16－Bit，135ksps，Single－Supply ADC with 0 to 10 V Input Range

General Description

The MAX1177 is a 16－bit，low－power，successive－ approximation analog－to－digital converter（ADC）featur－ ing automatic power－down，a factory－trimmed internal clock，and a byte－wide parallel interface．The device operates from a single +4.75 V to +5.25 V analog supply and features a separate digital supply input for direct interface with +2.7 V to +5.25 V digital logic．
The MAX1177 accepts an analog input voltage range from 0 to +10 V ．It consumes no more than 26.5 mW at a sampling rate of 135 ksps when using an external refer－ ence，and 31 mW when using the internal +4.096 V refer－ ence．AutoShutdown ${ }^{\text {TM }}$ reduces supply current to 0.4 mA at 10 ksps ．

The MAX1177 is ideal for high－performance，battery－ powered，data－acquisition applications．Excellent AC performance（THD $=-100 \mathrm{~dB}$ ）and DC accuracy（ ± 3 LSB INL）make this device ideal for industrial process control，instrumentation，and medical applications．
The MAX1177 is available in a 20－pin TSSOP package and is fully specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range and the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range．

－Byte－Wide Parallel Interface		
－Analog Input Voltage Range： 0 to＋10V		
－Single＋4．75V to＋5．25V Analog Supply Voltage		
－Interfaces with＋2．7V to＋5．25V Digital Logic		
－± 3 LSB INL		
－± 1 LSB DNL		
－Low Supply 2.9 mA （E 3.8 mA （In $5 \mu \mathrm{~A}$ Auto	rent（max） al Reference） I Reference） down Mode	
－Small Footprint		
－20－Pin TSSOP Package		
Ordering Information		
PART	TEMP RANGE	PIN－PACKAGE
MAX1177ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX1177BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX1177CCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX1177AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX1177BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX1177CEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP

Features

Applications

Temperature Sensing and Monitoring
Industrial Process Control
I／O Modules
Data－Acquisition Systems
Precision Instrumentation

Pin Configuration and Functional Diagram appear at end of data sheet．

AutoShutdown is a trademark of Maxim Integrated Products，Inc．

Typical Operating Circuit

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

ABSOLUTE MAXIMUM RATINGS

AVDD to AGND	3 V to +6 V
DVVD to DGND.	-0.3V to +6V
AGND to DGND.	-0.3V to +0.3 V
AIN to AGND	-16.5 V to +16.5 V
REF, REFADJ to AGND	.-0.3V to (AV DD +0.3 V)
$\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{C}}, \mathrm{HBEN}$ to DGND	-0.3V to +6V
D_, EOC to DGND	-0.3V to ($\mathrm{DV} \mathrm{DD}+0.3 \mathrm{~V}$)
Maximum Continuous C50mA

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
TSSOP (derate $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	879 mW
Operating Temperature Ranges	
MAX1177_CUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX1177_EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (sold	$+300^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, external reference $=+4.096 \mathrm{~V}, C_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC ACCURACY							
Resolution	RES			16			Bits
Differential Nonlinearity	DNL	No missing codes over temperature	MAX1177A	-1		+1	LSB
			MAX1177B	-1.0		+1.5	
			MAX1177C	-1		+2	
Integral Nonlinearity	INL	MAX1177A		-3		+3	LSB
		MAX1177B		-3		+3	
		MAX1177C		-4		+4	
Transition Noise		RMS noise, external reference		0.6			LSBrms
		Internal reference		0.75			
Offset Error				-10	0	+10	mV
Gain Error					0	± 0.2	\%FSR
Offset Drift					16		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Drift					± 1		ppm/ ${ }^{\circ} \mathrm{C}$
AC ACCURACY (fin $=1 \mathrm{kHz}, \mathrm{V}$	full range,	135ksps)					
Signal-to-Noise Plus Distortion	SINAD			85	90		dB
Signal-to-Noise Ratio	SNR			86	91		dB
Total Harmonic Distortion	THD				-100	-92	dB
Spurious-Free Dynamic Range	SFDR			92	103		dB
ANALOG INPUT							
Input Range	VAIN			0		10	V
Input Resistance		Normal operation		5.3	6.9	9.2	
Input Resistance	RAIN	Shutdown mode		5.3			
Input Current	IAIN	$0 \leq \mathrm{V}_{\text {AIN }} \leq+10 \mathrm{~V}$		-0.1		+2.0	mA
Input Capacitance	CIN				10		pF

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{REFADJ}}=A V_{D D}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INTERNAL REFERENCE						
REF Output Voltage	VREF		4.056	4.096	4.136	V
REF Output Tempco				± 35		ppm/ ${ }^{\circ} \mathrm{C}$
REF Short-Circuit Current	IREF-SC			± 10		mA
EXTERNAL REFERENCE						
REF and REFADJ Input-Voltage Range			3.8		4.2	V
REFADJ Buffer-Disable Threshold			$\begin{gathered} A V_{D D}- \\ 0.4 \end{gathered}$		$\begin{gathered} A V_{D D}- \\ 0.1 \end{gathered}$	V
REF Input Current	IREF	Normal mode, fsAMPLE $=135 \mathrm{ksps}$		60	100	$\mu \mathrm{A}$
		Shutdown mode (Note 1)		± 0.1	± 10	
REFADJ Input Current	IREFADJ	REFADJ = AVDD		16		$\mu \mathrm{A}$
DIGITAL INPUTS/OUTPUTS						
Output High Voltage	VOH	$\begin{aligned} & \text { ISOURCE }=0.5 \mathrm{~mA}, \mathrm{DV} \text { DD }=+2.7 \mathrm{~V} \text { to }+5.25 \mathrm{~V}, \\ & A V_{D D}=+5.25 \mathrm{~V} \end{aligned}$	$\begin{gathered} D V_{D D}- \\ 0.4 \end{gathered}$			V
Output Low Voltage	VoL	$\begin{aligned} & \mathrm{ISINK}=1.6 \mathrm{~mA}, \mathrm{DV} \text { DD }=+2.7 \mathrm{~V} \text { to }+5.25 \mathrm{~V}, \\ & \mathrm{AV} \mathrm{DD}=+5.25 \mathrm{~V} \end{aligned}$			0.4	V
Input High Voltage	V_{IH}		$\begin{aligned} & 0.7 \times \\ & D V_{D D} \end{aligned}$			V
Input Low Voltage	VIL				$\begin{aligned} & 0.3 \times \\ & D V_{D D} \end{aligned}$	V
Input Leakage Current		Digital input = DVDD or OV	-1		+1	$\mu \mathrm{A}$
Input Hysteresis	VHYST			0.2		V
Input Capacitance	CIN			15		pF
Tri-State Output Leakage	loz				± 10	$\mu \mathrm{A}$
Tri-State Output Capacitance	Coz			15		pF
POWER SUPPLIES						
Analog Supply Voltage	$A V_{D D}$		4.75		5.25	V
Digital Supply Voltage	DVDD		2.70		5.25	V
Analog Supply Current	IAVDD	External reference, 135ksps			2.9	mA
		Internal reference, 135ksps			3.8	
Shutdown Supply Current	ISHDN	Shutdown mode (Note 1), digital input = DVDD or OV		0.5	5	$\mu \mathrm{A}$
		Standby mode		3.7		mA
Digital Supply Current	IDVDD				0.75	mA
Power-Supply Rejection		$A V_{\text {DD }}=\mathrm{DV} \mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V		3.5		LSB

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

TIMING CHARACTERISTICS (Figures 1 and 2)
 $C_{\text {LOAD }}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Maximum Sampling Rate	fSAMPLE-MAX			135	ksps
Acquisition Time	tacQ		2		$\mu \mathrm{s}$
Conversion Time	tCONV			4.7	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ Pulse-Width High	tCSH	(Note 2)	40		ns
$\overline{\mathrm{CS}}$ Pulse-Width Low (Note 2)	tCSL	DV ${ }_{\text {DD }}=4.75 \mathrm{~V}$ to 5.25 V	40		ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.25 V	60		
R/言 to $\overline{\mathrm{CS}}$ Fall Setup Time	tDS		0		ns
R/衰 to $\overline{\mathrm{CS}}$ Fall Hold Time	tDH	$\mathrm{DV} \mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V	40		ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.25 V	60		
$\overline{\mathrm{CS}}$ to Output Data Valid	tDO	$\mathrm{DV} \mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V		40	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.25 V		80	
$\overline{\text { EOC }}$ Fall to $\overline{\mathrm{CS}}$ Fall	tDV		0		ns
$\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{EOC}}$ Rise	tEOC	DV ${ }_{\text {DD }}=4.75 \mathrm{~V}$ to 5.25 V		40	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.25 V		80	
Bus Relinquish Time	tBR	DV ${ }_{\text {DD }}=4.75 \mathrm{~V}$ to 5.25 V		40	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.25 V		80	
HBEN Transition to Output Data Valid	tDO1	DV ${ }_{\text {DD }}=4.75 \mathrm{~V}$ to 5.25 V		40	ns
		DV ${ }_{\text {D }}=2.7 \mathrm{~V}$ to 5.25 V		80	

Note 1: Maximum specification is limited by automated test equipment.
Note 2: To ensure best performance, finish reading the data and wait tBR before starting a new acquisition.
(Typical Operating Circuit, $A V_{D D}=\operatorname{DVDD}=+5 \mathrm{~V}$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}$, CLOAD $=20 p F$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range

Typical Operating Characteristics (continued)
(Typical Operating Circuit, $\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=+5 \mathrm{~V}$, external reference $=+4.096 \mathrm{~V}, \mathrm{CREF}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{REFADJ}}=\mathrm{AV}$ DD, CLOAD $=20 \mathrm{pF}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INTERNAL REFERENCE

SINAD vs. FREQUENCY

vs. TEMPERATURE

SFDR vs. FREQUENCY

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

PIN	NAME	FUNCTION
1	D4/D12	Tri-State Digital-Data Output
2	D5/D13	Tri-State Digital-Data Output
3	D6/D14	Tri-State Digital-Data Output
4	D7/D15	Tri-State Digital-Data Output. D15 is the MSB.
5	R/C	Read/Convert Input. Power up and put the device in acquisition mode by holding R/C low during the first falling edge of $\overline{\mathrm{CS}}$. During the second falling edge of $\overline{\mathrm{CS}}$, the level on $\mathrm{R} / \overline{\mathrm{C}}$ determines whether the reference and reference buffer power down or remain on after conversion. Set R/C high during the second falling edge of $\overline{\mathrm{CS}}$ to power down the reference and buffer, or set $\mathrm{R} / \overline{\mathrm{C}}$ low to leave the reference and buffer powered up. Set R/C high during the third falling edge of $\overline{\mathrm{CS}}$ to put valid data on the bus.
6	$\overline{\text { EOC }}$	End of Conversion. $\overline{\text { EOC }}$ drives low when conversion is complete.
7	AVDD	Analog Supply Input. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to AGND.
8	AGND	Analog Ground. Primary analog ground (star ground).
9	AIN	Analog Input
10	AGND	Analog Ground. Connect pin 10 to pin 8.
11	REFADJ	Reference Buffer Output. Bypass REFADJ with a 0.1μ F capacitor to AGND for internal reference mode. Connect REFADJ to AVDD to select external reference mode.
12	REF	Reference Input/Output. Bypass REF with a $10 \mu \mathrm{~F}$ capacitor to AGND for internal reference mode. External reference input when in external reference mode.
13	HBEN	High-Byte Enable Input. Used to multiplex the 16-bit conversion result. 1: MSB available on the data bus. 0 : LSB available on the data bus.
14	$\overline{\mathrm{CS}}$	Convert Start. The first falling edge of $\overline{\mathrm{CS}}$ powers up the device and enables acquire mode when $\mathrm{R} / \overline{\mathrm{C}}$ is low. The second falling edge of $\overline{\mathrm{CS}}$ starts the conversion. The third falling edge of $\overline{\mathrm{CS}}$ loads the result onto the bus when $R / \overline{\mathrm{C}}$ is high.
15	DGND	Digital Ground
16	DVDD	Digital Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to DGND.
17	D0/D8	Tri-State Digital-Data Output. D0 is the LSB.
18	D1/D9	Tri-State Digital-Data Output
19	D2/D10	Tri-State Digital-Data Output
20	D3/D11	Tri-State Digital-Data Output

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range

Detailed Description

Converter Operation

The MAX1177 uses a successive-approximation (SAR) conversion technique with an inherent track-and-hold (T/H) stage to convert an analog input into a 16-bit digital output. Parallel outputs provide a high-speed interface to microprocessors ($\mu \mathrm{Ps}$). The Functional Diagram shows a simplified internal architecture of the MAX1177. Figure 3 shows a typical operating circuit for the MAX1177.

Analog Input
 Input Scaler

The MAX1177 has an input scaler, which allows conversion of input voltages ranging from 0 to 10 V , while operating from a single +5 V analog supply. The input scaler attenuates and shifts the analog input to match the input range of the internal digital-to-analog converter (DAC). Figure 4 shows the equivalent input circuit of the MAX1177. This circuit limits the current going into AIN to less than 2 mA .

Track and Hold (T/H) In track mode, the internal hold capacitor acquires the analog signal (Figure 4). In hold mode, the T/H switches open and the capacitive DAC samples the analog input. During the acquisition, the analog input (AIN) charges capacitor CHOLD. The acquisition ends on the second falling edge of $\overline{\mathrm{CS}}$. At this instant, the T / H switches open. The retained charge on CHOLD represents a sample of the input. In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node T/H OUT to zero within the limits of 16-bit resolution. Force $\overline{\mathrm{CS}}$ low to put valid data on the bus after conversion is complete.

Figure 1. Load Circuits

Figure 2. MAX1177 Timing Diagram

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

Power-Down Modes Select standby mode or shutdown mode with the R/C bit during the second falling edge of $\overline{\mathrm{CS}}$ (see the Selecting Standby or Shutdown Mode section). The MAX1177 automatically enters either standby mode (reference and buffer on) or shutdown (reference and buffer off) after each conversion, depending on the status of R / \bar{C} during the second falling edge of $\overline{\mathrm{CS}}$.

Internal Clock

The MAX1177 generates an internal conversion clock to free the $\mu \mathrm{P}$ from the burden of running the SAR conversion clock. Total conversion time (tcONV) after entering hold mode (second falling edge of $\overline{\mathrm{CS}}$) to end-of-conversion (EOC) falling is $4.7 \mu \mathrm{~s}$ (max).

Applications Information

Starting a Conversion

$\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{C}}$ control acquisition and conversion in the MAX1177 (Figure 2). The first falling edge of $\overline{\mathrm{CS}}$ powers up the device and puts it in acquire mode if R / C is low. The convert start is ignored if R / \bar{C} is high. The device needs at least 12 ms for the internal reference to wake up and settle before starting the conversion (CreFadj $=0.1 \mu F$, CREF $=10 \mu F$), if powering up from shutdown.

Selecting Standby or Shutdown Mode

The MAX1177 has a selectable standby or low-power shutdown mode. In standby mode, the ADC's internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after completing a conversion. The reference and reference buffer require a minimum of 12 ms to power up and settle from shutdown (Crefadj $=0.1 \mu F$, Cref $=10 \mu F)$.
The state of R / \bar{C} at the second falling edge of $\overline{C S}$ selects which power-down mode the MAX1177 enters upon conversion completion. Holding R/C low causes the device to enter standby mode. The reference and buffer are left on after the conversion completes. R/C high causes the MAX1177 to enter shutdown mode and power-down the reference and buffer after conversion (Figures 5 and 6). Set the voltage at R/C high during the second falling edge of $\overline{\mathrm{CS}}$ to realize the lowest current operation.

Figure 3. Typical Operating Circuit for the MAX1177

Figure 4. Equivalent Input Circuit

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range

Figure 5. Selecting Standby Mode

Standby Mode

While in standby mode, the supply current is less than 3.7 mA (typ). The next falling edge of $\overline{\mathrm{CS}}$ with R/C low causes the MAX1177 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time.

Shutdown Mode
In shutdown mode, the reference and reference buffer are shut down between conversions. Shutdown mode reduces supply current to $0.5 \mu \mathrm{~A}$ (typ) immediately after the conversion. The next falling edge of $\overline{\mathrm{CS}}$ with R/C low causes the reference and buffer to wake up and enter acquisition mode. To achieve 16-bit accuracy, allow 12ms for the internal reference to wake up $($ CREFADJ $=0.1 \mu \mathrm{~F}, \mathrm{CREF}=10 \mu \mathrm{~F})$.

Internal and External Reference

Internal Reference

The internal reference of the MAX1177 is internally buffered to provide +4.096 V output at REF. Bypass REF to AGND and REFADJ to AGND with $10 \mu \mathrm{~F}$ and $0.1 \mu F$, respectively. Sink or source current at REFADJ to make fine adjustments to the internal reference. The input impedance of REFADJ is nominally $5 \mathrm{k} \Omega$. Use the circuit in Figure 7 to adjust the internal reference to $\pm 1.5 \%$.

External Reference

An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1177's internal buffer amplifier. Using the buffered REFADJ input

Figure 6. Selecting Shutdown Mode

Figure 7. MAX1177 Reference Adjust Circuit
makes buffering the external reference unnecessary. The input impedance of REFADJ is typically $5 k \Omega$. The internal buffer output must be bypassed at REF with a $10 \mu \mathrm{~F}$ capacitor.
Connect REFADJ to AVDD to disable the internal buffer. Directly drive REF using an external 3.8 V to 4.2 V reference. During conversion, the external reference must be able to drive $100 \mu \mathrm{~A}$ of DC load current and have an output impedance of 10Ω or less.
For optimal performance, buffer the reference through an op amp and bypass REF with a $10 \mu \mathrm{~F}$ capacitor. Consider the MAX1177's equivalent input noise (0.6 LSB) when choosing a reference.

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

Figure 8. MAX1177 Transfer Function

Reading the Conversion Result

EOC is provided to flag the $\mu \mathrm{P}$ when a conversion is complete. The falling edge of $\overline{E O C}$ signals that the data is valid and ready to be output to the bus. D0-D15 are the parallel outputs of the MAX1177. These tri-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high impedance during acquisition and conversion. Data is loaded onto the output bus with the third falling edge of $\overline{C S}$ with R / C high (after tDo), Bringing $\overline{\mathrm{CS}}$ high forces the output bus back to high impedance. The MAX1177 then waits for the next falling edge of $\overline{\mathrm{CS}}$ to start the next conversion cycle (Figure 2).
HBEN toggles the output between the high/low byte. The low byte is loaded onto the output bus when HBEN is low, and the high byte is on the bus when HBEN is high.

Transfer Function

Figure 8 shows the MAX1177 output transfer function. The output is coded in standard binary.

Input Buffer

Most applications require an input buffer amplifier to achieve 16-bit accuracy and prevent loading the source. When the input signal is multiplexed, switch the channels immediately after acquisition, rather than near the end of, or after, a conversion. This allows more time for the input buffer amplifier to respond to a large step

Figure 9. MAX1177 Fast-Settling Input Buffer
change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. Figure 9 shows an example of this circuit using the MAX427.

Layout, Grounding, and Bypassing
For best performance, use printed circuit boards. Do not run analog and digital lines parallel to each other, and do not lay out digital signal paths underneath the ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible.
Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise onto the analog lines. If the analog and digital sections share the same supply, isolate the digital and analog supply by connecting them with a low-value (10 resistor or ferrite bead.
The ADC is sensitive to high-frequency noise on the $A V_{D D}$ supply. Bypass AVDD to AGND with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance.

16-Bit, 135ksps, Single-Supply ADC with 0 to 10 V Input Range

Definitions

Integral Nonlinearity

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1177 are measured using the end-point method.

Differential Nonlinearity

 Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of 1 LSB guarantees no missing codes and a monotonic transfer function.
Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=16$ bits.
In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. The SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals:

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log \left[\frac{\text { Signal }_{\mathrm{RMS}}}{(\text { Noise }+ \text { Distortion })_{\mathrm{RMS}}}\right]
$$

Effective Number of Bits
Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the ENOB as follows:

$$
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02}
$$

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left[\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right]
$$

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest frequency component.

16-Bit, 135ksps, Single-Supply ADC with to 10V Input Range

Pin Configuration

16－Bit，135ksps，Single－Supply ADC with 0 to 10 V Input Range

Package Information
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

