse input	With pull-up resistor
24	FR32	0	FR32 output pin	
25	LBIT	I	P LBIT input pin S 32 / 192bit switching pin switching pin	With pull-up resistor
26	CKA1	1	P Clock accuracy setting pin 1 S Fixes to high.	With pull-up resistor
27	CKA2		P Clock accuracy setting pin 2 S Prohibits output at high level.	With pull-up resistor
28	V _{DD}	—	Power supply pin	

(Note) In the above pin description, "2ch" indicates 2 channel mode; "4ch", 4 channel mode. "P" indicates parallel mode; "S", serial mode. For mode settings, use FS1 (pin 10) and FS2 (pin 11).

OPERATIONAL DESCRIPTION

1. Internal mode setting

1-1. 2ch mode and 4ch mode setting

To switch between 2ch mode and 4ch mode, use both the M1 and M2 pins. The 4ch mode is further divided into two modes. In one mode, data are output from two channels from both output pins, DO1 and DO2. In the other mode, data are output from four channels from one output pin (DO1 output = DO2 output).

Two modes are also supported for inputting data. In the first mode, two channels of data are input from two input pins, DATA and VLDY. In the second mode, four channels of data are input from one input pin.

MODE S	SETTING		INPUT	SIGNAL	OUTPUT	Commont				
M2 PIN	M1 PIN	LRCK PIN	BCK PIN	DATA PIN	VLDY PIN	DO2 PIN	DO1 PIN	Comment		
L	L	Lrck	Bck	Din1	Valid	Din1	Din1	2ch mode		
L	Н	Lrck	Bck	Din1	Din2	Din2	Din1			
Н	L	Lrck	Bck	Din1	Din2	Din1 + 2	Din1 + 2			
Н	Н	Frck	Bck	Din1 + 2	Wdck	Din1 + 2	Din1 + 2			

(Note) Adding validity flag

A validity flag can be added in 2 channel mode. However, in 4 channel mode, the flag is fixed to low, as VLDY (pin 7) functions as a data or clock input pin in this mode.

The signals in Table 1 are as follows.

Lrck	:	Left channel and right channel selection clock
Bck	:	Bit clock
Frck	:	Frame clock (4 channel mode)
Valid	:	Validity flag
Wdck	:	Word clock (4 channel mode)
Din1, Din2	:	2 channel multiplexed input data
Din1 + 2	:	4 channel multiplexed input data
Dit1, Dit2	:	2 channel multiplexed output data
Dit1 + 2	:	4 channel multiplexed output data
Dit1 + 2	:	4 channel multiplexed output data

1-2. Data input mode setting

Two data input modes are supported : LSB-first mode and MSB-first mode. Effective data are assumed to be before the change point of LRCK. However, MSB-first mode supports three input data bit length settings.

Table 2 shows the data input modes. In modes where up to 24bit can be input, input the unused bits fixed to 0.

N SIGNAL	INPUT FORMAT						
IS1 PIN	INPUT FORMAT	DATA POSITION	NUMBER OF BITS	NUMBER OF BCK			
L	LSB first	А	24 max.	At least 24 clocks/ch			
н		В	24 max.	32 clocks/ch			
L	MSB first	А	20	At least 20 clocks/ch			
Н		А	16	At least 16 clocks/ch			
	N SIGNAL IS1 PIN L H L H	IS1 PIN INPUT FORMAT L LSB first H	IS1 PIN INPUT FORMAT DATA POSITION L LSB first A H B	IS1 PININPUT FORMATDATA POSITIONNUMBER OF BITSLLSB firstA24 max.HB24 max.LMSB firstA20			

Table	h	Data	الد	Madaa
laple	2	υατα	Input	Modes

Effective data before the change point of LRCK. A :

B : Effective data after the change point of LRCK.

(IS2, IS1) = (L, L) LRCK

1-3. User bits and validity flag input format

Synchronize the user bits and validity flag with the audio data. Because the validity input pin (VLDY) is used as a data or word clock input pin in other than 2 channel mode, the output data validity flag is fixed to 0.

Figure 2 shows the input timings.

Figure 2 V and U Bit Input Timing Chart

1-4. LR clock polarity setting

The LRCK input polarity can be switched using the LRS pin. In 4 channel mode, when the LRCK polarity is reversed, the Frck (frame clock) and Wdck (word clock) polarities are also reversed, as in Figure 3b.

Figure 3b LRCK Polarity Setting Example in 4ch Mode

1-5. System clock setting

The CKS pin is used to divide the clock input from XI by two is set. It is possible to compare the phase of the clock input to LRCK with the phase of the internal divided clock to automatically determine whether the clock input from the XI pin is a 256fs- or a 384fs-type clock.

Table	4	Clock	Divider	Setting
-------	---	-------	---------	---------

CKS PIN	CLOCK INPUT FROM XI PIN
L	256fs / 384fs
Н	512fs / 768fs

(Note) "fs" is the sampling frequency.

When the 384fs-type clock is input with CKS = low, the duty cycle must be controlled.

1-6. Data input/output formats

When LRS = high, the input/output formats depending on mode are as follows.

LRCK					1
DATA	1L	1R	2L	2R	
VLDY	V-1L	V-1R	V-2L	V-2R	
UBDA	U-1L	U-1R	U-2L	U-2R	
DO1	OL	0R	1L	1R	
DO2	Same as DO1			·	
			V-1L U-1L Cbit Parit	У	

Figure 4a Data Input/Output Format Example 1 ((M2, M1) = (L, L) ; 2ch input, 2ch output mode)

LRCK									
DATA	1L	A	1RA		2LA		2RA		
VLDY (DATA-B)	1LB		1RB		2LB		2RB		
UBDA	U-1LA	U-1LB	U-1RA	U-1RB	U-2LA	U-2LB	U-2RA	U-2RB	
DO1	 OL.	A	0RA		1LA		16	RA	
DO2	.0L		ORB		1LB		11	RB	
	"0" U-0LA Cbit Parity				"0" U-1LB	Cbit Parity	l		

Figure 4b Data Input/Output Format Example 2 ((M2, M1) = (L, H) ; 2ch × 2 input, 2ch × 2 output mode)

LRCK										
DATA		11	A	1RA		2LA		2RA		
VLDY (DATA-B)		1LB		1RB		2LB		2RB		
UBDA		U-1LA	U-1LB	U-1RA	U-1RB	U-2LA	U-2LB	U-2RA	U-2RB	
DO1		0LA	0RA	OLB	ORB	1LA	1RA	1LB	1RB	
DO2	Same a	s DO1								
						"0" U-1RA	Cbit Parity	1		

Figure 4c Data Input/Output Format Example 3 ((M2, M1) = (H, L) ; $2ch \times 2$ input, 4ch output mode)

LRCK (FRCK)										
DATA		1A	1B	1C	1D	2A	2B	2C	2D	
VLDY (WDCK)										
UBDA		U-1A	U-1B	U-1C	U-1D	U-2A	U-2B	U-2C	U-2D	
DO1		0C	0D	1A	1B	1C	1D	2A	2B	
DO2	Same a	as DO1								
						"0" U-1D				

Figure 4d Data Input/Output Format Example 4 ((M2, M1) = (H, H) ; 4ch input, 4ch output mode)

2. Channel status setting

The channel status can be set by two methods. The first method is parallel DC setting. The second method is serial setting using a microcontroller. (Table 7)

The EMPH flag in channel status is set to the OR of the parallel data and the serial data in serial mode.

Time Slot

Figure 5 Channel Status Bit Correspondence

2-1. Parallel mode

This mode is used to make parallel DC setting of the channel status. Figure 5 shows the bits which can be set. In Figure 5, "0" indicates that the bit is fixed to 0. Accordingly, in home digital audio equipment, the mode is fixed to 00 and the source number to 0000.

2-1-1. Control bit setting ;

Fixing three of the six control bits to 0 results in the following limitations.

- (a) Time Slot 0 = 0; Only for home equipment
- (b) Time Slot 1 = 0; Only for audio data
- (c) Time Slot 4 = 0 ; Only for fixing emphasis to $50/15\mu s$

Bits other than these can be DC-set directly from the pin.

(a) Time Slot 2 = COPY	;	When COPY pin = H, no copy protection
		When COPY pin = L, copy protection (Copying inhibited)
(b) Time Slot 3 = EMPH	;	When EMPH pin = H, emphasis is 50 / 15
		When EMPH pin = L, no emphasis
(c) Time Slot 5 = M2	;	For 2 channel output per output pin, set to two channels
		For 4 channel output per output pin, set to four channels

2-1-2. Category code setting ;

The category code is set using pins CTG1~3.

The category bits shown in Table 5 as "L" can be freely set using the LBIT pin. For details, refer to the EIAJ CP-1201 standards.

CTG			CATEGORY						
3	2	1	CATEGORY						
	0	0	General format	[000	00000]				
0		1	Digital mixer	[010	0100L]				
0	0 1 Samp		Sample rate converter	[010	1100L]				
		0	Digital sampler	[010	0010L]				
	0	1	ADC (no copy right)	[011	0000L]				
1		0	ADC (copy right)	[011	0100L]				
	1	0	Synthesizer	[101	0000L]				
		1	Microphone	[101	1000L]				

Table 5 Category Code Setti	ina
-----------------------------	-----

2-1-3. Channel number setting ;

In 2 channel mode, the channel number is added automatically. In 4 channel mode, all the bits are fixed to 0.

Table 6 shows the specific details.

F	PIN NAM	E	CHANNEL	NUMBER
M2	M1	LRCK	LRS = H	LRS = L
		L	[1000]	[0100]
		Н	[0100]	[1000]
		L	[1000]	[0100]
	н	Н	[0100]	[1000]
Other	combina	ations	[00]	00]

 Table 6
 Channel Number Addition Correspondence

2-1-4. Sampling frequency setting ;

Pins FS1 and FS2 are used for setting the sampling frequency.

Table	7	Sampling	Frequency	Setting
TUDIC	'	Jumphing	ricquericy	Jetting

PIN I	NPUT	T SETTING DATA		SETTING MODE
FS1	FS2	SAMPLING FREQUENCY	[TS24-27]	(PINS CTG1~3, LBIT, CKA1~2)
L	L	44.1kHz	[0000]	
L	Н	48kHz	[0100]	Parallel mode
Н	Н	32kHz	[1100]	
Н	L	Setting by serial dat	ta transfer	Serial mode

(Note) When FS1 = high and FS2 = low, serial mode is set. Thus, the mode becomes momentarily serial mode when the sampling frequency switches, momentarily disturbing clocks and data.

2-1-5. Clock accuracy bit setting ;

Use the CKA1 and CKA2 pins to set the clock accuracy. The following describes the modes.

(a) Standard mode (level II);

When setting to output disable mode, change CKA1 and CKA2 from low to high.

(b) Variable pitch mode (level III);

When setting to output disable mode, change CKA1 only from low to high and keep CKA2 high.

(c) Accuracy mode (level I);

When setting to output disable mode, change CKA2 only from low to high and keep CKA1 high.

PIN INPUT		SETTING D	DO1, DO2 OUTPUT STATUS							
CKA1	CKA2	CLOCK ACCURACY	[TS28, 29]	DOT, DOZ OUTPUT STATUS						
L	L	Level II	[00]							
L	Н	Level III	[01]	Normal output						
Н	L	Level I	[10]							
Н	Н	DO1 and DO2 ou	DO1 and DO2 output fixed to low (output disable mode)							

Table 8 Clock Accuracy Setting

(Note) When (CKA1, CKA2) = (H, H), output disable mode for digital data is entered, and DO1 and DO2 output is fixed to low.

2-2. Serial mode

This mode is used to serially set data for the channel status using a microcontroller. As Table 9 shows, in serial mode some pin functions differ from those in parallel mode.

PIN NAME	FUNCTION	REMARKS				
EMPH	EMPH flag input	The flag is set based on the OR of EMPH and serial data.				
COPY	— (Fixed to high)					
FS1	— (Fixed to high)	Set for serial mode				
FS2	— (Fixed to low)	Set for serial mode				
CTG1	Data input					
CTG2	Clock input	Channel				
CTG3	Latch pulse input	status				
LBIT	32/192bit switching	Set to low for 192bit mode processing				
CKA1	— (Fixed to high)					
CKA2	DO1/2 output setting	Set to high to disable DO1 and DO2 pin output.				

Table 9 Pin Functions in Serial Mode

- (Note 1) As channel status data, the EMPH flag uses the OR of the parallel data and serial data.
- (Note 2) The channel number (TIME SLOT 20 and 21 in Figure 5) is automatically set. (Effective only in 2 channel mode. (M2 pin = low))
- (Note 3) The serial setting register consists of 32bit. To reset (clear) this register at power on, set to parallel mode. That is, fixing FS2 to low, set the FS1 pin to low at power on then to high.

2-2-1. Channel status input ;

The 32 and 192bit input modes are supported to serially input the channel status.

(1) 32bit input ; (LBIT = high)

This mode is used to input only 32bit from the start of the channel status. The timing of the data is conditioned to make them effective from the next block.

(2) 192bit input ; (LBIT = low)

This mode is used to input all 192 channel status bits.

Input 192bit (32×6) data in sync with the FR32 and BLOCK signals. Because the internal register consists of 32bit, input 32bit data before the FR32 falling edge.

In this mode, $0\sim31$ frames of input data are input while BLOCK output is high. Figure 6 is an input timing example.

Figure 6 192Bit Input Timing Example

2-2-2. Serial Interface

The serial interface processes data, clocks, and latch signals. Figure 7 shows an example of serial interface timing.

FR32	
data (CTG1) 1 2 3 4 5 6 7 8 9	26 27 28 29 30 31 32
latch (CTG3)	
	Data latch timing \longrightarrow th \div th >1 μ s

Figure 7 Serial Interface Timing Example

Data are latched at the clock rising edge.

In 192bit input mode, data are latched to the internal registers at each falling edge of FR32. Accordingly, input the data between the FR32 falling edge and the next falling edge. An interval of at least 1μ s is required between the latch signal and the FR32 falling edge.

MAXIMUM RATINGS (Ta = 25°C)

ITEM		SYMBOL	RATING	UNIT	
Power Supply Volta	ige	V _{DD}	-0.3~7.0	V	
Input Voltage		Vin	-0.3~V _{DD} +0.3	V	
Power Dissipation	TC9271F	Po	600	mW	
TC9271N		PD	800	mvv	
Operating Temperature		T _{opr}	- 35~85	°C	
Storage Temperatu	re	Tstg	- 55~150	°C	

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $Ta = 25^{\circ}C$, $V_{DD} = 5V$) DC characteristics

ITI	EM	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Po Voltage	ower Supply	V _{DD}	—	Ta = - 35~85°C	4.5	5.0	5.5	V
Current Con	sumption	^I DD	_	XI = 16.9MHz CKS = low level	_	5	15	mA
Input	"H" Level	VIH	_	(*1)	V _{DD} × 0.8	_	V _{DD}	v
Voltage	"L" Level	VIL	_	(*1)	0.0	_	V _{DD} × 0.2	V
Input	"H" Level	ΙΗ	—	(*1), V _{IN} = V _{DD}	_	_	1.0	
Current	"L" Level	կլ	—	(*2), V _{IN} =0V	– 1.0	—	_	μΑ
Output	"H" Level	IОН	_	(*3), V _{OH} = 4.5V	—	—	- 1.6	
Current	"L" Level	lol		(*3), V _{OL} =0.5V	3.0	_		mA
Pull-up Resis	tance	RUP	_	(*4)	_	100		kΩ

- (*1) All input pins(*2) All input pins other than (*4)
- (*3) All output pins
- (*4) All pins with pull-up resistor

AC characteristics

ITEM	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Frequency	f _{opr}	-		7.5	16.9	40.0	MHz
	f _{LR}		LRCK duty cycle = 50%	30.0	44.1	100.0	kHz
Input Frequency	fвск] —	BCK duty cycle = 50%	0.96	1.41	6.40	MHz
Rising Time	t _r		Pins LRCK, BCK, DATA, and XI	—	—	15	
Falling Time	tf] —	(10~90%)	_	—	15	ns
Delay Time	^t d	_	BCK falling edge →LRCK, DATA	_	_	40	115

(1) Clock and data output timings

ITEM	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rising Time	t _{or}	-	Pins BLOCK, DO1, DO2, and	—	—	20	ns
Output Falling Time	tof		FR32 (10~90%)		—	20	

(2) Microcontroller interface timing (in serial mode)

ITE	M	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Strobe Pulse	Width	tWP	-	CTG3	0.5	—	—	
Clock Pulse	"H" Level	twн	—	CTG2	1.0	—	—	
Width	"L" Level	tWL	—	CTG2	1.0	—	—	μs
Hold Time		thld	—	CTG1→CTG2	0.5	_	—	
Delay Time		^t CL	—	CTG2→CTG3	0.5	—		

(*5)

In 192bit serial input mode, set th>1 $\mu s.$ Input data in sync with the clock falling edge. (*6) Data are loaded internally at the clock rising edge.

OUTLINE DRAWING SOP28-P-450-1.27

Unit : mm

Weight : 0.8g (Typ.)

TOSHIBA

OUTLINE DRAWING SDIP28-P-400-1.78

Unit : mm

Weight : 2.2g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com