

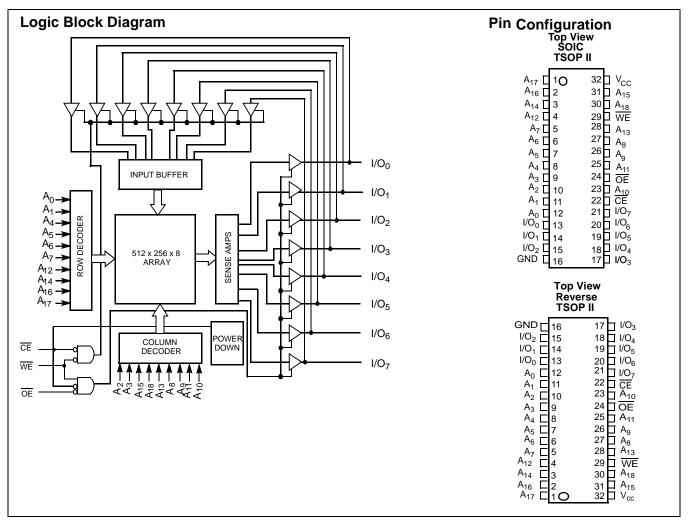
CY62148B MoBL™

512K x 8 Static RAM

Features

- 4.5V-5.5V operation
- Low active power
 - Typical active current: 2.5 mA @ f = 1 MHz
 - -Typical active current: 12.5 mA @ f = f_{max}
- Low standby current
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- CMOS for optimum speed/power

Functional Description


The CY62148B is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}), an active LOW Output Enable (\overline{OE}), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 99% when deselected.

<u>Writing</u> to the device is accomplished by taking Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (\overline{OE} HIGH), or during a write operation (CE LOW, and WE LOW).

The CY62148B is available in a standard 32-pin 450-mil-wide body width SOIC, 32-pin TSOP II, and 32-pin Reverse TSOP II packages.

Cypress Semiconductor Corporation • Document #: 38-05039 Rev. *B

3901 North First Street
San Jose
CA 95134
408-943-2600
October 8, 2001

Product Portfolio

							Power Di	ssipation	
						Operat	ing, Icc	Standb	y (I _{SB2})
	,	V _{CC} Range)			f = 1	max		
Product	Min.	Тур.	Max.	Speed	Temp.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148BLL	4.5 V	5.0V	5.5V	70 ns	Com'l	12.5 mA	20 mA	4 μΑ	20 µA
					Ind'l				

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} to Relative GND –0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to V _{CC} +0.5V
in High Z State ¹¹ – $0.5V$ to V _{CC} + $0.5V$
DC Input Voltage ^[1] 0.5V to V _{CC} +0.5V

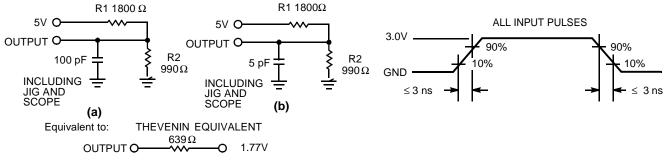
Current into Outputs (LOW) 20 mA Static Discharge Voltage......2001V (per MIL-STD-883, Method 3015) Latch-Up Current......>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	4.5V–5.5V
Industrial	–40°C to +85°C	

Notes:

V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
T_A is the "Instant On" case temperature
Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


Electrical Characteristics Over the Operating Range

				CY62148B-7		70	
Parameter	Description	Test Cond	Test Conditions		Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -	- 1 mA	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2$.1 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	μA
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled		-1		+1	μΑ
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	Com/Ind'l		12.5	20	mA
	Supply Current	f = 1 MHz	I _{OUT} =0 mA V _{CC} = Max.,		2.5		mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\label{eq:max_constraint} \begin{array}{l} \underline{Max}.\ V_{CC},\\ \overline{CE} \geq V_{IH}\\ V_{IN} \geq V_{IH} \ or\\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$	Com/ Ind'l			1.5	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:max_cc} \begin{array}{ c c } \underline{Max}. \ V_{CC}, \\ \hline CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ or \ V_{IN} \leq 0.3V, \ f = 0 \end{array}$	Com/ Ind'l		4	20	μΑ

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Note:

4. Tested initially and after any design or process changes that may affect these parameters.

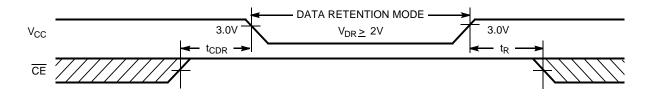
Switching Characteristics^[5] Over the Operating Range

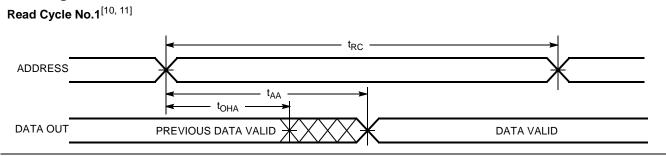
		62148	BLL-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE				
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^[8]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	55		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns

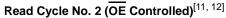
Notes:

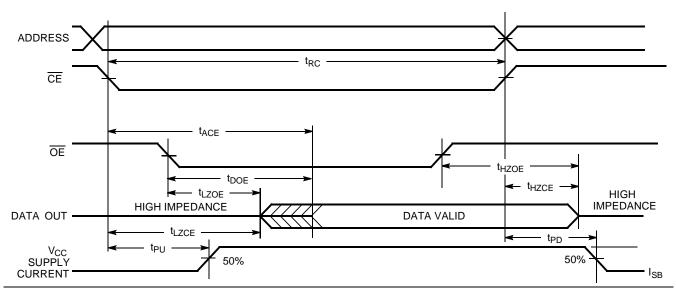
Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.

6. 7.

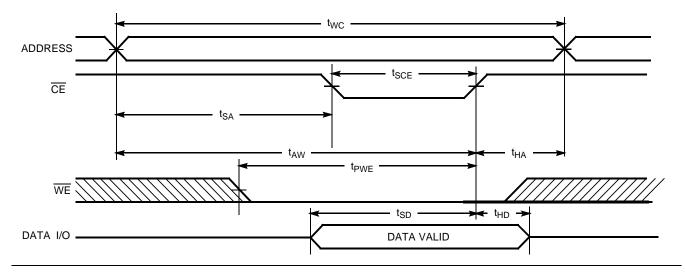

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of <u>AC</u> Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 8.


Data Retention Characteristics (Over the Operating Range)

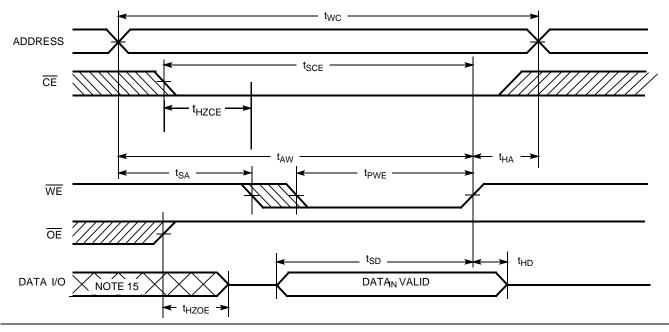

Parameter	Description			Conditions	Min.	Typ. ^[3]	Max.	Unit
V _{DR}	V _{CC} for Data Retention				2.0			V
I _{CCDR}	Data Retention Current	Com'l	LL	No input may exceed			20	μA
		Ind'l	LL	$V_{CC} + 0.3V$ $V_{CC} = V_{DD} = 3.0V$			20	μA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time			$\frac{V_{CC}}{CE} = V_{DR} = 3.0V$ $CE > V_{CC} - 0.3V$	0			ns
t _R ^[9]	Operation Recovery Time			$V_{IN} > V_{CC} - 0.3V$ or $V_{IN} < 0.3V$	t _{RC}			ns


Data Retention Waveform

Switching Waveforms


Notes:

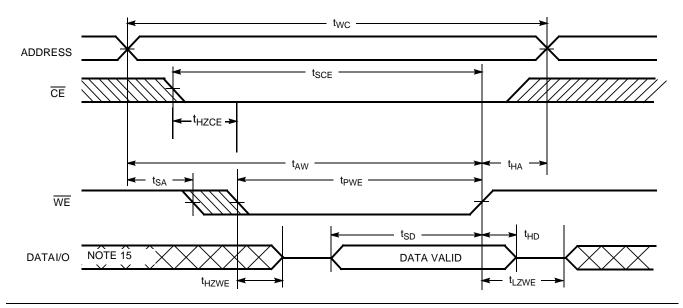
9. Full Device operatin requires line<u>ar V_{CC}</u> ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
10. <u>Device</u> is continuously selected. OE, CE = V_{IL}.
11. WE is HIGH for read cycle.
12. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)^[13, 14]


Notes:

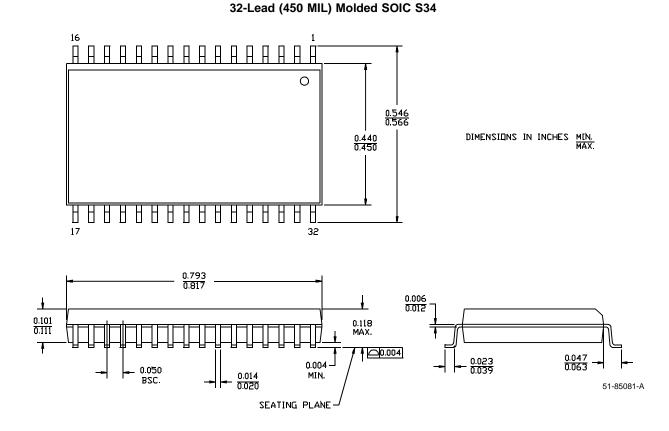
If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
Data I/O is high-impedance if OE = V_{IH}.
During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

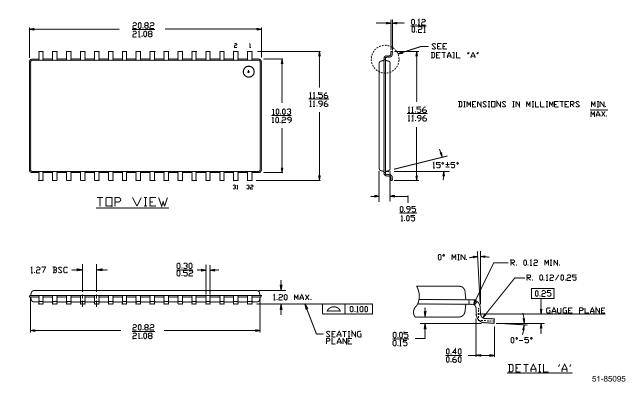
Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[13, 14]

Truth Table

CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

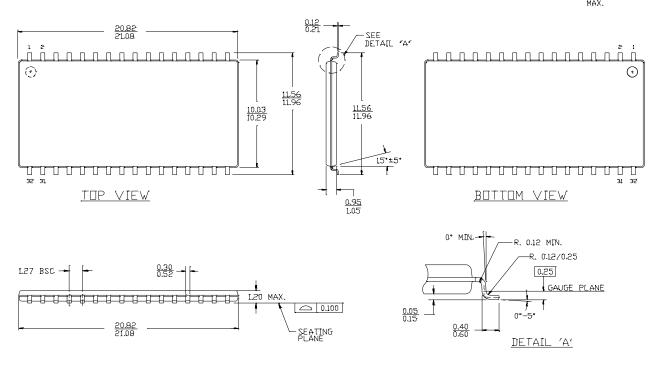

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62148BLL-70SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY62148BLL-70ZC	ZS32	32-Lead TSOP II	
	CY62148BLL-70ZRC	ZU32	32-Lead RTSOP II	
	CY62148BLL-70SI	S34	32-Lead (450-Mil) Molded SOIC	Industrial
	CY62148BLL-70ZI	ZS32	32-Lead TSOP II	
	CY62148BLL-70ZRI	ZU32	32-Lead RTSOP II	


Package Diagrams

Package Diagrams (continued)

32-Lead TSOP II ZS32



Package Diagrams (continued)

32-Lead Reverse Thin Small Outline Package Type II ZU32

DIMENSIONS IN MILLIMETERS $\frac{\text{MIN.}}{\text{MAX.}}$

51-85138-**

Document #: 38-05039 Rev. *B

Page 10 of 11

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY62148B 512K x 8 Static RAM Document Number: 38-05039							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	106833	05/01/01	SZV	Change from Spec number 38-01104 to 38-05039			
*A	106970	07/16/01	GAV	Modified annotations on Pin Configurations; t _{SD} = 30 ns			
*В	109766	10/09/01	MGN	Remove 55-ns devices			