feATURES

－High Efficiency：Up to 94\％
－Peak Inductor Current Independent of Inductor Value
－Short－Circuit Protection
－Optimized for 5 V to -5 V Applications
－Wide $\mathrm{V}_{\text {IN }}$ Range： 4 V to 18.5 V
－Low Dropout Operation
－Low－Battery Detector
－Pin Selectable Current Limit
－Internal 0.9Ω Power Switch： $\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$
－Only Four External Components Required
－ $130 \mu \mathrm{~A}$ Standby Current
－Active Low Micropower Shutdown

APPLICATIONS

－Distributed Power Systems
－Step－Down Converters
－Inverting Converters
－Memory Backup Supply
－Portable Instruments
－Battery－Powered Equipment

DESCRIPTION

The $\operatorname{LTC}{ }^{\circledR} 1174$ is a simple current mode $\mathrm{DC} / \mathrm{DC}$ converter ideally suited for 9 V to $5 \mathrm{~V}, 5 \mathrm{~V}$ to 3.3 V ，or 5 V to -5 V operation．With an internal 0.9Ω switch（at a supply voltage of 9V），the LTC1174 requires only four external components to construct a complete high efficiency DC／DC converter．
Under a no load condition the LT1174 draws only $130 \mu \mathrm{~A}$ ． In shutdown，it draws a mere $1 \mu \mathrm{~A}$ making this converter ideal for current sensitive applications．In dropout，the internal P－channel MOSFET switch is turned on continu－ ously allowing the user to maximize the life of the battery source．
The maximum inductor current of the LTC1174 family is pin selectable to either 340 mA or 600 mA ，optimizing efficiency for a wide range of applications．Operation up to 200 kHz permits the use of small surface mount inductors and capacitors．
For applications requiring higher output current or ultra－ high efficiency，see the LTC1148 data sheet．

[^0]
TYPICAL APPLICATION

High Efficiency Step－Down Converter

＋COILTRONICS CTX100－4

LTC1174－5 Efficiency

absolute maximum ratings

(Voltage Referred to GND Pin) Input Supply Voltage (Pin 6)
LTC1174
LTC1174HV -0.3 V to 13.5 V

Switch Current (Pin 5) -0.3 V to 18.5 V

1A
Switch Voltage (Pin 5)
LTC1174
$\mathrm{V}_{\text {IN }}-13.5 \mathrm{~V}$
LTC1174HV
$\mathrm{V}_{\text {IN }}-18.5 \mathrm{~V}$

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Extended Commercial
Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature (Note 1) $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHUTDOWN }}}=\mathrm{V}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{PGM}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{\text {IFB }}$	Feedback Current	LTC1174/LTC1174HV				1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	LTC1174/LTC1174HV	\bullet	1.20	1.25	1.30	V
$\mathrm{V}_{\text {OUT }}$	Regulated Output Voltage	LTC1174-3.3/LTC1174HV-3.3 LTC1174-5/LTC1174HV-5	\bullet	$\begin{aligned} & \hline 3.14 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 5.25 \end{aligned}$	V
$\overline{\Delta V}_{\text {OUT }}$	Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 12V, $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{I}_{\text {PGM }}=\mathrm{V}_{\text {IN }}$ (Note 2)			10	70	mV
	Output Voltage Load Regulation	$\begin{aligned} & \text { LTC1174-3.3 (Note 2) } \\ & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<175 \mathrm{~mA}, \mathrm{I}_{\mathrm{PGM}}=0 \mathrm{~V} \\ & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<400 \mathrm{~mA}, \mathrm{I}_{\mathrm{PGM}}=\mathrm{V}_{\text {IN }} \end{aligned}$			$\begin{array}{r} -5 \\ -45 \\ \hline \end{array}$	$\begin{aligned} & -70 \\ & -70 \\ & \hline \end{aligned}$	mV mV
		$\begin{aligned} & \text { LTC1174-5 (Note 2) } \\ & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<175 \mathrm{~mA}, \mathrm{I}_{\mathrm{PGM}}=0 \mathrm{~V} \\ & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<400 \mathrm{~mA}, \mathrm{I}_{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IN}} \end{aligned}$			-5 -50	$\begin{array}{r} -70 \\ -70 \\ \hline \end{array}$	mV mV

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V}, \mathrm{~V} \overline{\overline{S H U T D O W N}}=V_{I N}, I_{P G M}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{1}$	Input DC Supply Current (Note 3)	Active Mode LTC1174: $4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<12 \mathrm{~V}, \mathrm{I}_{\mathrm{PGM}}=0 \mathrm{~V}$ LTC1174HV: 4V < VIN < 16V, IPGM = 0V			$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		Sleep Mode LTC1174: $4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<12 \mathrm{~V}$ LTC1174HV: 4V < $\mathrm{V}_{\text {IN }}<16 \mathrm{~V}$			$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		SHUTDOWN (Note 4) LTC1174:SHUTDOWN$=0 \mathrm{~V}, 4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<12 \mathrm{~V}$ LTC1174HV: $V_{\text {SHUTDOWN }}=0 \mathrm{~V}, 4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<16 \mathrm{~V}$			$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
V LBTRIP	Low-Battery Trip Point				1.25	1.4	V
LBIN	Current into Pin 3					0.5	$\mu \mathrm{A}$
I lbout	Current Sunk by Pin 2	LTC1174: $\mathrm{V}_{\text {LBOUT }}=0.4 \mathrm{~V}$ LTC1174HV: V LBOUT $=0.4 \mathrm{~V}$		$\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	mA mA
$\mathrm{V}_{\text {HYST }}$	Comparator Hysteresis	LTC1174/LTC1174HV		7.5	15	30	mV
IPEAK	Current Limit	$\begin{aligned} & I_{\text {PGM }}=V_{\text {IIN }}, V_{\text {OUT }}=0 \mathrm{~V} \\ & I_{\text {PGM }}=0 V, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 0.54 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.50 \end{aligned}$	A
Ron	ON Resistance of Switch	LTC1174 LTC1174HV	\bullet		$\begin{aligned} & \hline 0.75 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.55 \end{aligned}$	Ω Ω
$\mathrm{t}_{\text {OFF }}$	Switch Off-Time (Note 5)	$\mathrm{V}_{\text {OUt }}$ at Regulated Value		3	4	5	$\mu \mathrm{S}$
$\mathrm{V}_{\text {IH }}$	SHUTDOWN Pin High	Minimum Voltage at Pin 8 for Device to Be Active		1.2			V
VIL	$\overline{\text { SHUTDOWN Pin Low }}$	Maximum Voltage at Pin 8 for Device to Be in Shutdown				0.75	V
$\mathrm{IIH}^{\text {l }}$	SHUTDOWN Pin Input Current	LTC1174: $V \overline{\text { SHUTDOWN }}=12 \mathrm{~V}$ LTC1174HV: $V \overline{\text { SHUTDOWN }}=16 \mathrm{~V}$				$\begin{aligned} & \hline 0.5 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$
ILI	$\overline{\text { SHUTDOWN Pin Input Current }}$	$0 \leq \mathrm{V}_{\text {SHUTDOWN }} \leq 0.8 \mathrm{~V}$				0.5	$\mu \mathrm{A}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ (Note 6), for LTC1174I only.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {FB }}$	Feedback VoItage	LTC1174I	1.18	1.25	1.31	V
ILBOUT	Current Sunk by Pin 2	$\mathrm{V}_{\text {LBOUT }}=0.4$		0.75	1.2	2
IPEAK	Current Limit	$I_{\text {PGM }}=V_{\text {IIN }}, V_{\text {OUT }}=0 \mathrm{~V}$	0.54	0.60	0.78	mA
		$I_{\text {PGM }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		0.34	A	
$\mathrm{t}_{\text {OFF }}$	Switch Off-Time (Note 5)	$\mathrm{V}_{\text {OUT }}$ at Regulated Value	2	4	6	$\mu \mathrm{~S}$

The denotes specifications which apply over the full operating temperature range.
Note 1: T_{j} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formulas:

LTC1174CN8, LTC1174CN8-3.3, LTC1174CN8-5:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

LTC1174CS8, LTC1174CS8-3.3, LTC1174CS8-5:

$$
T_{J}=T_{A}+\left(P_{D} \times 150^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

Note 2: Guaranteed by design.
Note 3: Dynamic supply current is higher due to the gate charge being delivered at the switching frequency.
Note 4: Current into pin 6 only, measured without electrolytic input capacitor.
Note 5: The off-time is wafer-sort trimmed.
Note 6: The LTC1174I is not tested and not quality assurance sampled at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design and/or correlation.

TYPICAL PGRFORmANCE CHARACTERISTICS

Efficiency vs Load Current

1174 G04

Efficiency vs Load Current

1174 G02
Efficiency vs Load Current

1174 G05

Switch Leakage Current

vs Temperature

Efficiency vs Load Current

1174 G03
Efficiency vs Load Current

1174 G06

Efficiency vs Input Voltage

TYPICAL PERFORmANCE CHARACTERISTICS

PIn functions

$\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {FB }}\right)$ (Pin 1): Forthe LTC1174, this pin connects to the main voltage comparator's input. On the LTC1174-3.3 and LTC1174-5 this pin goes to an internal resistive divider which sets the output voltage.
LB But (Pin 2): Open Drain of an N-Channel Pull-Down. This $^{\text {(}}$ pin will sink current when pin 3 (LB||N) goes below 1.25 V . During shutdown this pin goes to high impedance.
$\mathrm{LB}_{\text {IN }}$ (Pin 3): The "-" Input of the Low-Battery Voltage Comparator. The " + " input is connected to a reference voltage of 1.25 V .

SW(Pin5): Drain of the P-Channel MOSFETSwitch. Cathode of Schottky diode must be closely connected to this pin.
V_{IN} (Pin 6): Input Supply Voltage. It must be decoupled close to ground pin 4.
IPGM (Pin 7): Selects the Current Limit of the P-Channel Switch. With $\mathrm{IPGM}=\mathrm{V}_{\mathrm{IN}}$, the current trip point is 600 mA and with $\mathrm{I}_{\mathrm{PGM}}=0 \mathrm{~V}$, the current trip value is reduced to 340 mA .
SHUTDOWN (Pin 8): Pulling this pin to ground keeps the internal switch off and puts the LTC1174 in micropower shutdown.

GND (Pin 4): Ground Pin.

FUПCTIO \mathcal{L} DIAGRAM (Pin 1 connection shown for LTC1174-3.3 and LTC1174-5, changes create LTC1174)

OPERATIOी (Refer to Functional Diagram)

The LTC1174 uses a constant off-time architecture to switch its internal P-channel power MOSFET. The off-time is set by an internal timing capacitor and the operating frequency is a function of $V_{\text {IN }}$.

The output voltage is set by an internal resistive divider (LTC1174-3.3 and LTC1174-5) or an external divider returned to V_{FB} pin 1 (LTC1174). A voltage comparator A1 compares the divided output voltage to a reference voltage of 1.25 V .

To optimize efficiency, the LTC1174 automatically switches between continuous and Burst Mode ${ }^{\text {TM }}$ operation. The voltage comparator is the primary control element when the device is in Burst Mode operation, while the current comparator controls the output voltage in continuous mode.
During the switch"ON" time, switch current flows through the 0.1Ω sense resistor. When this current reaches the threshold of the current comparator A2, its outputsignal will change state, setting the flip-flop and turning the switch off.

The timing capacitor, C_{T}, begins to discharge until its voltage goes below $\mathrm{V}_{\mathrm{TH} 1}$. Comparator A 4 will then trip, which resets the flip-flop and causes the switch to turn on again. Also, the timing capacitor is recharged. The inductor current will again ramp up until the current comparator A2 trips. The cycle then repeats.
When the load is relatively light, the LTC1174 automatically goes into Burst Mode operation. The current mode Ioop is interrupted when the output voltage reaches the desired regulated value. The hysteretic voltage comparator A1 trips when $\mathrm{V}_{\text {OUT }}$ is above the desired output voltage, shutting off the switch and causing the timing capacitor to discharge. This capacitor discharges past $\mathrm{V}_{\mathrm{TH} 1}$ until its voltage drops below $\mathrm{V}_{\mathrm{TH} 2}$. Comparator A 5 then trips and a sleep signal is generated.
In sleep mode, the LTC1174 is in standby and the load current is supplied by the output capacitor. All unused

OPERATIOी (Refer to Functional Diagram)

circuitry is shut off, reducing quiescent current from 0.45 mA to 0.13 mA . When the output capacitor discharges by the amount of the hysteresis of the comparator A1, the P-channel switch turns on again and the process repeats itself.

Operating Frequency and Inductor

Since the LTC1174 utilizes a constant off-time architecture, its operating frequency is dependent on the value of $\mathrm{V}_{\text {IN }}$. The frequency of operation can be expressed as:

$$
\begin{equation*}
f=\frac{1}{t_{\text {OFF }}}\left(\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}+V_{D}}\right) \tag{Hz}
\end{equation*}
$$

where $t_{\text {OFF }}=4 \mu s$ and V_{D} is the voltage drop across the diode. Note that the operating frequency is a function of the input and ouput voltage.

Although the size of the inductor does not affect the frequency, it does affect the ripple current. The peak-to-peak ripple current is given by:

$$
I_{\text {RIPPLE }}=4 \times 10^{-6}\left(\frac{V_{\text {OUT }}+V_{D}}{L}\right) \quad\left(A_{P-P}\right)
$$

By choosing a smaller inductor, a low ESR output filter capacitor has to be used (see $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$). Moreover, core loss will also increase (see Inductor Core Selection section) due to higher ripple current.

APPLICATIONS IMFORMATION

Inductor Core Selection

With the value of L selected, the type of inductor must be chosen. Basically there are two kinds of losses in an inductor, core and copper
Core losses are dependent on the peak-to-peak ripple current and the core material. However it is independent of the physical size of the core. By increasing the inductance the inductor's peak-to-peak ripple current will decrease, therefore reducing core loss. Utilizing low core loss material, such as molypermalloy or Kool M μ will allow users to concentrate on reducing copper loss and preventing saturation. Figure 1 shows the effect of different core material on the efficiency of the LTC1174. The CTX core is Kool M μ and the CTXP core is powdered iron (material 52).
Although higher inductance reduces core loss, it increases copper loss as it requires more windings. When space is not a premium larger gauge wire can be used to reduce the wire resistance. This also prevents excessive heat dissipation.

C_{IN}

In continuous mode the source current of the P-channel MOSFET is asquare wave of duty cycle $\mathrm{V}_{0 U T} / \mathrm{V}_{\text {IN }}$. To prevent large voltage transients, a low ESR input capacitor sized for

Figure 1. Efficiency Using Different Types of Inductor Core Material

APPLICATIONS IMFORMATION

the maximum RMS current must be used. The C_{IN} RMS current is given by:

This formula has a maximum at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {OUT }}$, where $\mathrm{I}_{\mathrm{RMS}}=$ $\mathrm{I}_{\text {Out }} / 2$. This simple worst case is commonly used for design because even significant deviations do not offer much relief. Note that ripple current directly affects capacitor's lifetime. DO NOT UNDERSPECIFYTHISCOMPONENT. An additional $0.1 \mu \mathrm{~F}$ ceramic capacitor is also required on V_{IN} for high frequency decoupling.

Cout

To avoid overheating, the output capacitor must be sized to handle the ripple current generated by the inductor. The worst case RMS ripple current in the output capacitor is given by:

$$
\begin{aligned}
I_{\text {RMS }} & \approx \frac{I_{\text {PEAK }}}{2} \quad\left(A_{R M S}\right) \\
& =170 \mathrm{~mA} \text { or } 300 \mathrm{~mA}
\end{aligned}
$$

Although the output voltage ripple is determined by the hysteresis of the voltage comparator, ESR of the output capacitor is also a concern. Too high of an ESR will create a higher ripple output voltage and at the same time cause the LTC1174 to sleep less often. This will affect the efficiency of the LTC1174. For a given technology, ESR is a direct function of the volume of the capacitor. Several small-sized capacitors can also be paralleled to obtain the same ESR as one large can. Manufacturers such as Nichicon, Chemicon and Sprague should be considered for high performance capacitors. The OS-CON semiconductor dielectric capacitor available from Sanyo has the lowest ESR for its size, at a higher price.

Catch Diode Selection

The catch diode carries load current during the off-time. The average diode current is therefore dependent on the P-channel switch duty cycle. At high input voltages the diode conducts most of the time. As $\bigvee_{I N}$ approaches $V_{\text {OUT }}$
the diode conducts only a small fraction of the time. The most stressful condition for the diode is when the output is short-circuited. Under this condition the diode must safely handle $I_{\text {PEAK }}$ at close to 100% duty cycle. A fast switching diode must also be used to optimize efficiency. Schottky diodes are a good choice for low forward drop and fast switching times. Most LTC1174 circuits will be well served by either a 1N5818, a MBRS140T3 or a MBR0520L Schottky diode.

Short-Circuit Protection

The LTC1174 is protected from output short by its internal current limit. Depending on the condition of $I_{\text {PGM }}$ pin, the limit is either set to 340 mA or 600 mA . In addition, the offtime of the switch is increased to allow the inductor's current to decay far enough to prevent any current build-up (see Figure 2).

Figure 2. Inductor's Current with Output Shorted

Low-Battery Detector

The low-battery indicator senses the input voltage through an external resistive divider. This divided voltage connects to the "-" input of a voltage comparator (pin 3) which is compared with a 1.25 V reference voltage. With the current going into pin 3 being negligible, the following expression is used for setting the trip limit:

$$
\mathrm{V}_{\mathrm{LBTRIP}}=1.25\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)
$$

APPLICATIONS INFORMATION

Figure 3. Low-Battery Comparator

LTC1174 Adjustable Applications

The LTC1174 develops a 1.25 V reference voltage between the feedback (pin 1) terminal and ground (see Figure 4). By selecting resistor R1, a constant current is caused to flow through R1 and R2 to set the overall output voltage. The regulated output voltage is determined by:

$$
\mathrm{V}_{\text {OUT }}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

For most applications, a 30k resistor is suggested for R1. To prevent stray pickup, a 100 pF capacitor is suggested across R1 located close to the LTC1174.

Figure 4. LTC1174 Adjustable Configuration

Inverting Applications

The LTC1174 can easily be set up for a negative output voltage. If -5 V is desired, the LTC1174-5 is ideal for this application as it requires the least components. Figure 5 shows the schematic for this application. Note that the output voltage is now taken off the GND pin. Therefore, the maximum input voltage is now determined by the difference between the absolute maximum voltage rating and the output voltage. A maximum of 12 V is specified in

Figure 5. Positive-to-Negative 5V Converter
Figure 5, giving the circuit a 1.5 V of headroom for $\mathrm{V}_{\text {IN }}$. Note that the circuit can operate from a minimum of 4 V , making it ideal for a 4 NiCad cell application. For a higher output current circuit, please refer to the Typical Applications section.

Board Layout Checklist

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC1174. These items are also illustrated graphically in the layout diagram in Figure 6. Check the following in your layout:

1. Is the Schottky catch diode closely connected between ground (pin 4) and switch (pin 5)?
2. Is the " + " plate of C_{IN} closely connected to $\mathrm{V}_{\mathrm{IN}}(\operatorname{pin} 6)$? This capacitor provides the AC current to the internal P-channel MOSFET.
3. Is the $0.1 \mu \mathrm{~F} \mathrm{~V}_{\mathrm{IN}}$ decoupling capacitor closely conected between $\mathrm{V}_{\text {IN }}(\operatorname{pin} 6)$ and ground (pin 4)? This capacitor carries the high frequency peak currents.
4. Is the $\overline{\text { SHUTDOWN }}$ (pin 8) actively pulled to V_{IN} during normal operation? The SHUTDOWN pin is high impedance and must not be allowed to float.
5. Is the I ${ }_{\text {PGM }}$ (pin 7) pulled either to $\mathrm{V}_{\text {IN }}$ or ground? The IPGM pin is high impedance and must not be allowed to float.

APPLICATIONS INFORMATION

Figure 6. LTC1174 Layout Diagram (See Board Layout Checklist)

DESIGN EXAMPLE

As a design example, assume $\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$ (nominal), $\mathrm{V}_{\text {OUT }}=$ 5 V , and $\mathrm{I}_{\text {Out }}=350 \mathrm{~mA}$ maximum. The LTC1174-5 is used for this application, with $\mathrm{I}_{\mathrm{PGM}}$ (pin7) connected to $\mathrm{V}_{\text {IN }}$. The minmum value of L is determined by assuming the LTC1174-5 is operating in continuous mode.

Figure 7. Continuous Inductor Current
With $I_{\text {OUt }}=350 \mathrm{~mA}$ and $I_{\text {PEAK }}=0.6 \mathrm{~A}\left(\mathrm{I}_{\mathrm{PGM}}=\mathrm{V}_{\text {IN }}\right), I_{V}=$ 0.1A.The peak-to-peak ripple inductor current, IRIPPLE, is 0.5 A and is also equal to:

$$
I_{\text {RIPPLE }}=4 \times 10^{-6}\left(\frac{V_{\text {OUT }}+V_{D}}{L}\right) \quad\left(A_{P-P}\right)
$$

Solving for L in the above equation and with $\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$, $\mathrm{L}=44.8 \mu \mathrm{H}$. The next higher standard value of L is $50 \mathrm{\mu H}$
(example: Coiltronics CTX50-4). The operating frequency, neglecting voltage across diode V_{D} is:

$$
\begin{aligned}
f & \approx 2.5 \times 10^{5}\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right) \\
& =111 \mathrm{kHz}
\end{aligned}
$$

With the value of L determined, the requirements for $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {Out }}$ are calculated. $\mathrm{For}_{\mathrm{C}_{\mathbb{N}} \text {, its }}$ RMS current rating should be at least:

$$
\begin{aligned}
\mathrm{I}_{\text {RMS }} & =\frac{\mathrm{I}_{\text {OUT }}\left[\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2}}{V_{\text {IN }}}\left(A_{\text {RMS }}\right) \\
& =174 \mathrm{~mA}
\end{aligned}
$$

For $\mathrm{C}_{\text {OUt }}$, the RMS current rating should be at least:

$$
\begin{aligned}
I_{\text {RMS }} & \approx \frac{I_{\text {PEAK }}}{2} \quad\left(A_{\text {RMS }}\right) \\
& =300 \mathrm{~mA}
\end{aligned}
$$

Now allow $\mathrm{V}_{\text {IN }}$ to drop to 6 V . Atthis minimum input voltage the operating frequency will decrease. The new frequency is 42 kHz .

APPLICATIONS INFORMATION

Table 1. Inductor Manufacturers

MANUFACTURER	PART NUMBER
Coilcraft	DT3316 Series
1102 Silver Lake Road	
Cary, IL 60013	
(708) 639-2361	
Coiltronics Inc.	Econo-Pac
6000 Park of Commerce Blvd.	Octa-Pac
Boca Raton, FL 33487 (407) 241-7876	
Gowanda Electronics Corporation 1 Industrial Place Gowanda, NY 14070 (716) 532-2234	GA10 Series
Sumida Electric Co. Ltd.	
637 E. Golf Road, Suite 209	CD 54 Series
Aling	

Table 2. Capacitor Manufacturers

MANUFACTURER	PART NUMBER
AVX Corporation	TPS Series
P.O. Box 887	TAJ Series
Myrtle Beach, SC 29578	
(803) 448-9411	PL Series
Nichicon America Corporation	
927 East State Parkway	
Schaberg, IL 60173	
(708) 843-7500	
Sanyo Video Components	OS-CON Series
2001 Sanyo Avenue	
San Diego, CA 92173	
(619) 661-6385	
Attn: Sales Dept.	

TYPICAL APPLICATIONS

6V to 5V Step-Down Regulator with Low-Battery Detection

LOW-BATTERY INDICATOR
IS SET TO TRIP AT $V_{I N}=5.5 \mathrm{~V}$
** AVX TPSD476K016
D1 $=$ MBRS140T3 (SURFACE MOUNT) 1 N5818
\dagger L1 SELECTION

MANUFACTURER	PART NO.	TYPE
COULTTONICS	CTX100-4	SURACACE MOUNT
SUIDA	CD75-101	SURFAC MOUNT
GOWANDA	GA10-103K	THROUGH HOLE

High Efficiency 3.3V Regulator

TYPICAL APPLICATIONS

High Efficiency 3V Regulator

Positive-to-Negative (-5V) Converter

Positive-to-Negative (-3.3V) Converter

TYPICAL APPLICATIONS

Negative Boost Converter

$\begin{gathered} \text { * AVX TPSD336K } \\ \text { D1 = MBRS140T3 } \\ \text { 1N5818 } \\ \text { † L1 SELECTION } \end{gathered}$	URFACE MOU	
MANUFACTURER	PART NO.	TYPE
COILTRONICS	CTX50-3	SURFACE MOUNT
COILCRAFT	DT3316-473	SURFACE MOUNT
SUMIDA	CD54-470	SURFACE MOUNT
GOWANDA	GA10-472K	THROUGH HOLE

9V to 5V Pre-Post Regulator

* SANYO OS-CON
** AVX TPSD476K016
D1 = MBRS140T3 (SURFACE MOUNT)
1N5818
${ }^{\dagger}$ L1 SELECTION

MANUFACTURER	PART N0.	TYPE
COILTRONICS	CTX50-3	SURFACE MOUNT
COILCRAFT	DT3316-473	SURFACE MOUNT
SUMIDA	CD54-470	SURFACE MOUNT
GOWANDA	GA10-472K	THROUGH HOLE

${ }^{\dagger \dagger}$ USE 1\% METAL FILM RESISTORS

LCD Display Power Supply

$\mathbf{V}_{\text {IN }}(\mathbf{V})$	$\mathbf{I}_{\text {OUT MaX }}(\mathbf{m A})$
4	20
5	25
6	30
7	35
8	43
9	50
10	55
11	60
12	65

* AVX TAJE106K050
** AVX TPSD476K016
D1 = MBRS140T3 (SURFACE MOUNT) 1N5818
\dagger L1 SELECTION

MANUFACTURER	PART N0.	TYPE
COILTRONICS	CTX100-3	SURFACE MOUNT
COILCRAFT	DT3316-104	SURFACE MOUNT
SUMIDA	CD75-101	SURFACE MOUNT
GOWANDA	GA10-103K	THROUGH HOLE

†† USE 1\% METAL FILM RESISTORS

TYPICAL APPLICATIONS
9 V to $5 \mathrm{~V},-5 \mathrm{~V}$ Outputs

9V to 12V, -12 V Outputs

TYPICAL APPLICATIONS

Buck-Boost Converter

Battery Charger

PACKAGE DESCRIPTO

N8 Package 8-Lead Plastic DIP

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTURSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm).

S8 Package

8-Lead Plastic SOIC

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15 mm).

[^0]: $\overline{\mathbf{\Sigma Y}}$ and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation．

