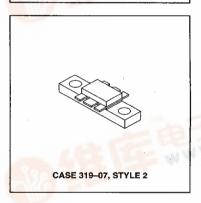
The RF Line UHF Power Transistor

The TP3021 is designed for 24 V common emitter base station amplifiers. Operating in the 820–960 MHz bandwidth, it has been specifically designed for use in analog and digital (GSM) systems as a medium power output device.


- Specified 24 Volts, 960 MHz Characteristics
 Output Power = 10 Watts
 Minimum Gain = 10 dB
 Class AB
 IO = 60 mA
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

TP3021

10 W, 960 MHz UHF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	27	Vdc
Collec <mark>tor-Base Vol</mark> tage	V _{CBO}	48	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	· Ic	2.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	35 0.35	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	Tj	200	°C

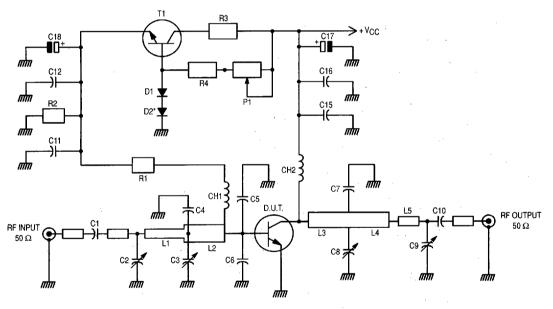
THERMAL CHARACTERISTICS

(I_C = 1.0 Adc, V_{CE} = 10 Vdc)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1) at 70°C Case	R ₀ JC	5.0	°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	
Collector–Emitter Breakdown Voltage (I _C = 25 mA, R _{BE} = 75 Ω)	V(BR)CER	40	_	_	Vdc
Emitter-Base Breakdown Voltage (I _C = 5.0 mAdc)	V(BR)EBO	4.0	-74		Vdc
Collector-Base Breakdown Voltage (I _E = 50 mAdc)	V(BR)CBO	48	1/8-1-		Vdc
Collector–Emitter Leakage (V _{CE} = 26 V, R _{BE} = 75 Ω)	CER	-		5.0	mA
ON CHARACTERISTICS	0750		1	· · · · · · · · · · · · · · · · · · ·	
DC Current Gain	hee	15		100	


NOTE:

(continued)

^{1.} Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
DYNAMIC CHARACTERISTICS						
Output Capacitance (V _{CB} = 24 V, I _E = 0, f = 1.0 MHz)	C _{ob}	15	<u></u>	25	pF	
FUNCTIONAL TESTS						
Common–Emitter Amplifier Power Gain (V _{CC} = 24 V, P _{Out} = 10 W, I _{CQ} = 60 mA, f = 960 MHz)	Gp	10	_		dB	
Load Mismatch (V _{CC} = 26 V, P _{Out} = 10 W, I _{CQ} = 60 mA, Load VSWR = 20:1, at all phase angles)	Ψ	No Degradation in Output Power Before and After Test				
Collector Efficiency (V _{CC} = 24 V, P _{Out} = 10 W, f = 960 MHz)	ηc	50	55	_	%	

*D2 is in Physical Contact with RF Transistor

C1, C10, C11, C15 — Capacitor Chip 0805 330 pF 5%

C2, C4, C8, C9 — Trimmer Capacitor 0.5-4.0 pF

C4 — Capacitor Chip 0805 3.9 pF 5%

C5, C6 - Capacitor Chip 15 pF HQ

C7 — Chip Resistor 0805 8.2 pF

C12, C16 — Capacitor Chip 0805 15 nF 5%

C17, C18 — Capacitor Chip 0805 6.0, 8.0 µF 35 V

CH1 — Microstrip Line 80 Ω L = 40 mm

CH2 — Microstrip Line 80 Ω L = 23 mm

D1, D2 - Diode 1N4148

L1 --- Microstrip Line 50 Ω L = 20 mm

L2 — Microstrip Line 25 Ω L = 13 mm

L3 — Microstrip Line 25 Ω L = 10 mm

L4 — Microstrip Line 50 Ω L = 5 mm

L5 — Microstrip Line 50 Ω L = 7 mm

P1 — Trimmer 5.0 k Ω

R1 — Chip Resistor 2.2 Ω 1206 5%

R2 — Chip Resistor 75 Ω 0805 5%

R3 — Resistor 100 Ω 2.0 W

R4 — Resistor 1.0 kΩ 5%

T1 — Transistor BD135 or Similar

Board Material - 1/50", Teflon Glass, Cu Clad 2 Sides, 35 µm Thick

Figure 1. 960 MHz Test Circuit

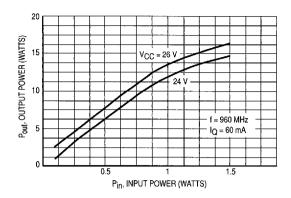
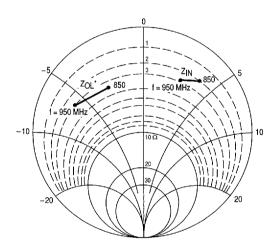



Figure 2. Output Power versus Input Power

P_{out} = 10 W V_{CE} = 24 V

f Z_{IN} Z_{OL}*
OHMS OHMS

850 2.4 + j3.5 3.4 - j3.2
900 2.6 + j3.4 3.1 - j4.4
950 2.8 + j3.4 2.7 - j6.2

Z_{OL}* = Conjugate of the optimum load impedance. Into which the device operates at a given output power, voltage, and frequency.

Figure 3. Series Equivalent Input/Output Impedances

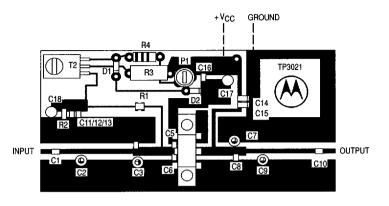


Figure 4. Test Circuit — Component Locations