

PIC16C71X

专业PCB打样工厂,24小时加急出货

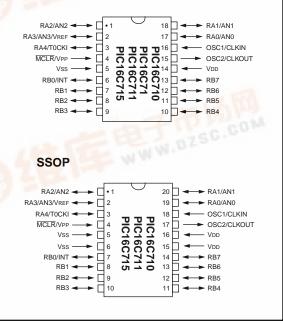
8-Bit CMOS Microcontrollers with A/D Converter

Devices included in this data sheet:

- PIC16C710
- PIC16C71
- PIC16C711
- PIC16C715

PIC16C71X Microcontroller Core Features:

- High-performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 2K x 14 words of Program Memory, up to 128 x 8 bytes of Data Memory (RAM)
- Interrupt capability
- Eight level deep hardware stack
- Direct, indirect, and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode
- Selectable oscillator options
- Low-power, high-speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range: 2.5V to 6.0V
- High Sink/Source Current 25/25 mA
- Commercial, Industrial and Extended temperature ranges
- Program Memory Parity Error Checking Circuitry with Parity Error Reset (PER) (PIC16C715)
- Low-power consumption:
 - < 2 mA @ 5V, 4 MHz
 - <mark>- 15 μA typic</mark>al @ 3V, 32 kHz
 - < 1 μA typical standby current</p>


PIC16C71X Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- 8-bit multichannel analog-to-digital converter
- Brown-out detection circuitry for Brown-out Reset (BOR)
- 13 I/O Pins with Individual Direction Control

PIC16C7X Features	710	71	711	715
Program Memory (EPROM) x 14	512	1K	1K	2K
Data Memory (Bytes) x 8	36	36	68	128
I/O Pins	13	13	13	13
Timer Modules	1	1	1	1
A/D Channels	4	4	4	4
In-Circuit Serial Programming	Yes	Yes	Yes	Yes
Brown-out Reset	Yes	_	Yes	Yes
Interrupt Sources	4	4	4	4

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

Table of Contents

1.0	General Description PIC16C71X Device Varieties	3
2.0	PIC16C71X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	. 11
5.0	I/O Ports	. 25
6.0	Timer0 Module	. 31
7.0	Analog-to-Digital Converter (A/D) Module	. 37
8.0	Special Features of the CPU	. 47
9.0	Instruction Set Summary	. 69
10.0	Development Support	
11.0	Electrical Characteristics for PIC16C710 and PIC16C711	. 89
12.0	DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711	101
13.0	Electrical Characteristics for PIC16C715	111
14.0	DC and AC Characteristics Graphs and Tables for PIC16C715	
15.0	Electrical Characteristics for PIC16C71	135
16.0	DC and AC Characteristics Graphs and Tables for PIC16C71	147
17.0	Packaging Information	155
	dix A:	
Appen	dix B: Compatibility	161
Appen	dix C: What's New	162
	dix D: What's Changed	
Index .		163
PIC16	C71X Product Identification System	173

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16C71X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C710/71** devices have 36 bytes of RAM, the **PIC16C711** has 68 bytes of RAM and the **PIC16C715** has 128 bytes of RAM. Each device has 13 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C71X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C71X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C71X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C71X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 10.0 for more details about Microchip's development tools.

TABLE 1-1: PIC16C71X FAMILY OF DEVICES

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	512	1K	1K	2К	2K	—
Memory	ROM Program Memory (14K words)			—	—	_	2К
	Data Memory (bytes)	36	36	68	128	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)		_			1	1
	Serial Port(s) (SPI/I ² C, USART)					SPI/I ² C	SPI/I ² C
	Parallel Slave Port		—	—	—	_	—
	A/D Converter (8-bit) Channels	4	4	4	4	5	5
	Interrupt Sources	4	4	4	4	8	8
	I/O Pins	13	13	13	13	22	22
	Voltage Range (Volts)	2.5-6.0	3.0-6.0	2.5-6.0	2.5-5.5	2.5-6.0	3.0-5.5
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP

		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	376	376
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

2.0 PIC16C71X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C71X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**71. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C71X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

NOTES:

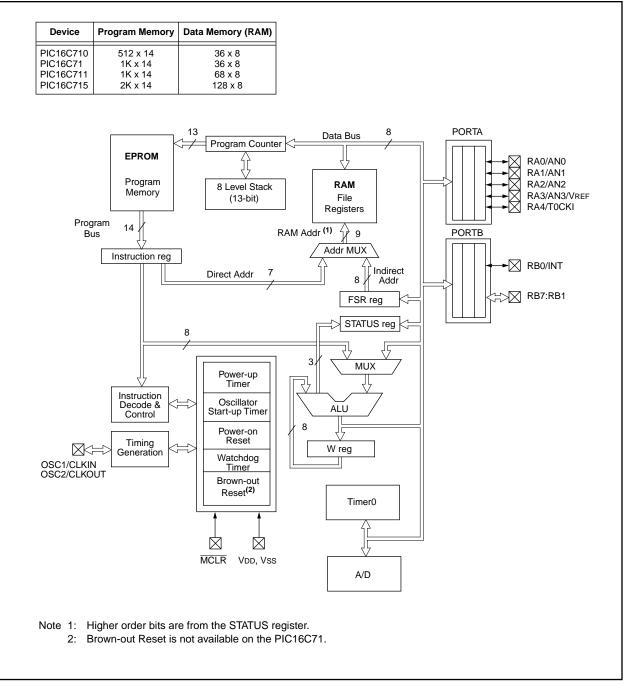
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.


PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

Pin Name	DIP Pin#	SSOP Pin# ⁽⁴⁾	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	4	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	RA0 can also be analog input0
RA1/AN1	18	20	18	I/O	TTL	RA1 can also be analog input1
RA2/AN2	1	1	1	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	3	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is
						open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro-
						grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	_	Positive supply for logic and I/O pins.
Legend: I = inp	ut	O = outp	ut	l	/O = input/out	put P = power ut ST = Schmitt Trigger input

TABLE 3-1: PIC16C710/71/711/715 PINOUT DESCRIPTION

 Legend:
 T = not used
 TTL = TTL input
 ST = Schmitt Trigger input

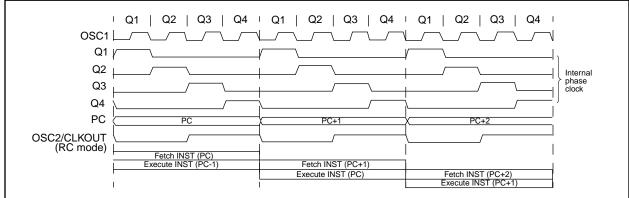
 Note
 1:
 This buffer is a Schmitt Trigger input when configured as the external interrupt.

 2:
 This buffer is a Schmitt Trigger input when used in serial programming mode.

 3:
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

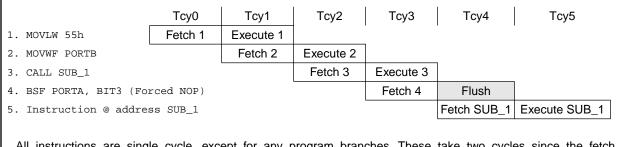
 4:
 The PIC16C71 is not available in SSOP package.

3.1 <u>Clocking Scheme/Instruction Cycle</u>


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

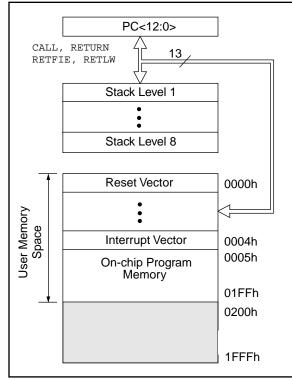
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization


The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range		
PIC16C710	512 x 14	0000h-01FFh		
PIC16C71	1K x 14	0000h-03FFh		
PIC16C711	1K x 14	0000h-03FFh		
PIC16C715	2K x 14	0000h-07FFh		

For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

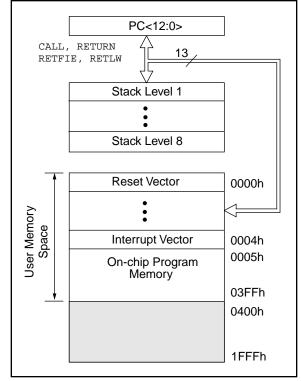

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C710 PROGRAM MEMORY MAP AND STACK

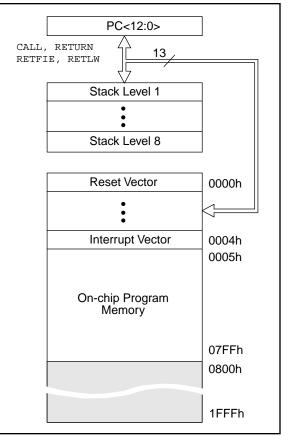


FIGURE 4-2: PI

PIC16C71/711 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = 1 \rightarrow Bank 1

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

File Addres	S	ŀ	File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
00h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h		PCON ⁽²⁾	87h
08h	ADCON0	ADCON1	88h
09h	ADRES	ADRES	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽³⁾	8Ch
2Fh			AFh
30h			B0h
Į			
N			
7Fh			FFh
	Bank 0	Bank 1	
Note 1: 2: 3:	as '0'. Not a physical re The PCON regist PIC16C71. These locations a	ter is not implemen are unimplemented ese locations will a	ted on the in Bank 1.

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

File Addres	s		File Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h		PCON	87h						
08h	ADCON0	ADCON1	88h						
09h	ADRES	ADRES	89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽²⁾	8Ch						
4Fh			CFh						
50h			D0h						
		Ì							
7Fh			FFh						
L L	Bank 0	Bank 1							
Note 1: 2:	Unimplemented data memory locations, read as '0'.								

FIGURE 4-6: PIC

PIC16C715 REGISTER FILE MAP

	MAP		
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	
04h	FSR	FSR	
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h			 A0h
	General	General	
	Purpose Register	Purpose Register	
	register		BFh
			C0h
7Fh			FFh
7111	Bank 0	Bank 1	
Γ ι	Jnimplemented dat	a memory location	ons, read
	as '0'. Not a physical regis	tor	
	vot a priysical regis		

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0						·	·		•		·
00h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er en					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	RTB pins wl	nen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	A/D Result	A/D Result Register							xxxx xxxx	uuuu uuuu
0Ah ^(2,3)	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1		-	*	-							
80h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte		•			0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er en					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	_	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	a Direction C	Control Regis	ster					1111 1111	1111 1111
87h ⁽⁴⁾	PCON	_	_	—	_	_	—	POR	BOR	dd	uu
88h	ADCON1	_	—	—	—	—	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
8Ah ^(2,3)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from either bank.

- 4: The PCON register is not physically implemented in the PIC16C71, read as '0'.
- 5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

^{2:} The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0							·				
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	DRTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	—
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	_	_	—	—	_	-0	-0
0Dh	_	Unimpleme	nted							_	_
0Eh	_	Unimpleme	nted							_	—
0Fh	_	Unimpleme	nted							_	_
10h	_	Unimpleme	nted							—	—
11h	_	Unimpleme	nted							—	_
12h	—	Unimpleme	nted							—	—
13h	_	Unimpleme	nted							—	—
14h	_	Unimpleme	nted							-	—
15h	—	Unimpleme	nted							—	—
16h	—	Unimpleme	nted							—	_
17h	—	Unimpleme	nted							—	—
18h	—	Unimpleme	nted							—	—
19h	—	Unimpleme	nted							—	—
1Ah	_	Unimpleme	nted							-	—
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	—
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

TABLE 4-2:	PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)	
------------	---	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1	•		•		•	•		•			
80h ⁽¹⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er	•	•	•		XXXX XXXX	uuuu uuuu
85h	TRISA	—	_	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111
87h	—	Unimpleme	nted							-	—
88h	—	Unimpleme	nted							—	—
89h	_	Unimpleme	nted							_	—
8Ah (1,2)	PCLATH	—	_	_	Write Buffer	for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	_	_	—	_	_	_	-0	-0
8Dh	—	Unimpleme	nted							-	—
8Eh	PCON	MPEEN	_	_	—	—	PER	POR	BOR	u1qq	uluu
8Fh	_	Unimpleme	nted				•			_	—
90h	—	Unimpleme	nted							-	—
91h	—	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	—	Unimpleme	nted							—	—
95h	_	Unimpleme	nted							—	—
96h	—	Unimpleme	nted							—	—
97h	—	Unimpleme	nted							—	—
98h	—	Unimpleme	nted							_	—
99h	—	Unimpleme	nted							—	—
9Ah	_	Unimpleme	nted							_	—
9Bh	_	Unimpleme	nted							—	—
9Ch	—	Unimpleme	nted							—	—
9Dh	-	Unimpleme	nted							-	_
9Eh	_	Unimpleme	nted					•		-	—
9Fh	ADCON1	-	—	-	—	—	—	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices 710 71 711 715

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit		
bit7			·				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)									
bit 6-5:	5: RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes									
bit 4:		power-up,	CLRWDT in	struction,	or sleep ir	struction				
bit 3:		power-up	t or by the (the SLEEE							
bit 2:		esult of an			operation is					
bit 1:	DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result									
bit 0:	 0 = No carry-out from the 4th low order bit of the result C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 									

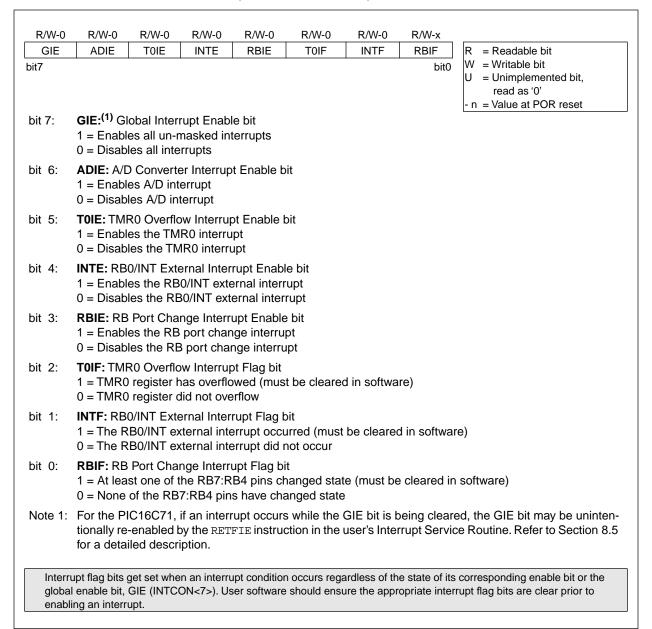
4.2.2.2 OPTION REGISTER

Γ

Applicable Devices 710 71 711 715

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)


R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit	
bit7		1000	1002		1.02		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:									
bit 6:	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin								
bit 5:	TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)								
bit 4:	T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin								
bit 3:	PSA: Pres 1 = Presca 0 = Presca	ler is ass	igned to tl	he WDT	module				
bit 2-0:	PS2:PS0:	Prescaler	Rate Sel	ect bits					
	Bit Value	TMR0 R	ate WD1	Rate					
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128								

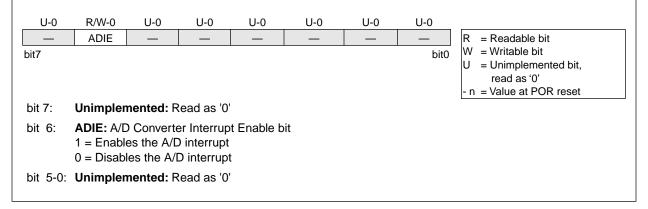
4.2.2.3 INTCON REGISTER

Applicable Devices |710 |71 |711 |715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

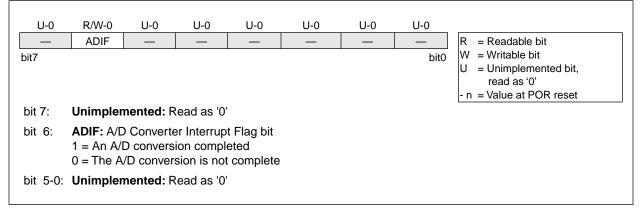

4.2.2.4 PIE1 REGISTER

Applicable Devices 710 71 711 715

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the Peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch)

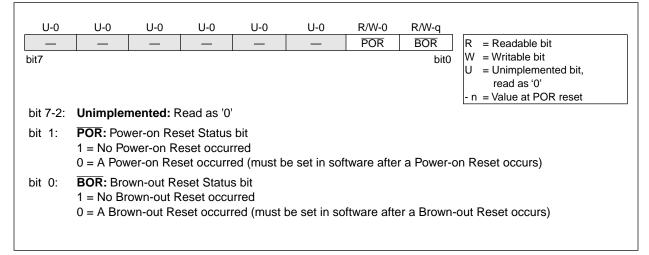

4.2.2.5 PIR1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

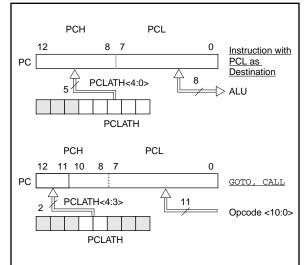


4.2.2.6 PCON REGISTER

Applicable Devices 710 71 711 715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711


FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q			
MPEEN	—	—			PER	POR	BOR ⁽¹⁾	R = Readable bit		
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7:										
bit 6-3:	Unimpler	nented: R	ead as '0							
bit 2:	PER : Mer 1 = No Er 0 = Progra	ror occurre	ed			must be s	et in softwa	re after a Parity Error Reset)		
bit 1:	POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)									
bit 0:	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)									

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-14 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-14: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1:	There are no status bits to indicate stack overflow or stack underflow conditions.
Note 2:	There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.
4.4 D	na na mana ma Da nina n

4.4 Program Memory Paging

The PIC16C71X devices ignore both paging bits (PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C71X is not recommended since this may affect upward compatibility with future products.

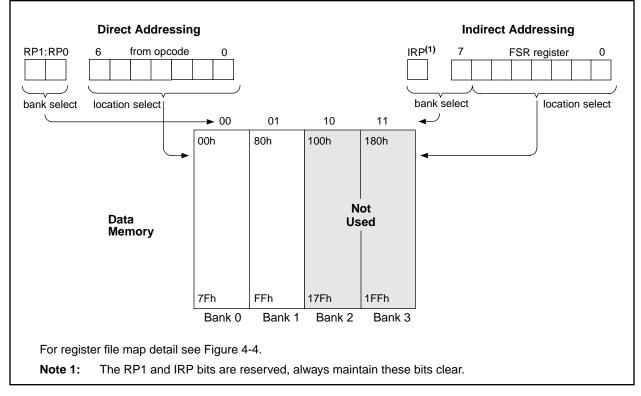
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	PCLATH,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		<pre>;return to Call subroutine ;in page 0 (000h-7FFh)</pre>

4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

5.0 **I/O PORTS**

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

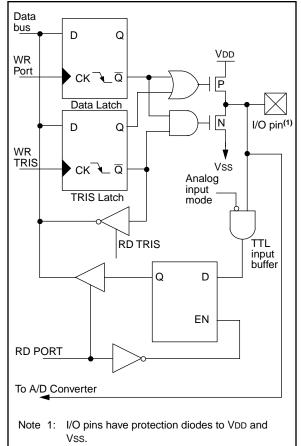
Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

On a Power-on Reset, these pins are con-Note: figured as analog inputs and read as '0'.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

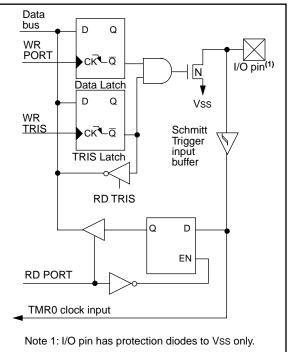

BCF	STATUS,	RP0	;	
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<4> as outputs
			;	TRISA<7:5> are always
			;	read as '0'.

FIGURE 5-1: **BLOCK DIAGRAM OF**

FIGURE 5-2: **BLOCK DIAGRAM OF RA4/ TOCKI PIN**

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type

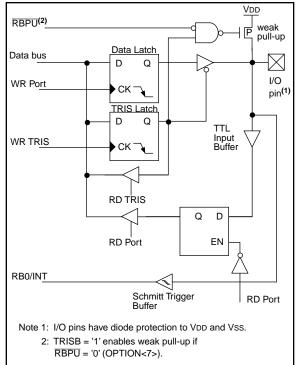
Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	_		RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_		PORTA D	Data Direct	ion Registe	r	•	1 1111	1 1111
9Fh	ADCON1	—	_		_	_		PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RPO ;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS,	RPO ;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

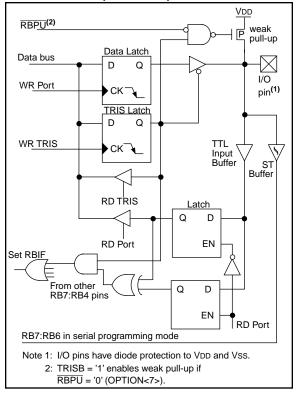
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

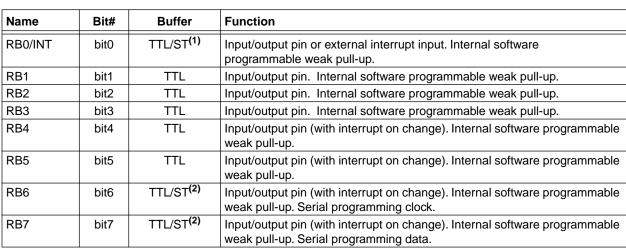
Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

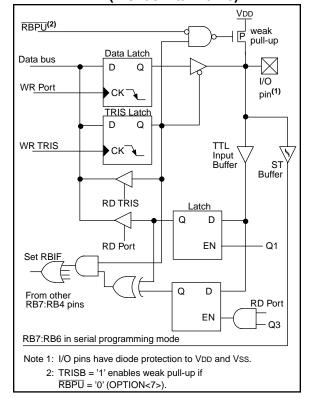

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).


Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

TABLE 5-3: PORTB FUNCTIONS



Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH POP	ΤВ
---	----

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB I	PORTB Data Direction Register								1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

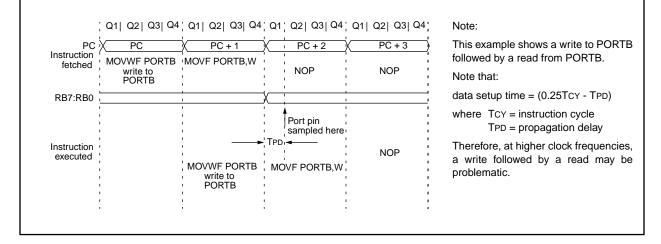
Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

:

;


;					PORT	latch	PORT 1	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	, RPO	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

6.0 TIMER0 MODULE

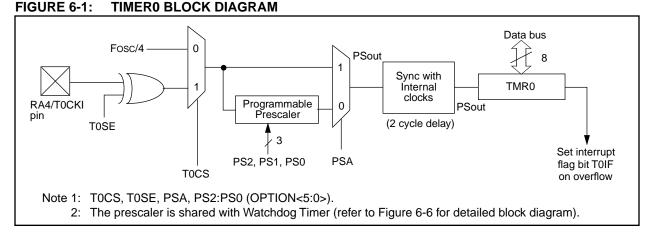
Applicable Devices 710 71 711 715

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

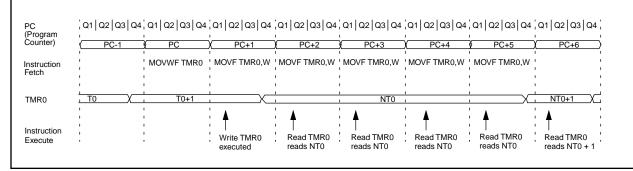
Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

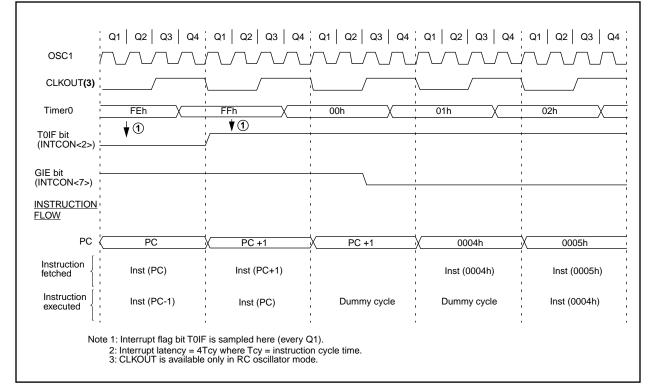

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 <u>Timer0 Interrupt</u>


The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.


FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

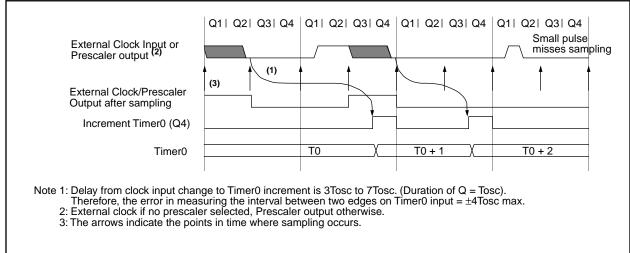
nstruction Tetch	R0,W
	· · · ·
	1
MR0 <u>T0 X T0+1 X T0+2 X NT0 X NT0 X NT0 X NT0 X NT0 X NT0+1</u>	χ <mark>ΝΤ0+2 Χ</mark>
nstruction	. ►

FIGURE 6-4: TIMER0 INTERRUPT TIMING

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

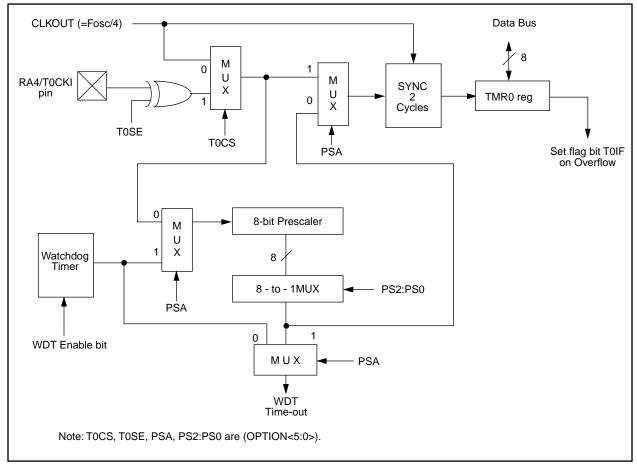
When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK


6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution. **Note:** To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF STATUS, RPO	;Bank 0
CLRF TMR0	;Clear TMR0 & Prescaler
BSF STATUS, RPO	;Bank 1
CLRWDT	;Clears WDT
MOVLW b'xxxxlxxx'	;Selects new prescale value
MOVWF OPTION_REG	;and assigns the prescaler to the WDT
BCF STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT		;Clear WDT and prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	module's r	egister						xxxx xxxx	uuuu uuuu
0Bh,8Bh,	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA		—	_	PORTA Data Direction Register					1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

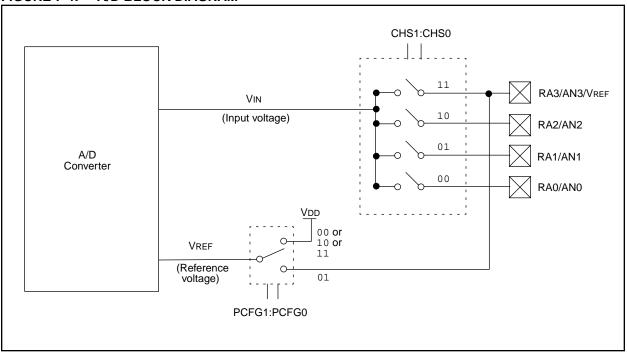
FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS1	ADCS0	(1)	CHS1	CHS0	GO/DONE	ADIF	ADON	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7-6:	00 = Foso 01 = Foso 10 = Foso	c/8						
bit 5:	Unimpler	nented: Re	ad as '0'.					
bit 4-3:	00 = char 01 = char 10 = char	I S0: Analog Inel 0, (RA0 Inel 1, (RA2 Inel 2, (RA2 Inel 3, (RA3)/AN0) 1/AN1) 2/AN2)	Select bits	3			
bit 2:	GO/DON	E: A/D Con	version Sta	atus bit				
		onversion in onversion r			his bit starts th bit is automat			vare when the A/D conver-
bit 1:	1 = conve	Conversion rsion is cor rsion is not	nplete (mu	•	t Flag bit red in softwar	e)		
bit 0:	0 = A/D c	onverter mo	odule is sh	utoff and o	consumes no			
Note 1:		DCON0 is a iented, read		Purpose R	R/W bit for the	PIC16C71	0/711 only. I	For the PIC16C71, this bit is

Г

FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1 bit7	ADCS0	_	CHS1	CHS0	GO/DONE	_	ADON bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	00 = Foso 01 = Foso 10 = Foso	c/2 c/8 c/32	/D Conver rived from		Select bits			
bit 5:	Unused							
bit 6-3:	CHS1:CH 000 = cha 001 = cha 010 = cha 011 = cha 100 = cha 101 = cha 110 = cha 111 = cha	annel 0, (F annel 1, (F annel 2, (F annel 3, (F annel 0, (F annel 1, (F annel 2, (F	RÃO/ANO) RA1/AN1) RA2/AN2) RA3/AN3) RA0/AN0) RA1/AN1) RA2/AN2)	el Select b	its			
bit 2:	GO/DON	Ē: A/D Co	nversion S	Status bit				
		onversion onversion			this bit starts is bit is autom			ware when the A/D conver-
bit 1:	Unimpler	nented: F	Read as '0					
bit 0:	ADON: A 1 = A/D c		nodule is o	operating				


PIC16C715 (ADDRESS 9Fh)

) U-0 l	U-0 U-0	U-0	U-0	R/W-0	R/W-0	
		_	—	PCFG1	PCFG0	R = Readable bit
					bit0	W = Writable bit
						U = Unimplemented
						bit, read as '0' - n =Value at POR r
2: Unimplemen	ted. Dood oo '0					
2 [.] I Inimplemen [.]	n, se head . Kast	·				
-			Control bits			
D: PCFG1:PCFC			Control bits			
-			Control bits			
-	30 : A/D Port Co		Control bits	VREF		
D: PCFG1:PCFC	30 : A/D Port Co	nfiguration C		VREF VDD		
PCFG1:PCFG	GO: A/D Port Co	nfiguration C	RA3			
D: PCFG1:PCFG PCFG1:PCFG0	60 : A/D Port Co RA1 & RA0 A	nfiguration C RA2 A	RA3	Vdd		
D: PCFG1:PCFG0	60 : A/D Port Co RA1 & RA0 A A	nfiguration C RA2 A A	RA3 A VREF	VDD RA3		
D: PCFG1:PCFG0 PCFG1:PCFG0 00 01 10	60 : A/D Port Co RA1 & RA0 A A A D	nfiguration C RA2 A A D	RA3 A VREF D	VDD RA3 VDD		

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

FIGURE 7-4: A/D BLOCK DIAGRAM

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

7.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 7-5. The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 7-1: A/D MINIMUM CHARGING TIME

 $\mathsf{VHOLD} = (\mathsf{VREF} - (\mathsf{VREF}/512)) \bullet (1 - e^{(-\mathsf{TCAP}/\mathsf{CHOLD}(\mathsf{Ric} + \mathsf{Rss} + \mathsf{Rs}))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $TCAP = -(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $VDD = 5V \rightarrow Rss = 7 \text{ k}\Omega$

Temp (application system max.) = 50°C

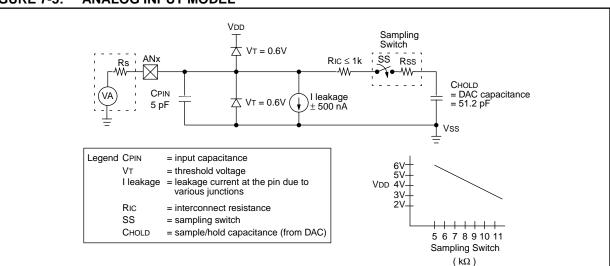

VHOLD = 0 @ t = 0

FIGURE 7-5: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- **Note 2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **Note 3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **Note 4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED AQUISITION TIME

- TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
- TACQ = $5 \mu s + TCAP + [(Temp 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
- $\begin{aligned} \text{TCAP} = & -\text{CHOLD} \ (\text{Ric} + \text{Rss} + \text{Rs}) \ \text{ln}(1/511) \\ & -51.2 \ \text{pF} \ (1 \ \text{k}\Omega + 7 \ \text{k}\Omega + 10 \ \text{k}\Omega) \ \text{ln}(0.0020) \\ & -51.2 \ \text{pF} \ (18 \ \text{k}\Omega) \ \text{ln}(0.0020) \\ & -0.921 \ \mu\text{s} \ (-6.2364) \\ & 5.747 \ \mu\text{s} \end{aligned}$
- TACQ = 5 μs + 5.747 μs + [(50°C 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

7.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 μ s for all other PIC16C71X devices

Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C71

AD Cloc	k Source (TAD)	Device Frequency									
Operation	ADCS1:ADCS0	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 μs					
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs (3)					
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 µs	32.0 μs ⁽³⁾	96 μs ⁽³⁾					
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715

AD Clock S	ource (TAD)	Device Frequency								
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs					
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs	6.4 μs	25.6 μs (3)	96 μs ⁽³⁾					
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

;

;

;;

```
BSF
          STATUS, RPO
                              ; Select Bank 1
          ADCON1
                              ; Configure A/D inputs
  CLRF
          STATUS, RPO
                             ; Select Bank 0
  BCF
  MOVLW
          0xC1
                             ; RC Clock, A/D is on, Channel 0 is selected
  MOVWF
          ADCON0
                              ;
  BSF
          INTCON, ADIE
                             ; Enable A/D Interrupt
          INTCON, GIE
                              ; Enable all interrupts
  BSF
Ensure that the required sampling time for the selected input channel has elapsed.
Then the conversion may be started.
  BSF
          ADCON0, GO
                              ; Start A/D Conversion
                              ; The ADIF bit will be set and the GO/DONE bit
    :
    :
                              ; is cleared upon completion of the A/D Conversion.
```

7.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF

Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the trade-off of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows:

Conversion time = $2TAD + N \cdot TAD + (8 - N)(2TOSC)$ Where: N = number of bits of resolution required. Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 7-3 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32Tosc), and assumes that immediately after 6TAD, the A/D clock is programmed for 2Tosc.

The 2Tosc violates the minimum TAD time since the last 4-bits will not be converted to correct values.

EXAMPLE 7-3: 4-BIT vs. 8-BIT CONVERSION TIMES

	- (Resolution			
	Freq. (MHz) ⁽¹⁾	4-bit	8-bit		
TAD	20	1.6 μs	1.6 μs		
	16	2.0 μs	2.0 μs		
Tosc	20	50 ns	50 ns		
	16	62.5 ns	62.5 ns		
2TAD + N • TAD + (8 - N)(2TOSC)	20	10 μs	16 μs		
	16	12.5 μs	20 μs		

Note 1: The PIC16C71 has a minimum TAD time of 2.0 μ s.

All other PIC16C71X devices have a minimum TAD time of 1.6 μ s.

7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

7.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

7.7 Effects of a RESET

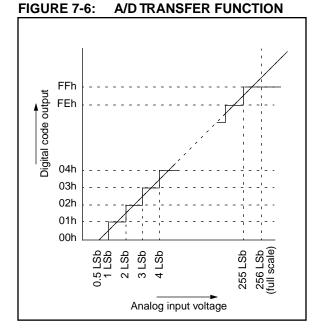
A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

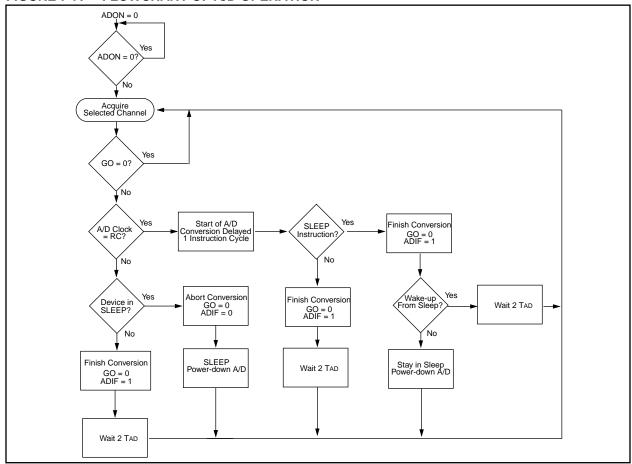
7.8 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

Note: Care must be taken when using the RA0 pin in A/D conversions due to its proximity to the OSC1 pin.


An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

7.9 <u>Transfer Function</u>


The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

FIGURE 7-7: FLOWCHART OF A/D OPERATION

TABLE 7-3:	REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	ADIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	sult Regist	ter					-	xxxx xxxx	uuuu uuuu
08h	ADCON0	ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	—	—	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	PORTA	Data Dire	ction Registe	er		1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		ADIF	—	-	—	—	—	-	-0	-0
8Ch	PIE1		ADIE	—	-	—	—	—	-	-0	-0
1Eh	ADRES	A/D Re	sult Regis	ster						xxxx xxxx	uuuu uuuu
1Fh	ADCON 0	ADCS 1	ADCS 0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON 1	_	_	—	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA		_	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	—	_	TRISA4	TRISA 3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- · ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

— ·		—	_	_	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpleme	ented:	Read	as '1'										
bit 4:	CP0: Code 1 = Code pr 0 = All mem	rotecti	on off		ed, but	00h - 3	Fh is w	vritable						
bit 3:	PWRTE: Po 1 = Power-u 0 = Power-u	up Tim	ier ena	bled	e bit									
bit 2:	WDTE: Wat 1 = WDT er 0 = WDT di	nabled	Í	Enable	e bit									
bit 1-0:	FOSC1:FO 11 = RC os 10 = HS os 01 = XT os 00 = LP os	cillato cillato cillato	r r r	tor Sele	ection k	oits								

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0	CP0	CP0	CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1		Register:	CONFIG
bit13 bit 13- 5-4 bit 6:	4: 1 : 0 : B(1 :	= Code	protect emory i Brown- enable	tion off s code ∙out Re d	protec		ıt 00h - 3 t (1)	Fh is w	vritable				bit0	Address	2007h
bit 3:	1 :	VRTE: = PWR ⁻ = PWR ⁻	T disab	led	er Ena	ble bit	(1)								
bit 2:	1 :	DTE: W = WDT = WDT	enable	d	er Enab	le bit									
bit 1-0	11 10 01	SC1:F = RC = HS = XT c = LP c	oscillate oscillate oscillate	or or or	ator Se	lection	bits								
	Er	sure th	e Powe	er-up T	imer is	enable	ed anytin	ne Brow	vn-out I	Reset is	enable	d.	ess of the cheme li	e value of bit F sted.	PWRTE.

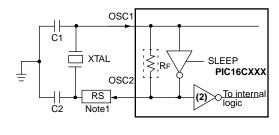
FIGURE 8-3: CONFIGURATION WORD, PIC16C715

CP1	CP	0 CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
	4:	11 = C 10 = U 01 = U	•	tection If of pro Ith of p	off ogram orograr	memory n memo	v code pro ry code p								
bit 7:		1 = Me	mory Pa	arity Cł	necking	or Enab g is enal g is disa	oled								
bit 6:		1 = BO	l: Brow R enabl R disab	ed	Reset E	Enable b	_{it} (1)								
bit 3:		1 = PW	E: Powe RT disa RT ena	abled	mer E	nable bit	(1)								
bit 2:		1 = WD	Watcho T enab T disab	led	ner En	able bit									
bit 1-(11 = R 10 = H 01 = X	:FOSC C oscilla S oscilla C oscilla P oscilla	ator ator ator	illator (Selection	n bits								
Note		Ensure	the Pov	wer-up	Timer	is enab	ed anytin	ne Brov	wn-out	Reset is	enable	d.		e value of bit	PWRTE.

± 0.5%

 $\pm 0.5\%$

8.2 Oscillator Configurations

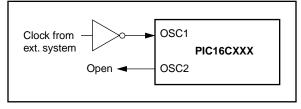

8.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).

FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)



See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

Note 1: A series resistor may be required for AT strip cut crystals.

2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:								
Mode	Mode Freq OSC1							
ХТ	455 kHz 2.0 MHz							
	4.0 MHz	15 - 68 pF	15 - 68 pF					
HS	8.0 MHz 15 - 68 pF 16.0 MHz 10 - 47 pF		15 - 68 pF 10 - 47 pF					
	These values are for design guidance only. See notes at bottom of page.							
Resonato	rs Used:							
455 kHz	Panasonic EFO-A455K04B ± 0.3%							
2.0 MHz	Murata Erie C	Murata Erie CSA2.00MG						
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%							

All resonators used did not have built-in capacitors.

Murata Erie CSA8.00MT

16.0 MHz Murata Erie CSA16.00MX

8.0 MHz

TABLE 8-2:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C71

Mode	Freq	Freq OSC1				
LP	32 kHz	33 - 68 pF	33 - 68 pF			
	200 kHz	15 - 47 pF	15 - 47 pF			
XT	100 kHz	47 - 100 pF	47 - 100 pF			
	500 kHz	20 - 68 pF	20 - 68 pF			
	1 MHz	15 - 68 pF	15 - 68 pF			
	2 MHz	15 - 47 pF	15 - 47 pF			
	4 MHz	15 - 33 pF	15 - 33 pF			
HS	8 MHz	15 - 47 pF	15 - 47 pF			
	20 MHz	15 - 47 pF	15 - 47 pF			
These values are for design guidance only. See notes at bottom of page.						

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:						
Mode	Freq	Freq OSC1				
ХТ	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF			
	se values are f es at bottom of p	f or design guidar bage.	nce only. See			
Resonator	rs Used:					
455 kHz	Panasonic E	FO-A455K04B	± 0.3%			
2.0 MHz	Iz Murata Erie CSA2.00MG ± 0.5%					
4.0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	8.0 MHz Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	16.0 MHz Murata Erie CSA16.00MX ± 0.5%					
All reso	onators used did	d not have built-in	capacitors.			

TABLE 8-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
These values are for design guidance only. See						
notes at bottom of page						

notes at bottom of page.

Crystals Used						
32 kHz	32 kHz Epson C-001R32.768K-A					
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	± 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

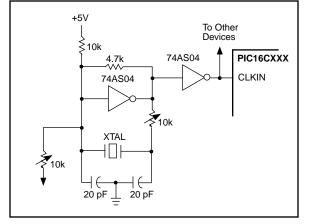
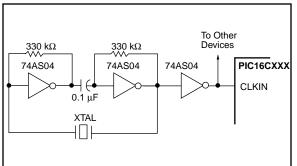
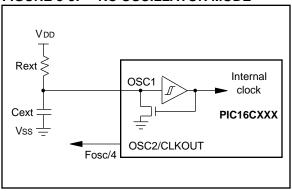



Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR


For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

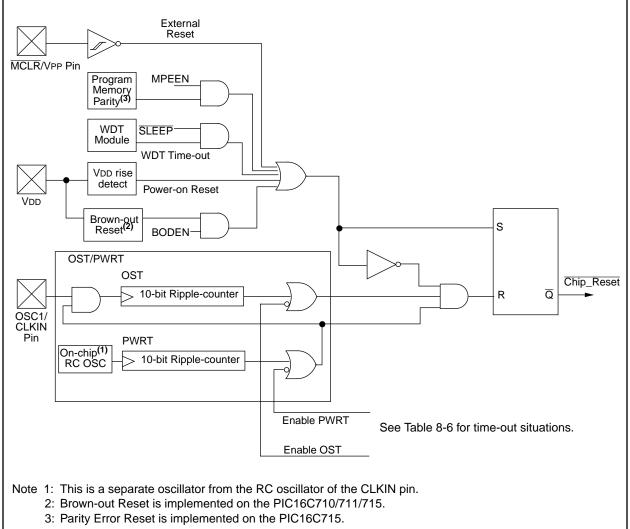
8.3 <u>Reset</u>

Applicable Devices71071711715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and


WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

8.4.2 POWER-UP TIMER (PWRT)

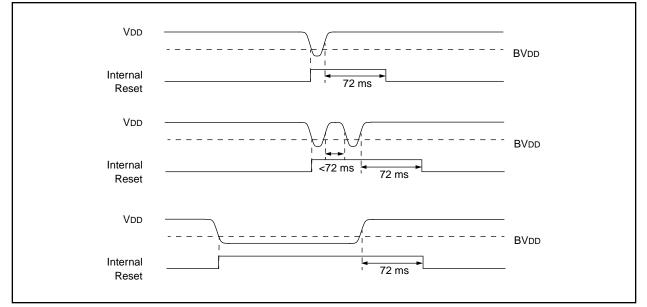
Applicable Devices 710 71 711 715

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices 710 71 711 715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is $\overline{\text{POR}}$ (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is PER (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices71071711715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:	TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Power	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	_	_

TABLE 8-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0PWRTE = 1		Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	—	72 ms	—

TABLE 8-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C71

TO	PD	
1	1	Power-on Reset
0	x	Illegal, TO is set on POR
x	0	Illegal, PD is set on POR
0	1	WDT Reset
0	0	WDT Wake-up
u	u	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 8-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C710/711

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 8-9: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C715

PER	POR	BOR	TO	PD	
1	0	x	1	1	Power-on Reset
x	0	x	0	x	Illegal, TO is set on POR
x	0	x	x	0	Illegal, PD is set on POR
1	1	0	x	x	Brown-out Reset
1	1	1	0	1	WDT Reset
1	1	1	0	0	WDT Wake-up
1	1	1	u	u	MCLR Reset during normal operation
1	1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	1	1	1	Parity Error Reset
0	0	x	x	x	Illegal, PER is set on POR
0	x	0	x	x	Illegal, PER is set on BOR

TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711

Condition	Program Counter	STATUS Register	PCON Register PIC16C710/711
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	սսս0 Օսսս	uu
Brown-out Reset (PIC16C710/711)	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 Ouuu	uuuu
WDT Reset	000h	0000 luuu	uuuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	uuu0
Parity Error Reset	000h	uuul Ouuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	นนนน นนนน	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	uu
ADCON1	00	00	uu

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

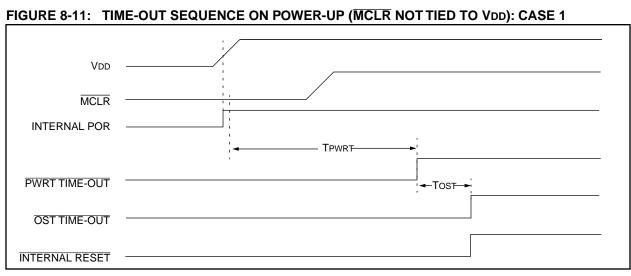
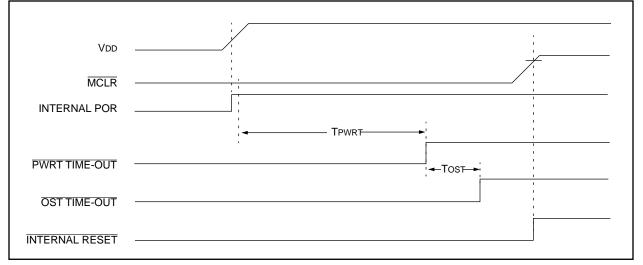
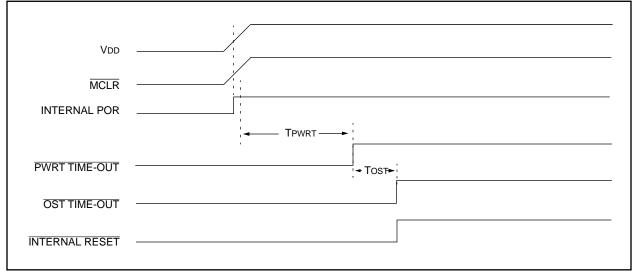

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu (3)	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	นนนน นนนน	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_u(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	वेर्वेर्वे	luu	luu
ADCON1	00	00	

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715


Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).


3: See Table 8-11 for reset value for specific condition.

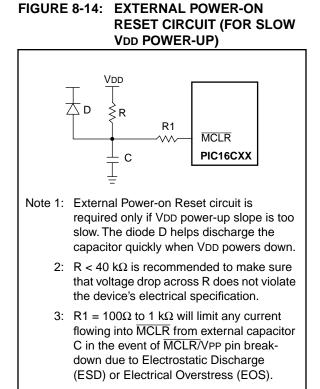


FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

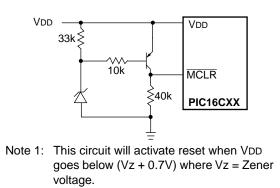


FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

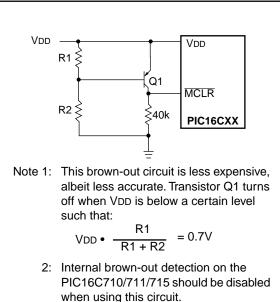


FIGURE 8-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

3: Resistors should be adjusted for the characteristics of the transistor.

8.5 <u>Interrupts</u>

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi- vidual interrupt requests in flag bits. It also has individ-

vidual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

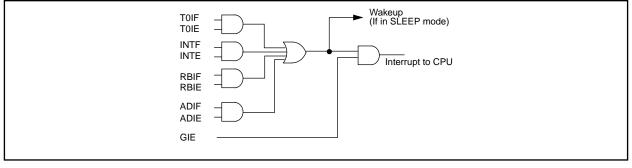
The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

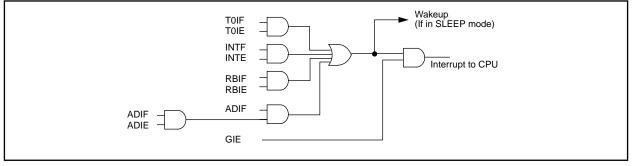
When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note: For the PIC16C71


If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An instruction clears the GIE bit while an interrupt is acknowledged.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.


Perform the following to ensure that interrupts are globally disabled:

LOOP	BCF	INTCON,	GIE	; Disable global ; interrupt bit
	BTFSC	INTCON,	GIE	; Global interrupt
				; disabled?
	GOTO	LOOP		; NO, try again
	:			; Yes, continue
				; with program
				; flow

FIGURE 8-17: INTERRUPT LOGIC, PIC16C710, 71, 711

FIGURE 8-18: INTERRUPT LOGIC, PIC16C715

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note: For the PIC16C71 if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1					
CLKOUT ③	(4)				
INT pin		(1)	1 1 1 1	1 (1 1 1 1 1 1
INTF flag (INTCON<1>)	<u>(1)</u> (5)	 	Interrupt Latency (2)		
GIE bit (INTCON<7>)		1 1 1		, 	
INSTRUCTION	FLOW	1	1 1 1 1	1 I	1 1 1 1
PC	PC	X PC+1	PC+1	, 0004h	× 0005h
Instruction {	Inst (PC)	Inst (PC+1)	;	l Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)
2: Interru Latenc 3: CLKOU 4: For min	lag is sampled here (ev pt latency = 3-4 Tcy wh y is the same whether JT is available only in F nimum width of INT pul s enabled to be set any	nere Tcy = instruction of Inst (PC) is a single c RC oscillator mode. Ise, refer to AC specs.	cycle time. ycle or a 2-cycle instru 1 cycles.	ction.	

FIGURE 8-19: INT PIN INTERRUPT TIMING

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF MOVWF :	W_TEMP STATUS,W STATUS_TEMP	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Save status to bank zero STATUS_TEMP register
:(ISR)		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

8.7 Watchdog Timer (WDT)

Applicable Devices 710 71 711 715

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

From TMR0 Clock Source (Figure 6-6) 0 Postscaler Μ 1 U WDT Timer Ñ 8 8 - to - 1 MUX PS2:PS0 PSA WDT Enable Bit To TMR0 (Figure 6-6) 0 MUX PSA WDT Note: PSA and PS2:PS0 are bits in the OPTION register. Time-out

FIGURE 8-20: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 8-21: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 8-1, Figure 8-2 and Figure 8-3 for operation of these bits.

8.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

8.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the instruction of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

8.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

; a1 a2 a3 a4 ; a1 a2 a3 a4 osc1 '//_/_/_/_/_/_/_/_/_/		Q1 Q2 Q3 Q4	; a1 a2 a3 a4; _/~~_/	Q1 Q2 Q3 Q4 ; ~	Q1 Q2 Q3 Q4; ~
CLKOUT(4) ,	Tost(2)		-\'	, , ,	'
INT pin			1 I 1 I	1 	
INTF flag (INTCON<1>)			Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	Processor in SLEEP				
INSTRUCTION FLOW			; ;	÷	i i
PC PC PC+1	X PC+2	PC+2	X PC + 2	(0004h	(0005h
$\begin{array}{l} \text{Instruction} \\ \text{fetched} \end{array} \left\{ \begin{array}{l} \text{Inst(PC)} = \text{SLEEP} \end{array} \right. \text{Inst(PC + 1)} \end{array}$	· · · · ·	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assumed 2: TOST = 1024TOSC (drawing not to scale 3: GIE = '1' assumed. In this case after w 4: CLKOUT is not available in these osc r	e) This delay will not be ake- up, the processor	jumps to the inter	rrupt routine. If GIE	= '0', execution wi	Il continue in-line.

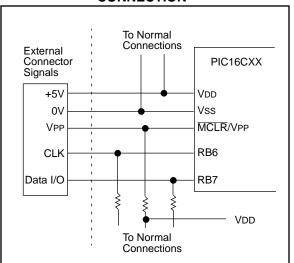
FIGURE 8-22: WAKE-UP FROM SLEEP THROUGH INTERRUPT

8.9 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

8.10 ID Locations


Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

NOTES:

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

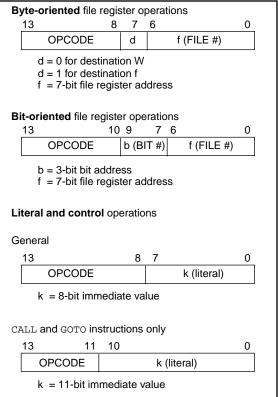
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 9-2 lists the instructions recognized by the MPASM assembler.

Figure 9-1 shows the general formats that the instructions can have.


Note:	То	maintain	upward	compatibility	with
	futu	re PIC160	CXX produ	ucts, <u>do not us</u>	e the
	OPI	TION and T	RIS instru	uctions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 9-2: PIC16CXX INSTRUCTION SET

Mnemonic, Operands		Description			14-Bit	Opcode	9	Status	Notes
				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AN	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

9.1 Instruction Descriptions

ADDLW	Add Literal and W					
Syntax:	[<i>label</i>] A	DDLW	k			
Operands:	$0 \le k \le 2$	55				
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Encoding:	11	111x	kkkk	kkkk		
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process data	Write to W		
Example:	ADDLW	0x15				
	Before Instruction					
	After Inst	W =	0x10			
		W =	0x25			

ANDLW	AND Literal with W				
Syntax:	[<i>label</i>] A	NDLW	k		
Operands:	$0 \le k \le 28$				
Operation:	(W) .AND	D. (k) \rightarrow (W)		
Status Affected:	Z				
Encoding:	11	1001	kkkk	kkkk	
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal "k"	Process data	Write to W	
Example	ANDLW	0x5F			
		W =	0xA3		
	After Inst	ruction W =	0x03		

ADDWF	Add W a	nd f			
Syntax:	[<i>label</i>] Al	DDWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	7			
Operation:	(W) + (f)	ightarrow (dest)	1		
Status Affected:	C, DC, Z				
Encoding:	00	0111	dfff	ffff	
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to Dest	
Example	ADDWF	FSR,	0		
	Before Instruction				
		W = FSR =	0x17 0xC2		
	After Inst	ruction			
		W =	0xD9		
		FSR =	0xC2		

ANDWF	AND W w	vith f			
Syntax:	[<i>label</i>] Al	NDWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$				
Operation:	(W) .AND	D. (f) \rightarrow (o	dest)		
Status Affected:	Z				
Encoding:	00	0101	dfff	ffff	
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to Dest	
Example	ANDWF	FSR,	1		
	Before In After Inst	W = FSR =	0x17 0xC2		
		W = FSR =	0x17 0x02		

BCF	Bit Clear	f				
Syntax:	[<i>label</i>] BC	CF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$0 \rightarrow (f < b >)$					
Status Affected:	None					
Encoding:	01	00bb	bfff	ffff		
Description:	Bit 'b' in register 'f' is cleared.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	After Inst	FLAG_REG, 7 Instruction FLAG_REG = 0xC7 Instruction FLAG_REG = 0x47				

BTFSC	Bit Test,	Bit Test, Skip if Clear						
Syntax:	[<i>label</i>] BT	FSC f,b						
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$						
Operation:	skip if (f<	skip if (f) = 0						
Status Affected:	None	None						
Encoding:	01	01 10bb bfff ffff						
Description:	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.							
Words:	1							
Cycles:	1(2)							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	NOP				
If Skip:	(2nd Cycle)							
	Q1	Q2	Q3	Q4				
	NOP	NOP	NOP	NOP				
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •							
Before Instruction PC = address HERE After Instruction								
		if FLAG<1>	,					
	PC = address TRUE if FLAG<1>=1.							

if FLAG<1>=1, PC = address FALSE

BSF	Bit Set f				
Syntax:	[<i>label</i>] BSF f,b				
Operands:	$0 \le f \le 127$ $0 \le b \le 7$				
Operation:	$1 \rightarrow (f < b;$	>)			
Status Affected:	None				
Encoding:	01	01bb	bfff	ffff	
Description:	Bit 'b' in register 'f' is set.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write register 'f'	
Example	BSF Before In	FLAG_F			
	FLAG_REG = 0x0A				
	After Instruction FLAG_REG = 0x8A				

BTFSS	Bit Test f	, Skip if S	Set		
Syntax:	[<i>label</i>] BT	[<i>label</i>] BTFSS f,b			
Operands:	$0 \le f \le 127$ $0 \le b < 7$				
Operation:	skip if (f<	b>) = 1			
Status Affected:	None				
Encoding:	01	11bb	bfff	ffff	
Description:	instruction If bit 'b' is ' discarded	register 'f' is is execute 1', then the and a NOF aking this a	d. next instru is execute	uction is ed	
Words:	1				
Cycles:	1(2)				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	NOP	
If Skip:	(2nd Cyc	le)			
	Q1	Q2	Q3	Q4	
	NOP	NOP	NOP	NOP	
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE	
	After Inst	PC = a ruction if FLAG<1> PC = a if FLAG<1>	→ = 0, address FA		

ALL	Call Sub	routine			
yntax:	[label]	CALL k	(
perands:	$0 \le k \le 20$	047			
peration:	$(PC)+ 1 \rightarrow TOS,$ $k \rightarrow PC<10:0>,$ $(PCLATH<4:3>) \rightarrow PC<12:11>$				
tatus Affected:	None				
ncoding:	10	0kkk	kkkk	kkkk	
escription:	Call Subro (PC+1) is p eleven bit i into PC bit the PC are CALL is a f	oushed or mmediate s <10:0>. e loaded fr	nto the stace address is The upper rom PCLAT	k. The loaded bits of H.	
/ords:	1				
ycles:	2				
Cycle Activity:	Q1	Q2	Q3	Q4	
1st Cycle	Decode	Read literal 'k', Push PC to Stack	Process data	Write to PC	
2nd Cycle	NOP	NOP	NOP	NOP	
xample	After Inst	PC = A ruction PC = A	THERE ddress HE ddress TH	ERE	

Clear f				
[<i>label</i>] C	LRF f			
$0 \le f \le 12$	27			
$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Z				
00	0001	lfff	ffff	
	-	ster 'f' are	cleared	
1				
1				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process data	Write register 'f'	
CLRF	FLAG	_REG		
After Inst	FLAG_RE	:G =	0x5A 0x00	
	$[label] C$ $0 \le f \le 12$ $00h \rightarrow (f)$ $1 \rightarrow Z$ Z 00 The conter and the Z 1 1 Q1 $CLRF$ Before In After Inst	$[label] CLRF f$ $0 \le f \le 127$ $00h \rightarrow (f)$ $1 \rightarrow Z$ Z $\boxed{00} 0001$ The contents of regiand the Z bit is set. 1 1 2 2 $\boxed{Decode} Read register f'$ $CLRF FLAG$ Before Instruction FLAG_RE After Instruction	$[label] CLRF f$ $0 \le f \le 127$ $00h \rightarrow (f)$ $1 \rightarrow Z$ Z $\boxed{00 0001 1fff}$ The contents of register 'f' are and the Z bit is set. 1 1 1 $Q1 Q2 Q3$ $\boxed{Decode Read \\ register \\ f'} Process \\ data}$ $CLRF FLAG_REG$ Before Instruction $FLAG_REG = After Instruction$	

CLRW	Clear W					
-						
Syntax:	[<i>label</i>] CLRW					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	00 0001 0xxx xxxx					
Description:	W register is cleared. Zero bit (Z) is set.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1 Q2 Q3 Q4					
	Decode NOP Process Write to data W					
Example	CLRW					
	Before Instruction W = 0x5A					
	After Instruction					
	W = 0x00 $Z = 1$					
CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler.					

Syntax.	[IADEI] CLRVDI					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0100		
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	NOP	Process data	Clear WDT Counter		
Example	CLRWDT					
	Before In After Inst	WDT cou		?		
		WDT cou	nter =	0x00		

 $\frac{\text{WDT prescaler}}{\text{TO}} = 1$

= 1

PD

COMF	Compler	nent f			
Syntax:	[label]	COMF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27			
Operation:	$(\bar{f}) \rightarrow (de$	st)			
Status Affected:	Z				
Encoding:	00	1001	dfff	ffff	
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to dest	
Example	COMF	REG	G1,0		
	Before In	struction			
		REG1	= 0x13	3	
	After Inst	REG1	= 0x13	3	
		W	= 0xE0		
DECF	Decreme	ent f			
DECF Syntax:	Decreme [<i>label</i>] D				
-		ECF f,d			
Syntax:	[<i>label</i>] □ 0 ≤ f ≤ 12	DECF f,d			
Syntax: Operands:	[<i>label</i>] □ 0 ≤ f ≤ 12 d ∈ [0,1]	DECF f,d			
Syntax: Operands: Operation:	$[label] \square 0 \le f \le 12$ d \in [0,1] (f) - 1 \rightarrow	DECF f,d	dfff	ffff	
Syntax: Operands: Operation: Status Affected:	$[label] \square \\ 0 \le f \le 12 \\ d \in [0,1] \\ (f) - 1 \rightarrow \\ Z$	DECF f,d 27 (dest) 0011 t register ored in th	'f'. If 'd' is (e W registe) the er. lf 'd'	
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} \square \\ 0 \le f \le 12 \\ d \in [0,1] \\ (f) - 1 \rightarrow Z \\ \boxed{00} \\ Decrement result is st is 1 the rest of the rest of the set of the se$	DECF f,d 27 (dest) 0011 t register ored in th	'f'. If 'd' is (e W registe) the er. lf 'd'	
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	DECF f,d 27 (dest) 0011 t register ored in th	'f'. If 'd' is (e W registe) the er. lf 'd'	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	DECF f,d 27 (dest) 0011 t register ored in th	'f'. If 'd' is (e W registe) the er. lf 'd'	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$[label] \square D \le f \le 12$ $d \in [0,1]$ $(f) - 1 \rightarrow Z$ $\boxed{00}$ Decrement result is stips 1 the restriction of the formula of t	DECF f,d 27 (dest) 0011 t register ored in th sult is stor	'f'. If 'd' is (e W registe ed back in) the er. If 'd' register	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q2	'f'. If 'd' is (e W registr ed back in Q3 Process	Q4 Write to	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q2 Read register rf CNT, struction	'f'. If 'd' is (e W registi ed back in Q3 Process data	Q4 Write to dest	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q2 Read register rf CNT,	Gamma Contraction (Contraction) (Co	Q4	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$ \begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q2 Read register 'f' CNT, struction CNT Z ruction	Q3 Process data 1 = 0x01 = 0	Q4 Write to dest	
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} label \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q2 Read register 'f' CNT, struction CNT Z	Gamma Contraction (Contraction) (Co	Q4 Write to dest	

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label]	[label] DECFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow ((dest);	skip if re	sult = 0		
Status Affected:	None					
Encoding:	00	1011	dfff	ffff		
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruction.					
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
If Skip:	(2nd Cyc	le)				
	Q1	Q2	Q3	Q4		
	NOP	NOP	NOP	NOP		
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •					
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE+1					

GOTO	Unconditional Branch					
Syntax:	[label]	GOTO	k			
Operands:	$0 \le k \le 20$	$0 \le k \le 2047$				
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Encoding:	10	1kkk	kkkk	kkkk		
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC		
2nd Cycle	NOP	NOP	NOP	NOP		
Example	GOTO TI After Inst		Address	THERE		

INCF	Increme	nt f			
Syntax:	[label]	INCF f	f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00	1010	dfff	ffff	
Description:	The contermented. If in the W replaced bac	'd' is 0 the egister. If '	e result is d' is 1 the	placed	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to dest	
Example	INCF	CNT,	1		
	Before In		n		
		CNT Z	$= 0 \times FF$ = 0	=	
	After Inst	_	5		
		CNT Z	= 0x00 = 1)	

INCFSZ	Increment f, Skip if 0					
Syntax:	[label]	INCFSZ	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	00	1111	dfff	ffff		
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.					
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
If Skip:	(2nd Cyc	le)				
	Q1	Q2	Q3	Q4		
	NOP	NOP	NOP	NOP		
Example	HERE CONTINU	INCF GOTO JE • •		NT, 1 OP		
	Before In PC After Inst CNT if CNT PC if CNT PC	= ado ruction = CN = 0, = ado ≠ 0,	Iress HERE T + 1 Iress Cont	INUE		

IORLW	Inclusive OR Literal with W				
Syntax:	[label]	IORLW	k		
Operands:	$0 \le k \le 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Encoding:	11	1000	kkkk	kkkk	
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal 'k'	Process data	Write to W	
Example	IORLW	0x35			
	Before In	struction	1		
		W =	0x9A		
	After Inst	ruction	0xBF		
		Z =	1		

IORWF	Inclusive	e OR W \	with f		
Syntax:	[label]	IORWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27			
Operation:	(W) .OR. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00	0100	dfff	ffff	
Description:	ter 'f'. If 'd'	is 0 the rester. If 'd'	register wi esult is pla is 1 the rest ster 'f'.	ced in	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to dest	
Example	IORWF		RESULT,	0	
	Before In				
		RESULT W	= 0x13 = 0x91		
	After Inst		- 0.091		
		RESULT W	= 0x13 = 0x93		
		Z	= 1		

MOVLW	Move Lit	eral to V	V	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k\to(W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight register. Tl as 0's.		k' is loaded ares will as	
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

MOVF	Move f				
Syntax:	[label]	MOVF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7			
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00	1000	dfff	ffff	
Description:	The conter a destination tus of d. If ister. If d = register f it file register affected.	on depen d = 0, des 1, the de self. d = 1	dant upon stination is stination is is useful t	the sta- W reg- s file to test a	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to dest	
Example	MOVF	FSR,	0		
			ie in FSR r	egister	

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 lfff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register 'f' data register 'f'
Example	MOVWF OPTION_REG
	Before Instruction
	$\begin{array}{rcl} OPTION &= & 0xFF \\ W &= & 0x4F \end{array}$
	After Instruction
	$\begin{array}{rcl} OPTION &= & 0x4F \\ W &= & 0x4F \end{array}$
	VV = UX41 ⁻

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No opera	ition			
Status Affected:	None				
Encoding:	00	0000	0xx0	0000	
Description:	No operati	ion.	•		
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	NOP	NOP	NOP	
				1	
Example	NOP				

RETFIE	Return from Interrupt			
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
Description:	Return fro and Top of the PC. Int ting Globa (INTCON< instruction	f Stack (To terrupts a l Interrupt <7>). This	OS) is load re enabled Enable bi	ded in I by set- it, GIE
Words:	1			
Cycles:	2			
Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack
2nd Cycle	NOP	NOP	NOP	NOP

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \to OPTION$				
Status Affected:	None				
Encoding:	00 0000 0110 0010				
Description: Words: Cycles: Example	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. 1				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

RETFIE

RETLW	Return with Literal in W				
Syntax:	[label]	RETLW	k		
Operands:	$0 \le k \le 2k$	55			
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$				
Status Affected:	None				
Encoding:	11	01xx	kkkk	kkkk	
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.				
Words:	1				
Cycles:	2				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
1st Cycle	Decode	Read literal 'k'	NOP	Write to W, Pop from the Stack	
2nd Cycle	NOP	NOP	NOP	NOP	
Example	CALL TABL	;offse	tains tab t value ow has tab		
TABLE	ADDWF PC RETLW k1 RETLW k2	;W = of ;Begin ;	table		
	RETLW kn				
	Before In	struction W =	0x07		
	After Inst				
		W =	value of k	8	

RETURN	Return from Subroutine				
Syntax:	[label]	RETUR	N		
Operands:	None				
Operation:	$\text{TOS} \to \text{F}$	с			
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.				
Words:	1				
Cycles:	2				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
1st Cycle	Decode	NOP	NOP	Pop from the Stack	
2nd Cycle	NOP	NOP	NOP	NOP	
Example	RETURN After Inte	rrupt	TOO		

PC = TOS

RLF	Rotate L	eft f thro	bugh	Car	ry
Syntax:	[label]	RLF	f,d		
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27			
Operation:	See desc	ription b	elow		
Status Affected:	С				
Encoding:	00	1101	dff	f	ffff
Description:	The conte one bit to Flag. If 'd' the W regi stored bac	the left the is 0 the re ster. If 'd' k in regis	rough esult is is 1 th ter 'f'.	the C s plac ne res	Carry ced in
	▲ C		Registe	ert	
Words:	1	⊧	legiste	ert	
Words: Cycles:	1 1		cegiste		
	•	⊨ Q2	Q		 Q4
Cycles:	1			3 xess	Q4 Write to dest
Cycles:	1 Q1	Q2 Read register 'f'	Q	3 xess	Write to
Cycles: Q Cycle Activity:	1 Q1 Decode RLF Before In	Q2 Read register 'f' REC	Q Proc da	3 cess ta	Write to dest
Cycles: Q Cycle Activity:	1 Q1 Decode RLF Before In	Q2 Read register 'f' REC struction REG1 C	Q Proc da	3 xess	Write to dest
Cycles: Q Cycle Activity:	1 Q1 Decode RLF Before In	Q2 Read register 'f' REC struction REG1 C	Q Proc da	3 zess ta	Write to dest

RRF	Rotate R	ight f th	roug	jh Ca	arry
Syntax:	[label]	RRF f,	d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27			
Operation:	See desc	ription b	elow		
Status Affected:	С				
Encoding:	00	1100	dff	f	ffff
Description:	The conte one bit to Flag. If 'd' the W regi placed bac	the right t is 0 the re ster. If 'd'	hroug sult i is 1 tł	ih the s plac ne res	Carry
					_
			Regis	ter f	
Words:	1		Regis	ter f	
Words: Cycles:	(1 1	} - ►	Regis	ter f	}
		C]→ Q2	Regis		Q4
Cycles:	1		Q	3	-
Cycles:	1 Q1	Q2 Read register 'f	Q	23 cess ita	Write to
Cycles: Q Cycle Activity:	1 Q1 Decode	Q2 Read register 'f'	Q Proc da REG1	23 cess ita	Write to
Cycles: Q Cycle Activity:	1 Q1 Decode RRF Before In	Q2 Read register 'f'	Q Proc da REG1	23 cess ita	Write to dest
Cycles: Q Cycle Activity:	1 Q1 Decode RRF Before In	Q2 Read register 'f' struction REG1 C	Q Proc da REG1	2 3 cess tta	Write to dest

SLEEP

Syntax:	[label]	SLEEF)	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0011
Description:	cleared. T set. Watch caler are The proce mode with	er-down st ime-out s hdog Time cleared. essor is pu h the oscil ion 8.8 for	tatus bit, [*] er and its ut into SLI llator stop	TO is pres- EEP ped.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	NOP	Go to Sleep
Example:	SLEEP			

Syntax: Operands:	[label]				
Operands:	-	SUBLW	/ K		
	$0 \le k \le 25$	5			
Operation:	k - (W) \rightarrow	(W)			
Status Affected:	C, DC, Z				
Encoding:	11	110x	kkkk	kkkk	
Description:	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal 'k'	Process data	Write to W	
Example 1:	SUBLW	0x02			
	Before Ins	struction			
		W = C = Z =	1 ? ?		
	After Instr	uction			
		W = C = Z =	1 1; result is 0	positive	
Example 2:	Before Ins	struction			
		W = C = Z =	2 ? ?		
	After Inst	-	·		
		W = C = Z =	0 1; result is 1	s zero	
Example 3:	Before Ins	struction			
		W = C = Z =	3 ? ?		
	After Insti	uction			
		W = C = tive Z =	0xFF 0; result is 0	nega-	

SUBWF	Subtract	W from f						
Syntax:	[label]	SUBWF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7						
Operation:	(f) - (W) \rightarrow (dest)							
Status Affected:	C, DC, Z							
Encoding:	00	0010	dfff	ffff				
Description:	Subtract (2's complement method) W reg ister from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to dest				
Example 1:	SUBWF	REG1,1						
	Before Ins	struction						
	REG1 W	=	3 2					
	С	=	?					
	Z	=	?					
	After Instr							
	REG1 W	=	1 2					
	С	=	1; result is	positive				
Example 2	Z		0					
Example 2:	Before Ins		0					
	REG1 W	=	2 2					
	C	=	?					
	Z	=	?					
	After Instr		0					
	W	=	0 2					
	C	=	1; result is	zero				
Example 3:	Z Before Ins	= struction	1					
	REG1	=	1					
	W	=	2					
	C Z	=	? ?					
	∠ After Instr	= ruction	1					
	REG1		0xFF					
	W	=	2					
	C Z	=	0; result is	negative				
	2	=	0					

SWAPF	Swap Nibbles in f									
Syntax:	[label] SWAPF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$									
Operation:	$(f{<}3:0{>}) \rightarrow (dest{<}7:4{>}), \\ (f{<}7:4{>}) \rightarrow (dest{<}3:0{>})$									
Status Affected:	None									
Encoding:	00	00 1110 dfff ffff								
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to dest						
Example	SWAPF	REG,	0							
	Before In	struction								
		REG1	= 0x/	45						
	After Inst	ruction								
		REG1 W	= 0x/ = 0x8							

TRIS	Load TRIS Register							
Syntax:	[<i>label</i>] TRIS f							
Operands:	$5 \le f \le 7$							
Operation:	(W) \rightarrow TRIS register f;							
Status Affected:	None							
Encoding:	00 0000 0110 0fff							
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.							
Words:	1							
Cycles:	1							
Example								
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.							

XORLW	Exclusiv	ve OR Li	teral wit	th W						
Syntax:	[<i>label</i>]	XORL	Vk							
Operands:	$0 \le k \le 255$									
Operation:	(W) .XOR. $k \rightarrow (W)$									
Status Affected:	Z									
Encoding:	11	1010	kkkk	kkkk						
Description:	XOR'ed v	ents of the vith the ei t is placed	ght bit lite	ral 'k'.						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal 'k'	Process data	Write to W						
Example:	XORLW	0xAF								
	Before Ir	nstructio	า							
		W =	0xB5							
	After Ins	truction								
		W =	0x1A							

XORWF	Exclusiv	e OR W	with f							
Syntax:	[label]	XORWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$									
Operation:	(W) .XOF	$R.\left(f\right)\to($	dest)							
Status Affected:	Z									
Encoding:	00	0110	dfff	ffff						
Description:	Exclusive register wi result is studies the rest is 1 the rest 'f'.	th registe ored in th	r 'f'. If 'd' is e W registe	0 the er. If 'd'						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register ˈfˈ	Process data	Write to dest						
Example	XORWF	REG	1							
	Before In	struction	I							
	$\begin{array}{rcl} REG &=& 0xAF \\ W &=& 0xB5 \end{array}$									
	After Inst	ruction								
		REG W	= 0x ² = 0xl							

10.0 DEVELOPMENT SUPPORT

10.1 Development Tools

The PICmicro[™] microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)

10.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

10.3 ICEPIC: Low-Cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

10.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

10.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- · Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- · Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

 Available Available 3Q97 		> > > >	>	\ \ \ \ \ \	>	>	>	<i>?</i> <i>?</i> <i>?</i>	<i>?</i> <i>?</i> <i>?</i>		>	>	>	>	
>	\ \ \ \	>	>	7	>			>	<i>?</i> <i>?</i>				2	2	
>	\ \ \ \	>	>	7	>			>	7				>	>	
>	2	>	2	7	>			>	7				>	2	
>	2	>	>	7				>	>			2	`	>	
>	2	2	>	2								2	2		
_					>		7	7	7				2		
7		7	7							I					
			-	7	7		7	7	2				7		
7	7	7	2	7	7			7	7			7			
2	7	7	2	7	7		7	7	7			7			
2		7	2	7				7	7						
7	7	7	2	7				7	7						
r	-ow-Cost it Emulator	PLAB™ egrated velopment vironment	MPLAB™ C Compiler	<i>fuzzy</i> TECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART [®] Lite Ultra Low-Cost Dev. Kit	PICSTART [®] Plus Low-Cost Universal Dev. Kit	PRO MATE [®] II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2		KEELOQ [®] Evaluation Kit
			In-Circuit Emulator ICEPIC Low-Cost In-Circuit Emulator MPLAB™ Integrated Development Environment	ulator Cost ulator	MP MP ion	In-Circuit Emulator ICEPIC Low-Cost In-Circuit Emulator MPLAB™ Integrated Development Environment Environment MPLAB™ C Compiler fuzzyTECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool MP-DriveWay™ Applications Code Generator						In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator MPLAB™ Integrated Development Environment MPLAB™C Compiler Environment MPLAB™C Compiler fuzzyTECH®-MP Environment MPLAB™C Compiler fuzzyTECH®-MP Environment fuzzyTECH®-MP Environment MPLAB™C Code Generator Total Endurance™ Applications Code Generator Total Endurance™ Software Model PICSTART® Lite Ultra Low-Cost Dev. Kit PICSTART® Inversal Dev. Kit PRO MATE® II Universal Dev. Kit Programmer KEELOQ® Programmer SEEVAL®	In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator MPLAB ^W Integrated Development Environment MPLAB ^W C Compiler <i>fuzzy</i> Logic Dev. Tool MP-DriveWay ^{IM} Applications Code Generator Total Endurance ^{IM} Software Model PICSTART [®] Lite Ultra Low-Cost Dev. Kit PICSTART [®] Lite Ultra Low-Cost Dev. Kit PICSTART [®] Lite Ultra Low-Cost Dev. Kit PICSTART [®] Inviversal Dev. Kit PICSTART [®] PICSTART [®] PICSTART [®] Dev. Kit PICSTART [®] PICSTART [®] PICSTART [®] Dev. Kit PICSTART [®] PICSTART [®] PICSTA		In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator In-Circuit Emulator MPLAB™ Integrated Development Environment MPLAB™C Compiler Environment MPLAB™C Compiler Environment MPLAB™C Compiler Environment fuzzyTECH®-MP Environment MPLAB™C Code Generator Fuzzy Logic Dev. Tool MP-DriveWay™ Applications Code Generator Total Endurance™ Applications Code Generator Total Endurance™ Applications Code Generator Dev. Kit PICSTART® Lite Ultra Low-Cost Dev. Kit PICSTART® In Universal Dev. Kit PICDEM-1 PICDEM-3 PICDEM-3

Applicable Devices 710 71 711 715

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711

Absolute Maximum Ratings †

5-1	
Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VD	D - VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C710-04	PIC16C710-10	PIC16C710-20	PIC16LC710-04	PIC16C710/JW
	PIC16C711-04	PIC16C711-10	PIC16C711-20	PIC16LC711-04	PIC16C711/JW
RC	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μ A max. at 4V
	Freq:4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μ A max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq:20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freg: 10 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

Applicable Devices 710 71 711 715

11.1 DC Characteristics: PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended) PIC16C711-20 (Commercial, Industrial, Extended)

DC CHA	RACTERISTICS			lard O ating te		ture (ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - - -	10.5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$ \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \\ \end{array} $
D023	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

11.2 DC Characteristics: PIC16LC710-04 (Commercial, Industrial, Extended) PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHAF	RACTERISTICS			ard Ope ing tem		ire 0° -4	itions (unless otherwise stated)C \leq TA \leq +70°C (commercial)0°C \leq TA \leq +85°C (industrial)0°C \leq TA \leq +125°C (extended)
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0		6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	Vpor	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	Idd	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD		7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 3.0V, WDT disabled, 0° C to $+70^{\circ}$ C VDD = 3.0V, WDT disabled, -40° C to $+85^{\circ}$ C VDD = 3.0V, WDT disabled, -40° C to $+125^{\circ}$ C
D023	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applica	ble Devices 710 71 711 715									
11.3	PIC16LC7 PIC16LC7	1-04 0-10 1-10 0-20 1-20 10-04 710-04	(Comme (Comme (Comme (Comme (Comme (Comme	ercia ercia ercia ercia ercia ercia ercia	al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus	trial, E trial, E trial, E trial, E trial, E trial, E trial, E	Extended) Extended) Extended) Extended) Extended)			
Standard Operating Conditions (unless otherwise stated)										
DC CHA	DC CHARACTERISTICSOperating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2.									
Param	Characteristic	Sym	Min	Тур	Мах	Units	Conditions			
No.	Gharacteristic	- Oyini		1 1	Max	onito	Conditions			
	Input Low Voltage I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5 \le VDD \le 5.5V$			
D031 D032	with Schmitt Trigger buffer		Vss Vss	-	0.2VDD 0.2VDD	V V				
D033	(in RC mode) OSC1 (in XT, HS and LP)		Vss	_	0.3VDD	V	Note1			
0033	Input High Voltage		V 33	-	0.3000	V				
	I/O ports	VIH		-						
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$			
D040A			0.25VDD + 0.8V	-	Vdd	V	For entire VDD range			
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range			
D042	MCLR, RB0/INT		0.8VDD	-	VDD	V				
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V				
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance			
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$			
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 710 71 711 715

			nd Operations temper			≤ T	less otherwise stated) $A \le +70^{\circ}C$ (commercial) $A \le +85^{\circ}C$ (industrial)				
DC CHAI	RACTERISTICS				-40°0	C ≤T	$A \leq +125^{\circ}C$ (extended)				
		Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2.									
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions				
	Output Low Voltage			-							
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С				
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C				
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С				
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C				
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin				
	Capacitive Loading Specs on Output Pins										
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.				
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF					

* These parameters are characterized but not tested.

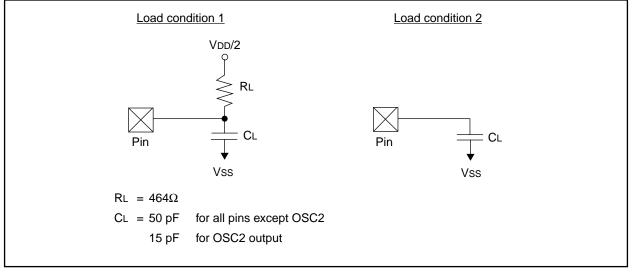
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

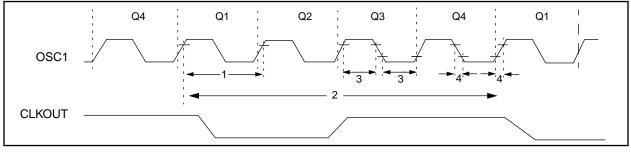
Applicable Devices 710 71 711 715


11.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

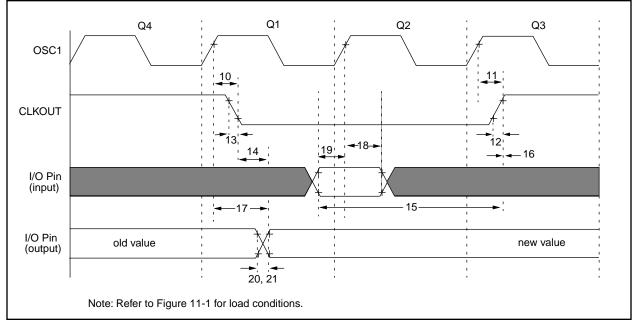
2. TppS									
Т									
F	Frequency	Т	Time						
Lowercase letters (pp) and their meanings:									
рр									
сс	CCP1	OSC	OSC1						
ck	CLKOUT	rd	RD						
CS	CS	rw	\overline{RD} or \overline{WR}						
di	SDI	SC	SCK						
do	SDO	SS	SS						
dt	Data in	tO	TOCKI						
io	I/O port	t1	T1CKI						
mc	MCLR	wr	WR						
Upperc	case letters and their meanings:								
S									
F	Fall	P	Period						
Н	High	R	Rise						
	Invalid (Hi-impedance)	V	Valid						
L	Low	Z	Hi-impedance						


FIGURE 11-1: LOAD CONDITIONS

Applicable Devices 710 71 711 715

11.5 <u>Timing Diagrams and Specifications</u>

TABLE 11-2: EXT	ERNAL CLOCK TIMING	REQUIREMENTS
-----------------	---------------------------	--------------


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	-	-	ns	XT osc mode
		(Note 1)	250	-	-	ns	HS osc mode (-04)
			100	-	-	ns	HS osc mode (-10)
			50	-	-	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5		_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200		DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High	50	—	-	ns	XT oscillator
	TosH	or Low Time	2.5	-	-	μs	LP oscillator
			10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	—	-	25	ns	XT oscillator
	TosF	or Fall Time	—	-	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

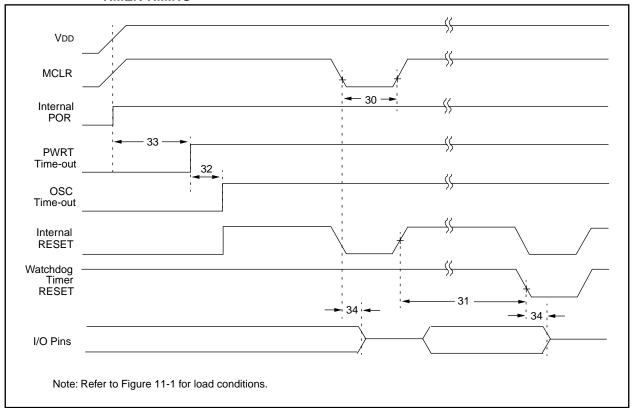
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.

Applicable Devices 710 71 711 715

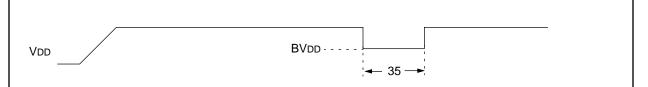
TABLE 11-3: **CLKOUT AND I/O TIMING REQUIREMENTS**

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓	_	15	30	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	0.25Tcy + 25	—		ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—	-	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		—	_	80 - 100	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC11 ((I/O in setup time)	TBD	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 710/711	_	10	25	ns	
			PIC16LC710/711	_	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 710/711	_	10	25	ns	
			PIC16LC710/711	_	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	—	_	ns	


These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

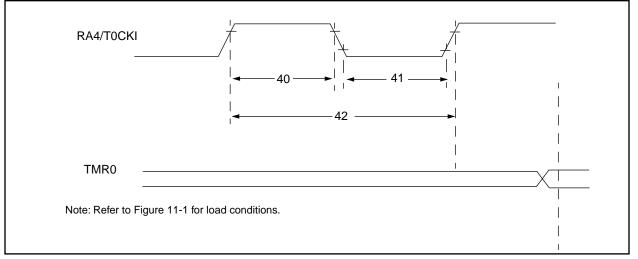
these parameters are asynchronous events not related to any internal clock edges.


Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 710 71 711 715

FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 11-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1	_	—	μs	VDD = 5V, -40°C to +125°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc	—	—	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—	—	μs	$3.8V \leq V\text{DD} \leq 4.2V$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20*	—	_	ns	Must also meet	
			With Prescaler	10*	_	_	ns	parameter 42	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	Must also meet	
			With Prescaler	10*	—	_	ns	parameter 42	
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)	
48	Tcke2tmrl	Delay from external clock edg	2Tosc	—	7Tosc	—			

These parameters are characterized but not tested.

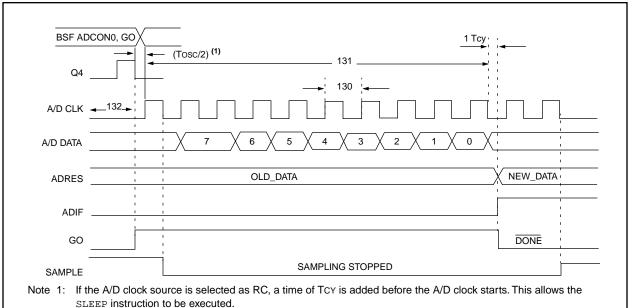
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	—		8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	EABS	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A04	Edl	Differential linearity error	—	—	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A06	EOFF	Offset error	_	_	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A10	—	Monotonicity	—	guaranteed	_	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)		180		μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			—	—	10	μΑ	During A/D Conversion cycle

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF \geq 3.0V
			PIC16 LC 710/711	2.0	_	—	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16LC710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H	time). (Note 1)		9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock sta	art		Tosc/2§	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_		TAD	

* These parameters are characterized but not tested.

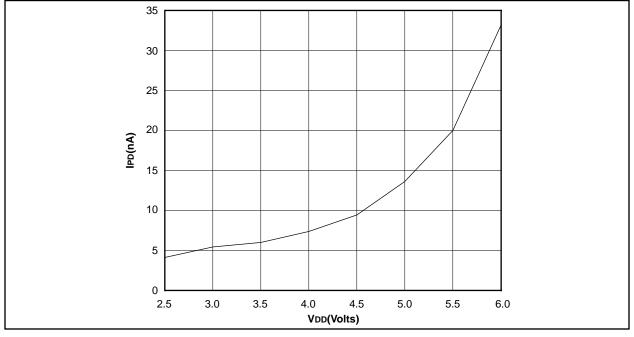
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

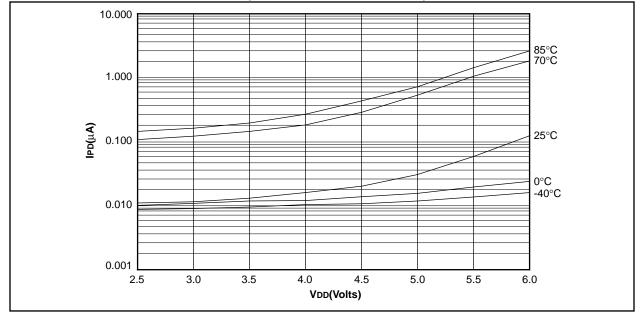
Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

Applicable Devices 710 71 711 715


12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

Applicable Devices 710 71 711 715

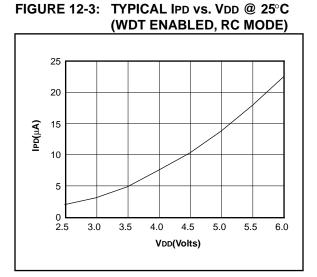
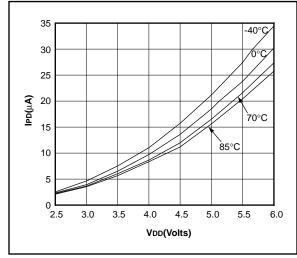
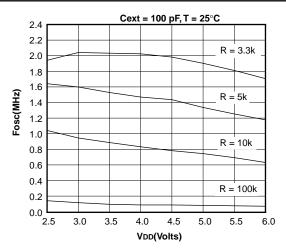
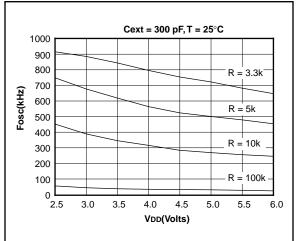
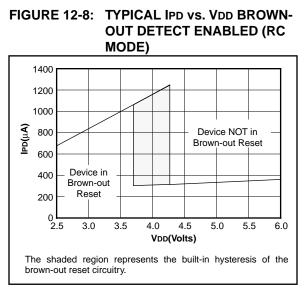




FIGURE 12-4: MAXIMUM IPD vs. VDD (WDT **ENABLED, RC MODE)**



FREQUENCY vs. VDD Cext = 22 pF, T = 25°C 6.0 5.5 5.0 4.5 R = 5k 4.0 Fosc(MHz) 3.5 3.0 R = 10k 2.5 2.0 1.5 1.0 R = 100k 0.5 0.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD(Volts) Shaded area is beyond recommended range.


FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

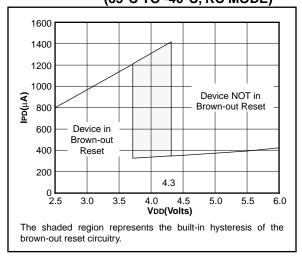


FIGURE 12-5: TYPICAL RC OSCILLATOR

Applicable Devices71071711715

FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

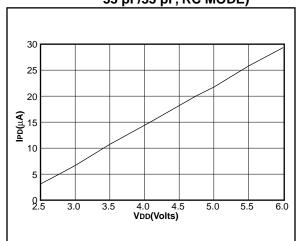
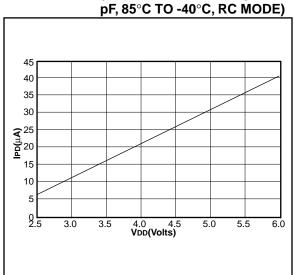



FIGURE 12-11: MAXIMUM IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33

Applicable Devices 710 71 711 715

FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

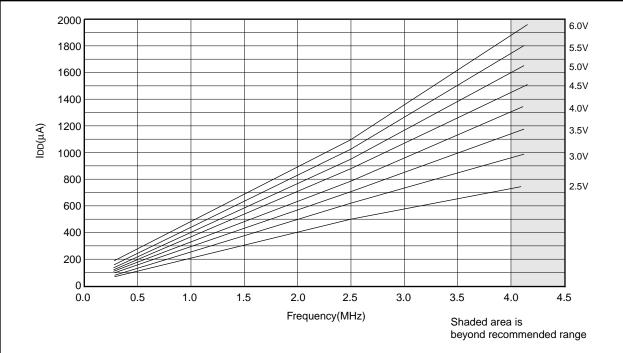
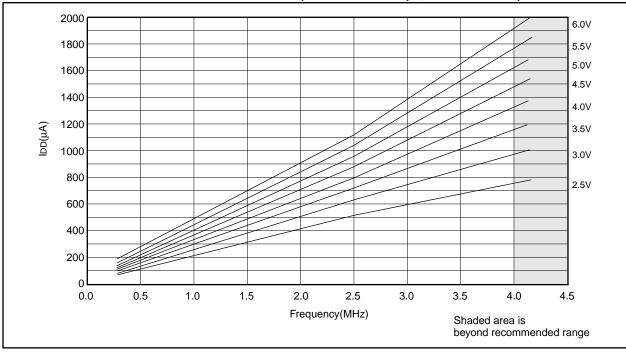



FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

Applicable Devices71071711715

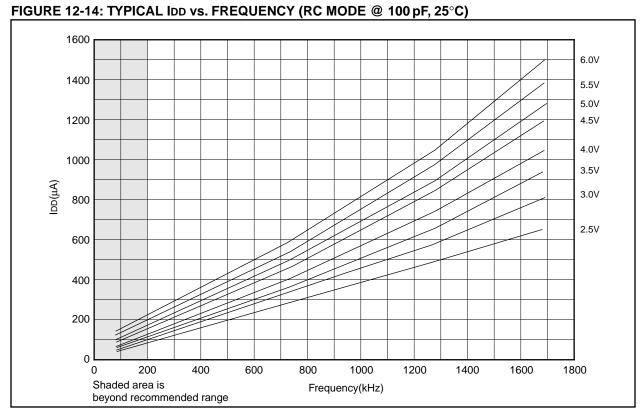
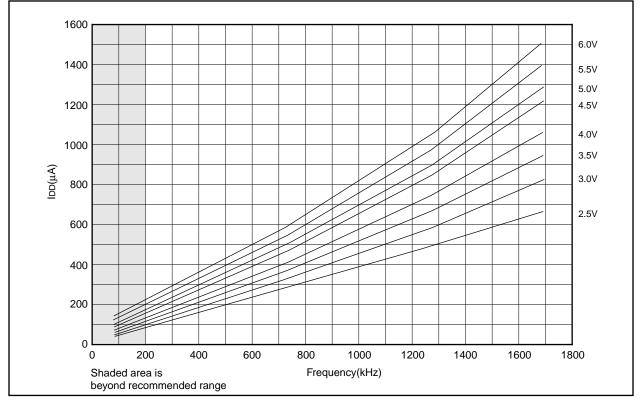



FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

Applicable Devices 710 71 711 715

FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

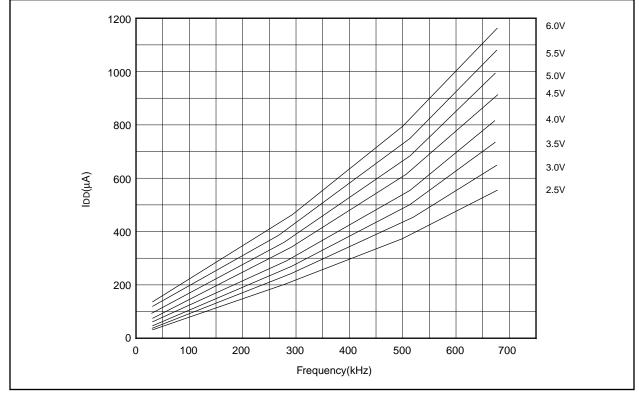
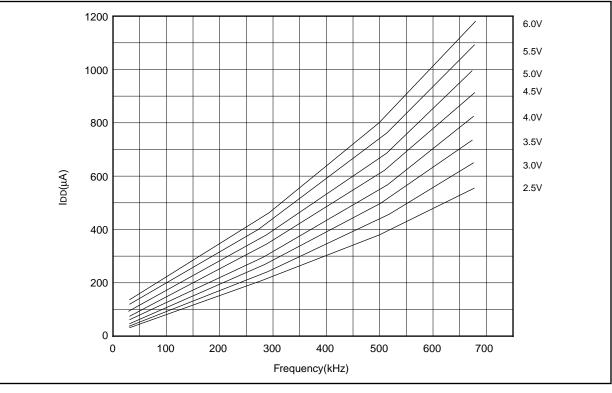



FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

Applicable Devices71071711715

CAPACITANCE @ 500 kHz (RC MODE) 600 5.0V 500 4.0V 400 3.0V (Au)aai 300 200 100 0 20 pF 100 pF 300 pF Capacitance(pF)

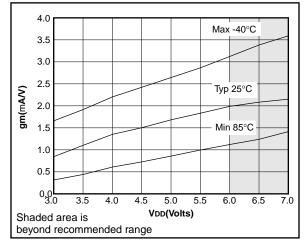

TABLE 12-1: RC OSCILLATOR FREQUENCIES

FIGURE 12-18: TYPICAL IDD vs.

Cext	Rext	Average				
Cext	Nexi	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

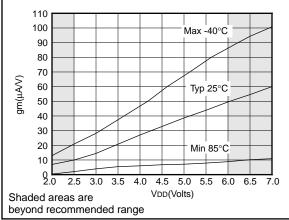
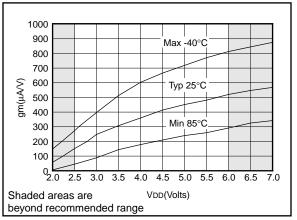



FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 710 71 711 715

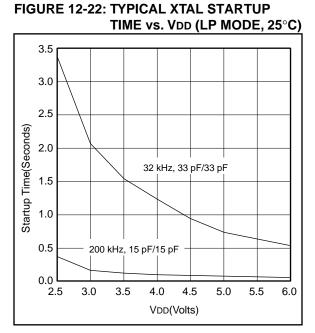
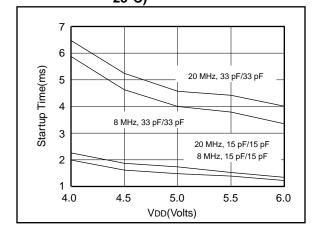
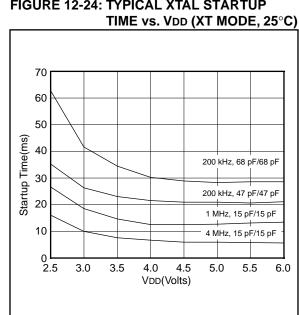
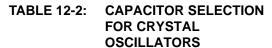





FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
ХТ	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15-33 pF	15-33 pF		
	20 MHz	15-33 pF	15-33 pF		
Crystals Used					
32 kHz	Epson C-00)1R32.768K-A	± 20 PPM		
200 kHz	STD XTL 2	STD XTL 200.000KHz			
1 MHz	ECS ECS-1	± 50 PPM			
4 MHz	ECS ECS-4	± 50 PPM			
8 MHz	EPSON CA	± 30 PPM			
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM		

FIGURE 12-24: TYPICAL XTAL STARTUP

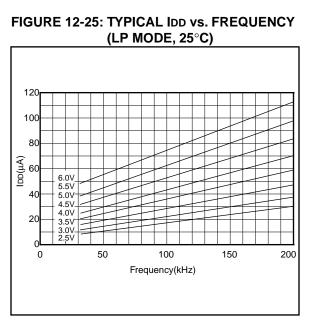
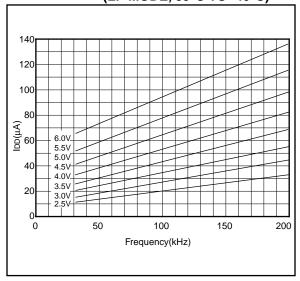
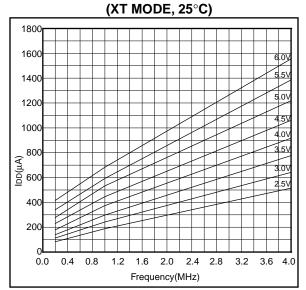
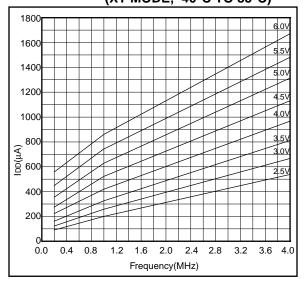
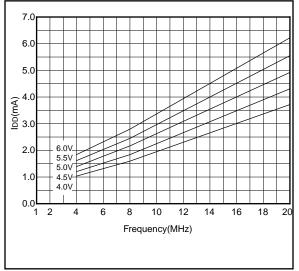
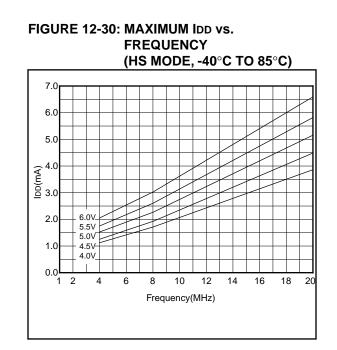



FIGURE 12-26: MAXIMUM IDD vs. FREQUENCY (LP MODE, 85°C TO -40°C)

Applicable Devices 710 71 711 715

FIGURE 12-27: TYPICAL IDD vs. FREQUENCY


FIGURE 12-28: MAXIMUM IDD vs. FREQUENCY (XT MODE, -40°C TO 85°C)

Applicable Devices 710 71 711 715

Applicable Devices 710 71 711 715

13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715

Absolute Maximum Ratings †	Δ
Ambient temperature under bias	
Storage temperature	
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDR + 0.3V)
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	/250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Output clamp current, Iok (VO < 0 or VO > VDD) Maximum output current sunk by any I/O pin Maximum output current sourced by any I/O pin Maximum current sunk by PORTA Maximum current sourced by PORTA	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTA Maximum current sunk by PORTB Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: $Rdis = VDD \times \{IDD - \sum IOH\} + \sum \{(VDD - VO) + NOTION: Charge a basis three lists and a "Abase" Abase" and a strength of the set of t$	OH) X IOH} + Σ (VOI X IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 710 71 711 715

TABLE 13-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

	1																1								
PIC16C715/JW			 21 μA max. at 4V 	Freq: 4 MHz max.	D: 4.0V to 5.5V			eq: 4 MHz max.	D: 4.5V to 5.5V	 30 mA max. at 5.5V 	 1.5 μA typ. at 4.5V 	Freq: 10 MHz max.	D: 2.5V to 5.5V		 5.0 μA max. at 3.0V 	Freq: 200 kHz max.	the user select the device type				2	~	<	\sum	
	VDD:	<u> </u>	:Od	Ъ	VDD:	00	:Od	Freq:	VDD:	:00	PD:	Fre	VDD:	:00	:Od	БĒ	that t			/					\searrow
PIC16LC715-04	VDD: 2.5V to 5.5V		IPD: 0.9 μA typ. at 3V	Freq: 4 MHz max.	VDD: 2.5V to 5.5V	IDD: 2.0 mA typ. at 3.0V		Freq: 4 MHz max.				\sim	yob: 2:5V to 5.5V	\backslash	IP6: /5.0 μΑ μαχ. at 3.0V	Fred: / 200 kHz max.	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type					\sim		7	
PIC16C715-20	VDD: 4.5V to 5.5V		IPDi/ 1.5 μA typ. at 4V	Freq: 4 MHz max.	VDD: 4.5V to 5.5V	IDD: 2.7/mAJyp. at 5.5V	4PD: 1.5 Juk typ, at 4V	Freg. 4 MHz max,	VBD: 4.5 10 5,6 V	IDD: 30 m/ Max. at 5.5 V	IPD: 1:5 MA typ. at 4:5V	Freq: 20 MHZ-max.		Do not use in L D mode		~	tionality, but not for MIN/MA								
	$\hat{\boldsymbol{\Sigma}}$		7	$\frac{-}{2}$	Ś	_	7/	Ž	-		_	_		_	-		funct								
PIC16C715-10	VDD: 4.5V to 5.5N		IPD: 1.5 μA typ. at 4V	Freq: 4 MHz max. 📏 🔍	VDD: 4.5V to 5.5V	IDD: 2.7 mA typ. at 5.5V	IPD: 1.5 μA typ. at 4V	Freq: 4 MHz max.	VDD: 4.5V to 5.5V	IDD: 30 mA max. at 5.5V	IPD: 1.5 μA typ. at 4.5V	Freq: 10 MHz max.		Do not use in I D mode			ctions which are tested for								
PIC16C715-04	VDD: 4.0V to 5.5V	5 mA max. at 5.5V	IPD: 21 μA max. at 4V	Freq: 4 MHz max.		IDD: 5 mA max. at 5.5V		Freq: 4 MHz max.	VDD: 4.5V to 5.5V	DD: 13.5 mA typ. at 5.5V	IPD: 1.5 μA typ. at 4.5V		VDD: 4.0V to 5.5V		IPD: 0.9 μA typ. at 4.0V	Freq: 200 kHz max.	ed sections indicate oscillator selection	that ensures the specifications required.							
ő	>	_		ш	>			ш	>	_		Ш	>			ш	e shac	it ensu							
osc		C a				7	<			U T				0	5		μ	tha							

Applicable Devices 710 71 711 715

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended))

			-				
DC CHA	RACTERISTICS			lard O ating te	ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)		
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	Idd	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS øsc configuration (PIC16C715-20) Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-<	300*	500	JLA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD (-	10,5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ALBOR	/-/	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VoD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 OSC_1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	ACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)										
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions						
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)						
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode						
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details						
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details						
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled						
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MH2, VDD = 3.0V (Note 4)						
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = $3.0V$, WDT disabled						
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μΑ	BOR enabled VDD = 5.0V						
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	30 5 5	μ Α μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$						
D023	Brown-out Reset Current (Note 5)		-	300*	500	μA	BOR enabled VDD = 5.0V						

* These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDC; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

					Арр	licab	e Devices 710 71 711 715					
13.3	PIC16C7	15-10 15-20 715-04	(Comme (Comme (Comme	ercia ercia ercia	il, Indus il, Indus al, Indus	strial, strial, strial)						
							nless otherwise stated)					
		Operat	ing tempe	ratur	e 0°C -40°		$TA \le +70^{\circ}C$ (commercial) $TA \le +85^{\circ}C$ (industrial)					
DC CHA	RACTERISTICS				-40°		$TA \le +125^{\circ}C$ (extended)					
		•	Dperating voltage VDD range as described in DC spec Section and Section 13.2.									
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions					
No.				1								
	Input Low Voltage	N/										
Dogo	I/O ports	VIL	Vee			V						
D030	with TTL buffer		Vss	-	0.5V	V						
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V V						
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2Vdd	\sim						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	1v	Note1					
	Input High Voltage				~	-						
	I/O ports	VIH		-	$ \langle \setminus$							
D040	with TTL buffer		2.0	~	VDD	$\setminus v$	$4.5 \leq VDD \leq 5.5V$					
D040A			0.8VDD	K	VDD	\mathcal{N}^{\prime}	For VDD > 5.5V or VDD < $4.5V$					
D041	with Schmitt Trigger buffer		0.8V00	- \	VDD	\sim	For entire VDD range					
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD		VQD	V						
D042A	OSC1 (XT, HS and LP)		0,7VQD	<u>\-`</u>	VDD	V	Note1					
D043	OSC1 (in RC mode)		Q.9KDD	- \	N DD	V						
D070	PORTB weak pull-up current	PURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS					
D060	Input Leakage Current (Notes 2, 3 I/O ports			-	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance					
D061	MCLR, RA4/T0CKI			-	±5	μA	$Vss \leq VPIN \leq VDD$					
D063	OSC1	\searrow	-	-	±5	μA	$Vss \le VPIN \le VDD$, XT, HS and LP osc configuration					
	Output Low Voltage	\boldsymbol{X}										
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C					
D083A	$(h) \rightarrow$		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C					
<u> </u>	Data in "Typ" column is at 5V, 25°C u	nless oth	erwise sta	ated.	These	barame	ters are for design guidance only					

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Applicable Devices 710 71 711 715

		Standard Operating Conditions (unless otherwise stated)											
		Operati	ng tempe	ratur	e 0°C	≤	$TA \leq +70^{\circ}C$ (commercial)						
	RACTERISTICS						$TA \leq +85^{\circ}C$ (industrial)						
		$-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)											
		Operating voltage VDD range as described in DC spec Section 13.											
	1		ction 13.2										
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions						
No.				t									
	Output High Voltage												
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	ІОН = -3.0 mA, VDp = 4.5V,						
							-40°C to +85°C \ \						
D090A			Vdd - 0.7	1 -	-	V	$IOH = -2.5 \text{ mA}, \text{VDD} \neq 45V,$						
							-40°C to +125°C						
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	1 -	-	V	IOH = -1.3 mA, VDD = 4.5V,						
							-40°C tø +85°C						
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V,						
							-40°O to +125°C						
	Capacitive Loading Specs on						$\langle \rangle$						
	Output Pins					7/1	\sim						
D100	OSC2 pin	Cosc2	-	-	15	p∕Ę ∖	In XT, HS and LP modes when						
					$\langle \rangle$		external clock is used to drive						
						∖_ `	OSC1.						
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	<u> </u> -	50	⊾ pF							

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

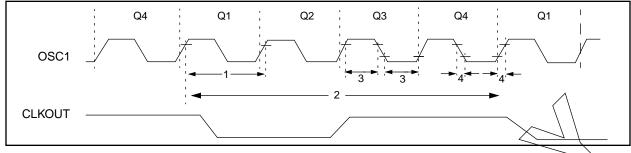
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

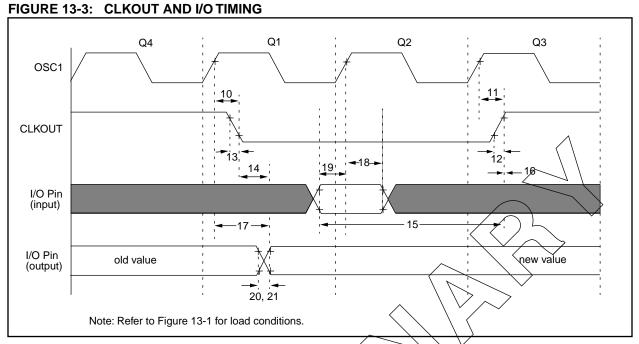

1. TppS2	2ppS
----------	------

2. TppS			
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			\square
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCК
do	SDO	SS	SS ()
dt	Data in	tO	тоскі
io	I/O port	t1	ТІСКІ
mc	MCLR	wr	
	ase letters and their meanings:		
S			
F	Fall	P	Period >
н	High	R <	Rise
I	Invalid (Hi-impedance)	<u> </u>	Valid
L	Low		Hi-impedance
FIGURE [·]	13-1: LOAD CONDITIONS	$\overline{)}$) ř
	Load condition 1		Load condition 2
	RL RL RL RL RL RL RL RL	22	Pin CL VSS
\backslash	$\langle \rangle$		

Applicable Devices 710 71 711 715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING


TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz .	XT-osc mode
		(Note 1)	DC	_	4	мнұ	HS osc mode (PIC16C715-04)
			DC	—	20/	MHz	HS osc mode (PIC16C715-20)
			DC	—	200	kHz `	LP osc mode
		Oscillator Frequency	DC	—	<u>_</u>	MHz	RC osc mode
		(Note 1)	0.1		<u> </u>	MHz	XT osc mode
			4	$\langle \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	\frown	10	MHz	HS osc mode (PIC16C715-10)
			4	\mathbb{A}	202	MHz	HS osc mode (PIC16C715-20)
			5	\mathcal{A}	> 200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	\searrow	_	ns	XT osc mode
		(Note 1)	250	Ň	—	ns	HS osc mode (PIC16C715-04)
			100	$\sim -$	—	ns	HS osc mode (PIC16C715-10)
			50	—	—	ns	HS osc mode (PIC16C715-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C715-04)
	/		100	—	250	ns	HS osc mode (PIC16C715-10)
		$() \leq \vee$	50	_	250	ns	HS osc mode (PIC16C715-20)
		\sim	5	—	_	μs	LP osc mode
2	TGY	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy = 4/Fosc
3	TosĻ,	External Clock in (OSC1) High	50	—	_	ns	XT oscillator
\setminus	TosH	or Low Time	2.5	—	—	μs	LP oscillator
\sim	\langle		10	—	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	—	—	25	ns	XT oscillator
	TósF	or Fall Time	_	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

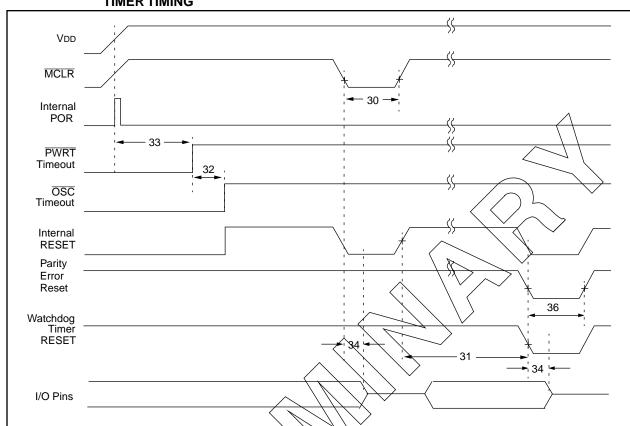
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

Applicable Devices 710 71 711 715

TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS

	1		\longrightarrow		\searrow			
Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		\setminus	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	$\langle \rangle$	<u> </u>	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	UUU	V –	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	$\overline{)}$	_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	$\overline{\ }$	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	$\overline{\boldsymbol{\lambda}}$	0.25Tcy + 25	-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT 1		0	-		ns	Note 1
17*	TosH2ioV	OSC11 (Q1 cycle) to Port out valid		_	-	80 - 100	ns	
18*	TosH2iol	OSC1 [*] (Q2 cycle) to Port input invalid (I/O in hold	time)	TBD	-	_	ns	
19*	TioV20sH	Port input valid to OSC11 (I/C) in setup time)	TBD	-		ns	
20*	TioR	Port output rise time P	IC16C715	_	10	25	ns	
	$ \setminus \vee$	\frown P	IC16LC715	—	-	60	ns	
21* 🦯	Tior	Port output fall time P	IC16C715	_	10	25	ns	
	())		IC16LC715	—	_	60	ns	
22†**	Tinp	INT pin high or low time		20	- 1	_	ns	
23††*	Trisp	RB7:RB4 change INT high or	· low time	20	-	_	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

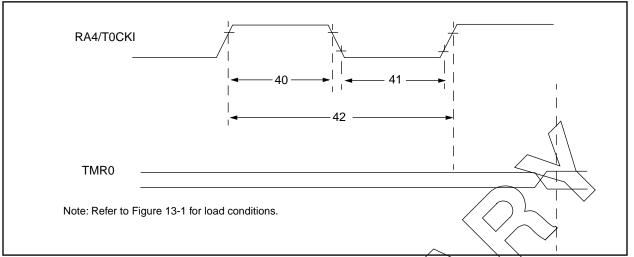
Applicable Devices 710 71 711 715

FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER TIMING

FIGURE 13-5: BROWN-OUT RESET TIMING

VDD BVDD -----

TABLE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS


Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.	$ \searrow $	\land					
30		MCLR Pulse Width (low)	2	—	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	-	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—	_	μs	$VDD \le BVDD (D005)$
36	TPER	Parity Error Reset	_	TBD		μs	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

FIGURE 13-6: TIMER0 CLOCK TIMINGS

TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Турт	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20*		—	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period		Greater of: 20μs or <u>Tcy + 40</u> * Ν	_	_	ns	N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	—	7Tosc	_	

*

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Applicable Devices 710 71 711 715

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution			8-bits		$VREF = VDD, VSS \le AIN \le VREF$
	Nint	Integral error	_		less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error			less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error			less than ±1 LSb	_	VREF = VDØ, VSS ⊈AIN ≤ VREF
	—	Monotonicity	_	guaranteed	_	—	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source		_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle } \overline{\langle } \rangle$	₩ A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	μA μA	During sampling All other times

These parameters are characterized but not tested.

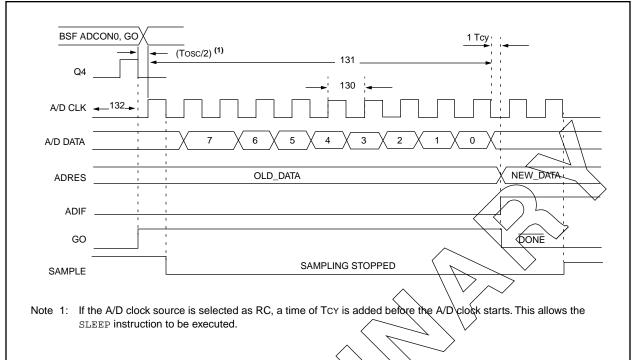
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.
- Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_		8-bits	_	$VREF = VDD, VSS \leq AIN \leq VREF$
	Nint	Integral error	_		less than ±1 LSb	_	$VREF = VDD, VSS \le Ain \le VREF$
	Ndif	Differential error	_		less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	_		less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	Noff	Offset error	_		less than ±1 LSb	_	VREF = VDD, VS S ≤ AIN ≤ VREF
	—	Monotonicity	—	guaranteed	_	—	VSS ANTS VREF
	Vref	Reference voltage	2.5V	—	Vdd + 0.3	V	$\langle \rangle \rangle$
	VAIN	Analog input voltage	Vss - 0.3	—	VREF + 0.3	V	
	Zain	Recommended impedance of ana- log voltage source	_	_	10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	—	90		μΑ	Average current consumption when AVD is on. (Note 1)
	IREF	VREF input current (Note 2)	—	- ‹	T NO	mA μA	During sampling All other times

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

FIGURE 13-7: A/D CONVERSION TIMING

A/D CONVERSION REQUIREMENTS **TABLE 13-8:**

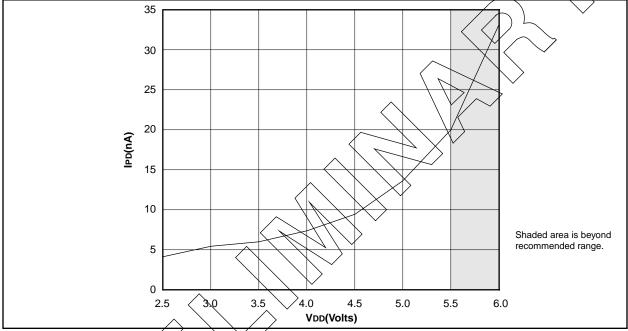
Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
130	TAD	A/D clock period	1.6 2.0		×	μs μs	VREF ≥ 3.0V VREF full range
130	Tad	A/D Internal RC Oscillator source					ADCS1:ADCS0 = 11 (RC oscillator source)
		$\langle \rangle$	3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time (not including S/H time). Note 1		9.5TAD	_	_	
132	TACQ	Acquisition time	Note 2	20	_	μs	

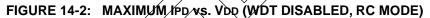
These parameters are characterized but not tested.

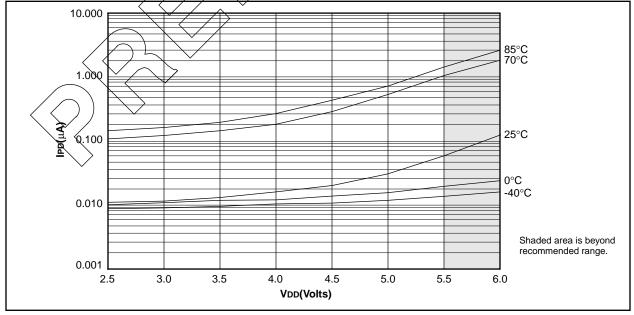
Data in type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

ADRES register may be read on the following TCY cycle. Note 1:

Applicable Devices 710 71 711 715

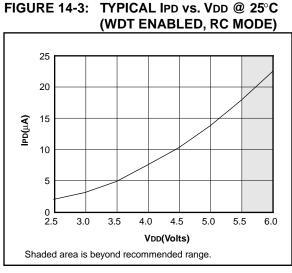
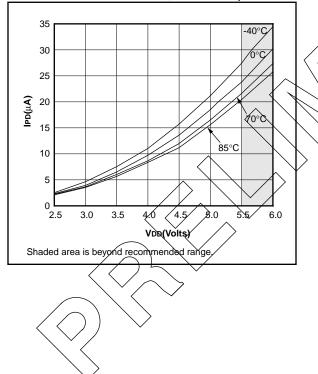
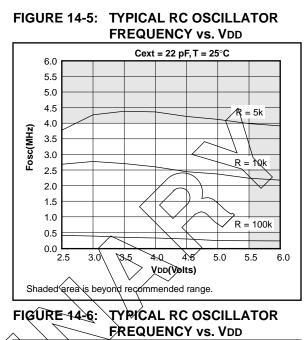
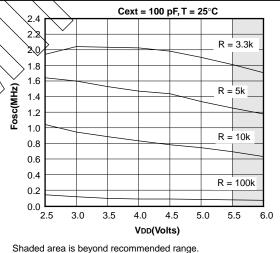

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715

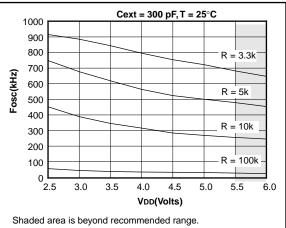

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

Applicable Devices 710 71 711 715


FIGURE 14-4: MAXIMUM IPD vs. VDD (WDT ENABLED, RC MODE)

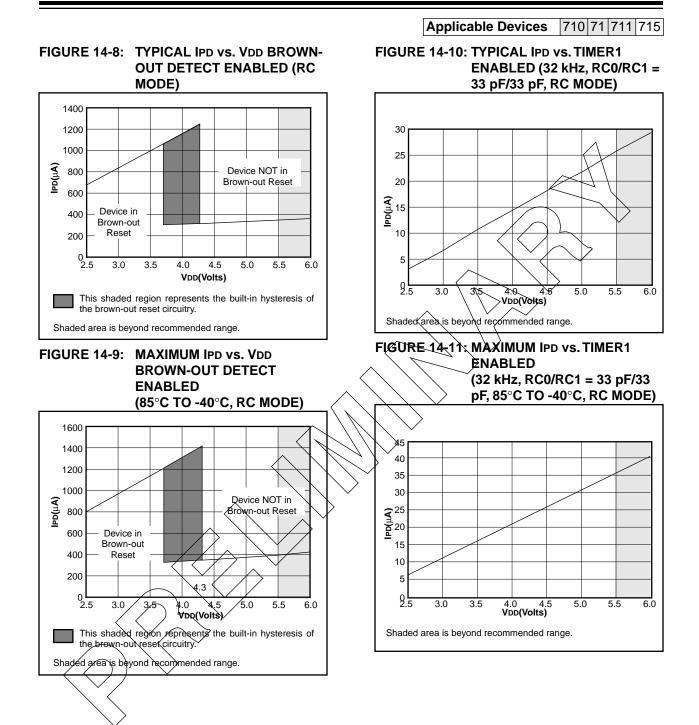


FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 710 71 711 715

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

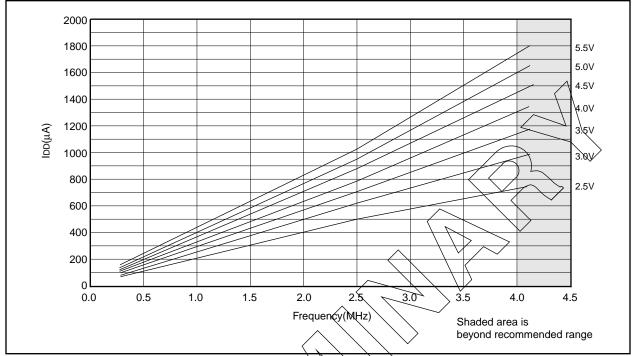
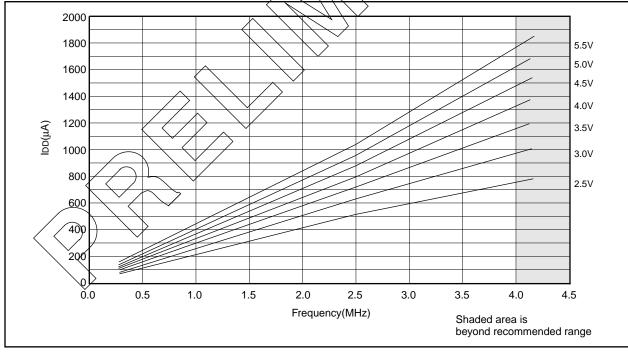
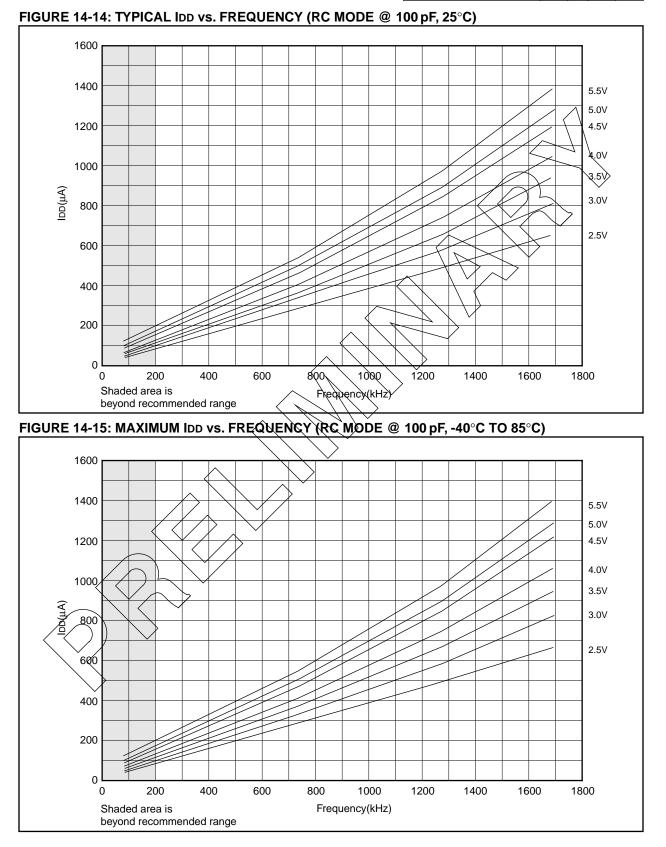




FIGURE 14-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

Applicable Devices 710 71 711 715

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

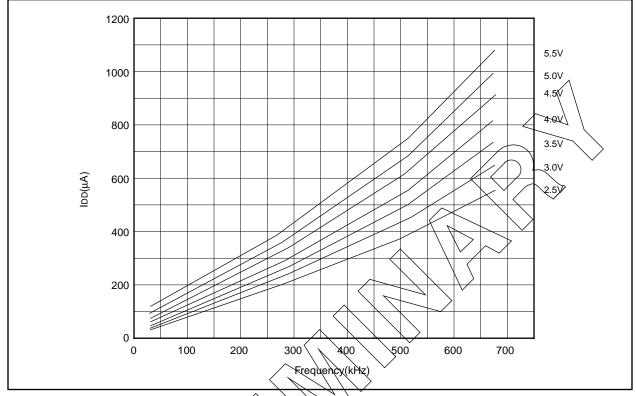
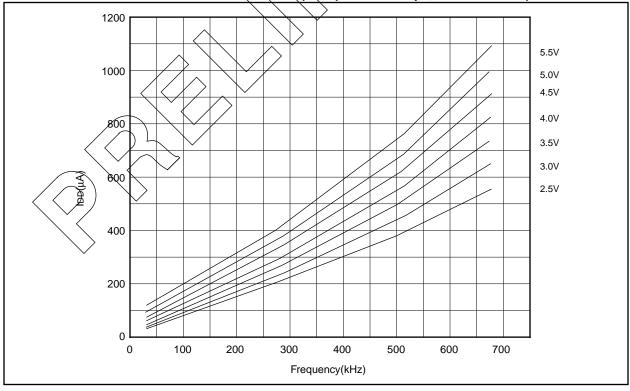



FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

Applicable Devices 710 71 711 715

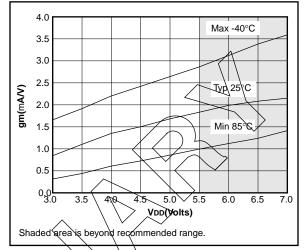
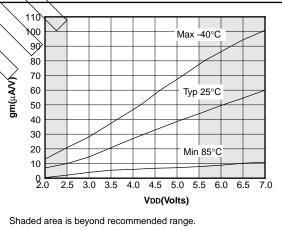
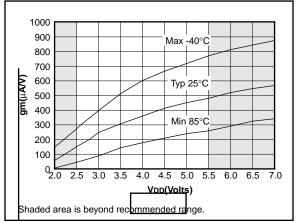
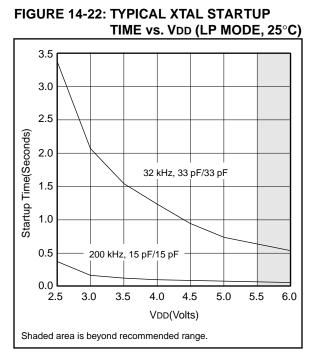

FIGURE 14-18: TYPICAL IDD vs. **CAPACITANCE @ 500 kHz** (RC MODE) 600 5.0V 500 4.0V 400 3.0V (Au)aai 300 200 100 0 20 pF 100 pF 300 pF Capacitance(pF)

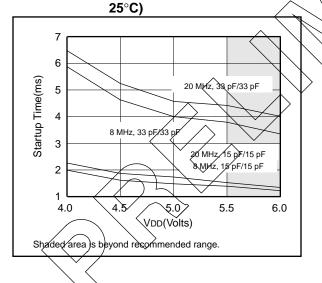
TABLE 14-1: RC OSCILLATOR FREQUENCIES


Cext	Rext	Average							
Cext	NEXI	Fosc @ 5V, 25°C							
22 pF	5k	4.12 MHz	± 1.4%						
	10k	2.35 MHz	± 1.4%						
	100k	268 kHz	±1,1%						
100 pF	3.3k	1.80 MHz	±1.0%						
	5k	1.27 MHz	± 1.0%						
	10k	688 KHz	± 1.2%						
	100k	77.2, kHz	± 1.0%						
300 pF	3.3k	707 kHz	± 1.4%						
	5k <	501 kHz /	¥ 1.2%						
	10k	269 kHz /	± 1.6%						
	100k	28.3 kHz	± 1.1%						

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.


FIGURE 14-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD


FIGURE 14-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD


FIGURE 14-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 710 71 711 715

FIGURE 14-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE,

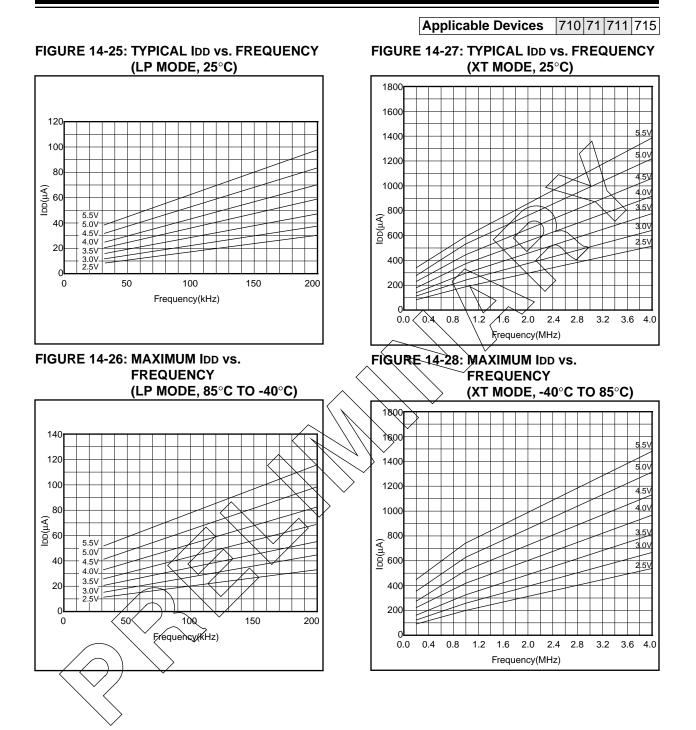
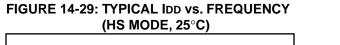
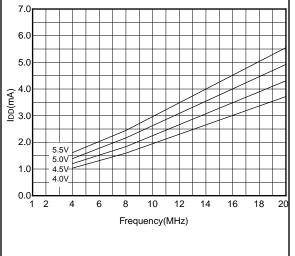
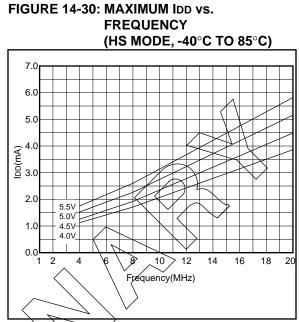


FIGURE 14-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C) 70 60 50 Startup Time(ms) 40 200 kHz, 68 pF/68 pF 30 200 kHz, 47 pF/47 pF 20 1 MHz, 15 pF/15 pF 10 4 MHz, 15 pF/15 pF 0 3.0 3.5[\] 4.0 4.5 5.0 2.5_/ 5.5 6.0 VDD(Volts) Shaded area is beyond recommended range.


TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS


Оѕс Туре	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			


Crystals Used		
32 kHz	Epson C-001R32.768K-A	\pm 20 PPM
200 kHz	STD XTL 200.000KHz	\pm 20 PPM
1 MHz	ECS ECS-10-13-1	\pm 50 PPM
4 MHz	ECS ECS-40-20-1	\pm 50 PPM
8 MHz	EPSON CA-301 8.000M-C	\pm 30 PPM
20 MHz	EPSON CA-301 20.000M-C	\pm 30 PPM

Applicable Devices 710 71 711 715

Applicable Devices 710 71 711 715

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VD	D-VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μ A max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 710 71 711 715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CH	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D020 D021 D021A	Power-down Current (Note 3)	IPD	- - -	7 1.0 1.0	28 14 16	μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 710 71 711 715

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)OOperating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	15	32	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D020	Power-down Current	IPD	-	5	20	μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021	(Note 3)		-	0.6	9	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.6	12	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			

15.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

15.3

Applicable Devices 710 71 711 715

DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial) PIC16LC71-04 (Commercial, Industrial)

		Standa	rd Opera	ting	Conditi	ons (u	nless otherwise stated)						
			ating temp				Ta ≤ +70°C (commercial)						
DC CHAF	RACTERISTICS	$-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)											
				Operating voltage VDD range as described in DC spec Section 15.1									
		and Section 15.2.											
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions						
No.				†									
	Input Low Voltage												
	I/O ports	VIL											
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range						
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$						
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V							
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1						
	Input High Voltage												
	I/O ports (Note 4)	Vін		-									
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$						
D040A			0.25VDD	-	Vdd		For entire VDD range						
			+ 0.8V										
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range						
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V							
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1						
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V							
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS						
	Input Leakage Current (Notes 2, 3)												
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss \leq VPIN \leq VDD, Pin at hi-						
							impedance						
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le Vpin \le Vdd$						
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and						
							LP osc configuration						
	Output Low Voltage												
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,						
							-40°C to +85°C						
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V,						
	Output Llink Volto						-40°C to +85°C						
Dooo	Output High Voltage					V							
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°C to +85°C						
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3mA, VDD = 4.5V, -40°C to +85°C						
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin						
						, i	· · · · · F · · ·						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

DC CHAF	OOpera Operatir	ting temp	e VDI	ure 0°C -40°	≤ C ≤	nless otherwise stated) TA ≤ +70°C (commercial) TA ≤ +85°C (industrial) cribed in DC spec Section 15.1	
Param No.	Characteristic	Sym	Min	Typ +	Мах	Units	Conditions
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	

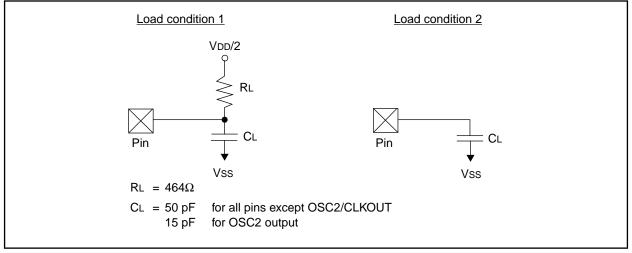
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

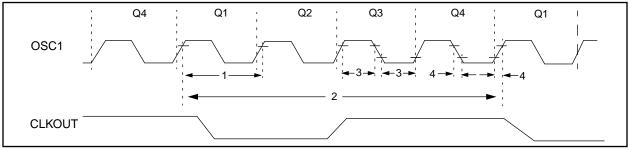
Applicable Devices 710 71 711 715


15.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

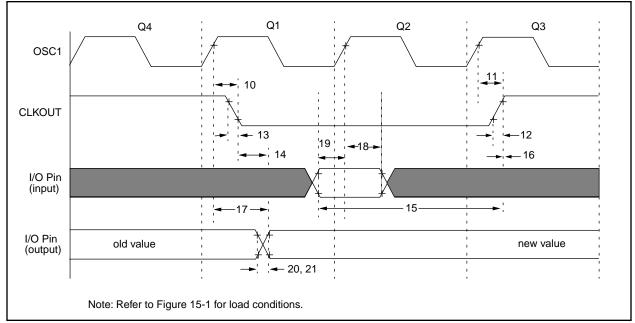
2. TppS				
Т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	\overline{RD} or \overline{WR}	
di	SDI	SC	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	P	Period	
н	High	R	Rise	
	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	


FIGURE 15-1: LOAD CONDITIONS

Applicable Devices 710 71 711 715

15.5 <u>Timing Diagrams and Specifications</u>

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			50	_	—	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	—	ns	XT oscillator
	TosF	Fall Time	50	—		ns	LP oscillator
			15	—	_	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

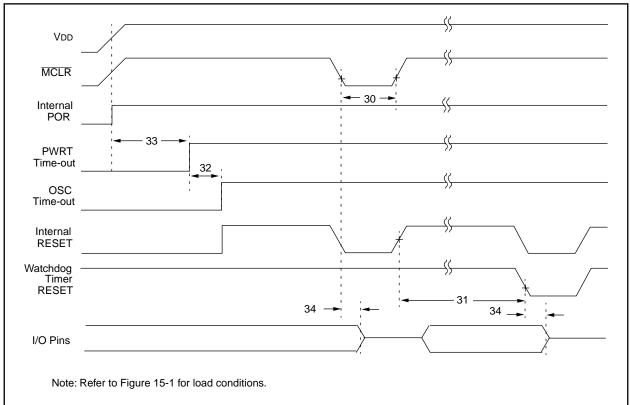
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

Applicable Devices 710 71 711 715

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	d	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	דע ↑	0.25Tcy + 25	—		ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	—	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		-	_	80 - 100	ns	
18*	18* TosH2iol		PIC16 C 71	100	—		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC1↑	(I/O in setup time)	0	—	_	ns	
20*	TioR	oR Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	F Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	_	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high or low time		20	—	-	ns	


* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

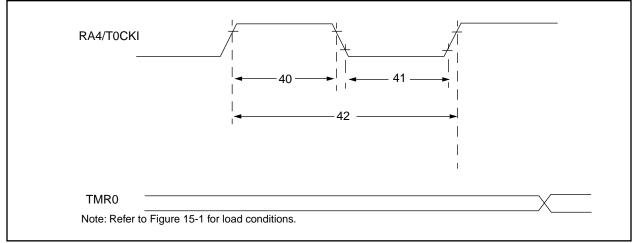
these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 710 71 711 715

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	—	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	-	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low	_	_	100	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_		-	Must also meet	
			With Prescaler	10			ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20		_	ns	Must also meet parameter 42	
			With Prescaler	10	-	_	ns		
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-	_		N = prescale value (2, 4,, 256)	
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

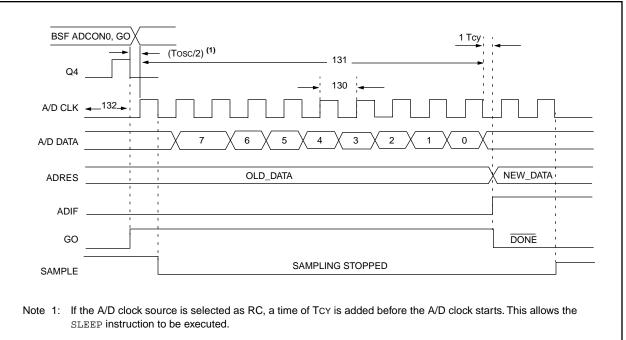
Applicable Devices 710 71 711 715

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_		8 bits	bits	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Absolute error	PIC16 C 71	_	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A03	EIL	Integral linearity error	PIC16 C 71	_	—	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A04	Edl	Differential linearity error	PIC16 C 71	_	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A05	Efs	Full scale error	PIC16 C 71	_	_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A06	EOFF	Offset error	PIC16 C 71	—	—	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A10	—	Monotonicity		—	guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	VREF	V	
A30	Zain	Recommended impedance voltage source	of analog	_	—	10.0	kΩ	
A40	IAD	A/D conversion current (VD	D)	—	180	—	μA	Average current consump- tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	PIC16 C 71	10	_	1000	μA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle
			PIC16 LC 71	_	_	1	mA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle

TABLE 15-6: A/D CONVERTER CHARACTERISTICS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: These specifications apply if VREF = 3.0V and if VDD ≥ 3.0V. VAIN must be between VSs and VREF.

Applicable Devices 710 71 711 715

FIGURE 15-6: A/D CONVERSION TIMING

TABLE 15-7: A/D CONVERSION REQUIREMENTS

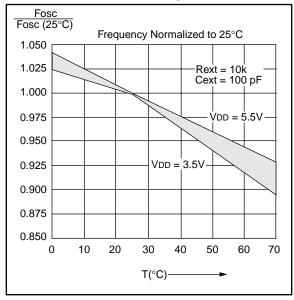
Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 71	2.0	_		μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 71	2.0	_	_	μs	TOSC based, VREF full range
			PIC16 C 71	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 71	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H tim	e) (Note 1)	-	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*		_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2§	_	_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve	rt sample time	1.5§		_	TAD	

* These parameters are characterized but not tested.

§ These specifications ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.


[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C71

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

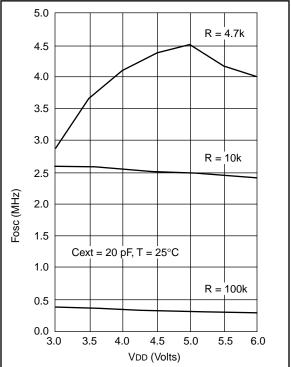
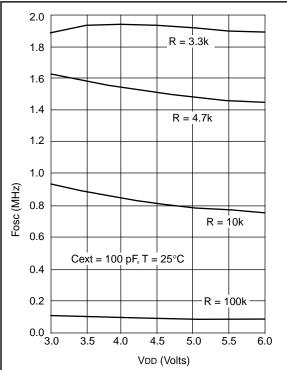
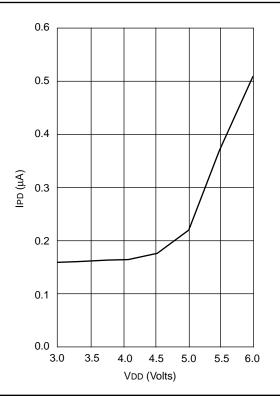

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE



 Applicable Devices
 710
 71
 711
 715

 FIGURE 16-2:
 TYPICAL RC OSCILLATOR FREQUENCY vs. VDD


FIGURE 16-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 710 71 711 715 FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

.8 R = 3.3k .7 R = 4.7k .6 .5 Fosc (MHz) .4 R = 10k.3 .2 Cext = 300 pF, T = 25°C .1 R = 100k0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

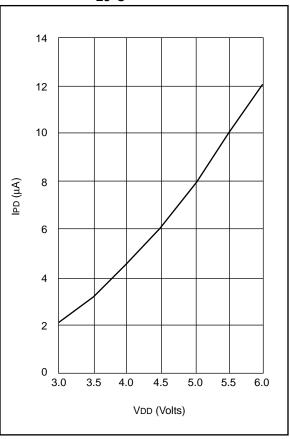
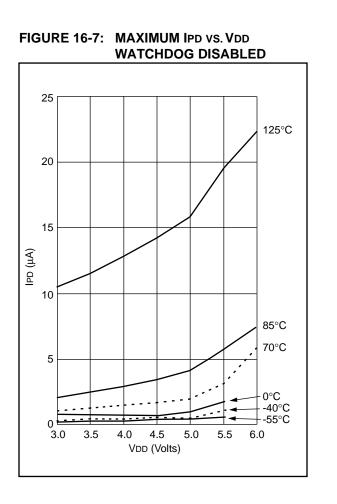


TABLE 16-1: RC OSCILLATOR FREQUENCIES


Cext	Rext	Average		
Cexi	Rexi	Fosc @	5V, 25°C	
20 pF	4.7k	4.52 MHz	±17.35%	
	10k	2.47 MHz	±10.10%	
	100k	290.86 kHz	±11.90%	
100 pF	3.3k	1.92 MHz	±9.43%	
	4.7k	1.49 MHz	±9.83%	
	10k	788.77 kHz	±10.92%	
	100k	88.11 kHz	±16.03%	
300 pF	3.3k	726.89 kHz	±10.97%	
	4.7k	573.95 kHz	±10.14%	
	10k	307.31 kHz	±10.43%	
	100k	33.82 kHz	±11.24%	

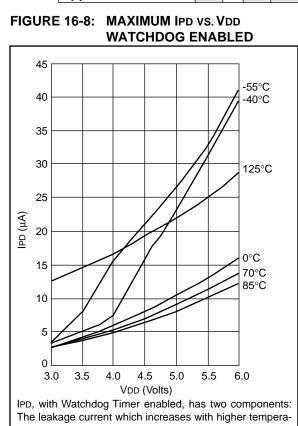
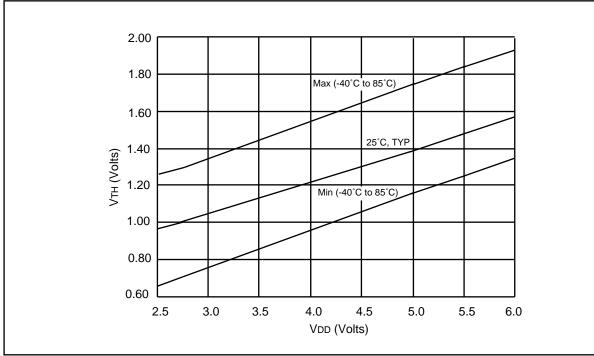
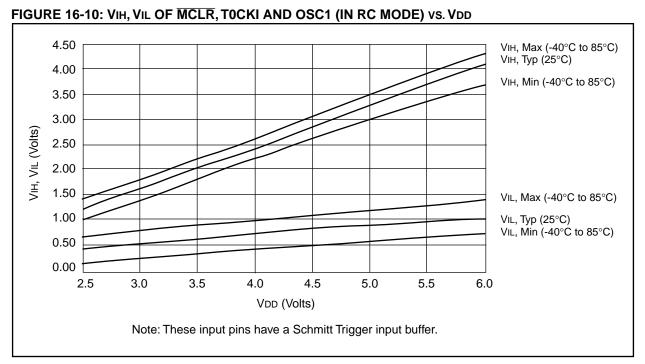
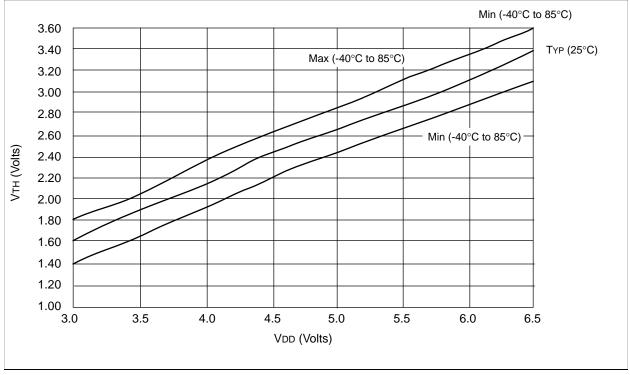

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C


Applicable Devices 710 71 711 715



The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.



Applicable Devices 710 71 711 715

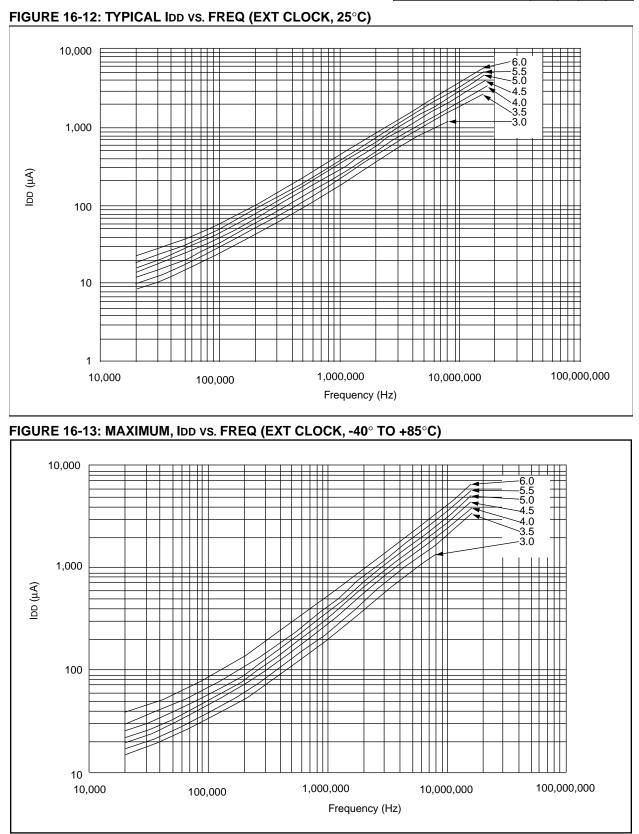
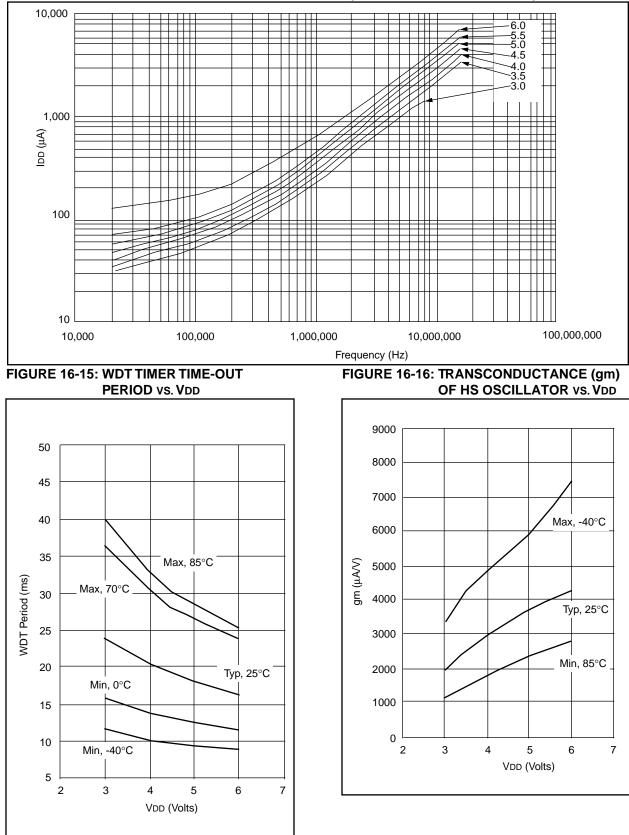


FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

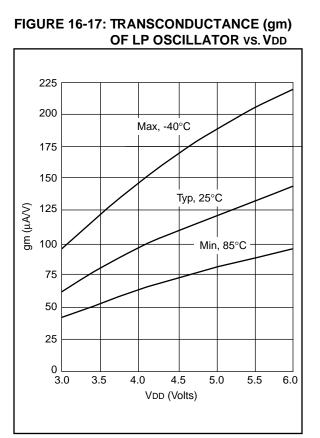
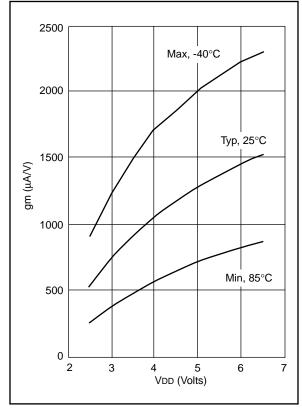
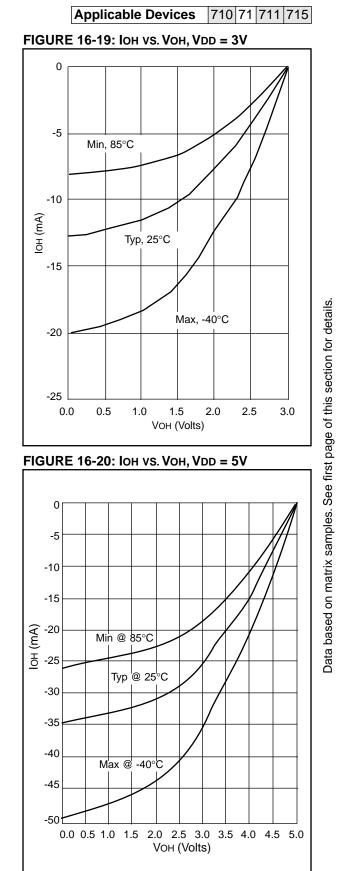
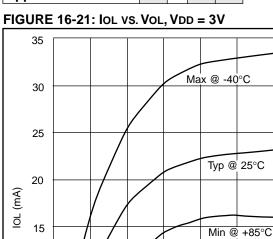
Data based on matrix samples. See first page of this section for details.

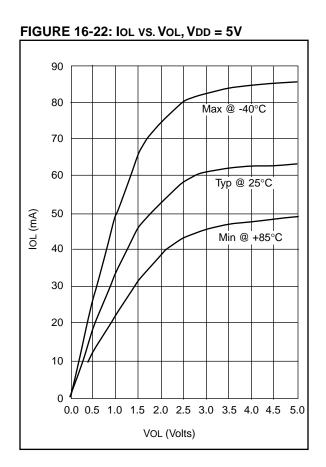

Applicable Devices 710 71 711 715

Data based on matrix samples. See first page of this section for details.

Applicable Devices 710 71 711 715

Data based on matrix samples. See first page of this section for details.


FIGURE 16-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

Applicable Devices71071711715

10

5

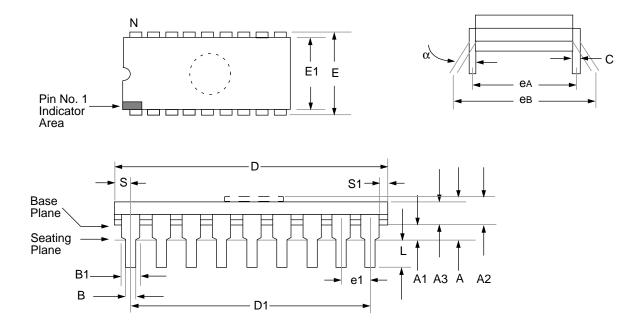
0.0

0.5

1.0

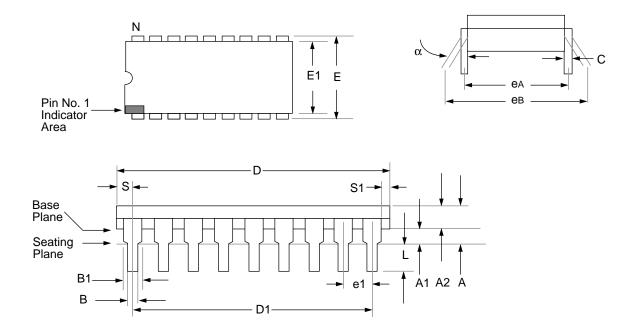
1.5

VOL (Volts)

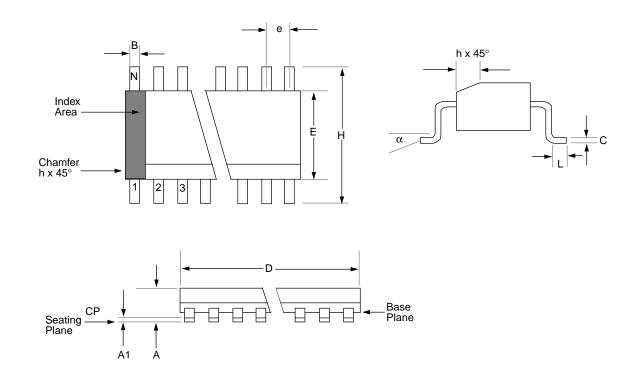

2.0

2.5

3.0


17.0 PACKAGING INFORMATION

17.1 <u>18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)</u>



Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters		Inches			
Symbol	Min	Мах	Notes	Min	Max	Notes	
α	0°	10°		0 °	10°		
А		5.080			0.200		
A1	0.381	1.7780		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.352	23.622		0.880	0.930		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.382		0.300	0.330		
E1	5.588	7.874		0.220	0.310		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	7.366	8.128	Typical	0.290	0.320	Typical	
eB	7.620	10.160		0.300	0.400		
L	3.175	3.810		0.125	0.150		
Ν	18	18		18	18		
S	0.508	1.397		0.020	0.055		
S1	0.381	1.270		0.015	0.050		

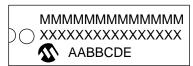
17.2 <u>18-Lead Plastic Dual In-line (300 mil) (P)</u>

Package Group: Plastic Dual In-Line (PLA)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	_	4.064		_	0.160	
A1	0.381	_		0.015	-	
A2	3.048	3.810		0.120	0.150	
В	0.355	0.559		0.014	0.022	
B1	1.524	1.524	Reference	0.060	0.060	Reference
С	0.203	0.381	Typical	0.008	0.015	Typical
D	22.479	23.495		0.885	0.925	
D1	20.320	20.320	Reference	0.800	0.800	Reference
E	7.620	8.255		0.300	0.325	
E1	6.096	7.112		0.240	0.280	
e1	2.489	2.591	Typical	0.098	0.102	Typical
eA	7.620	7.620	Reference	0.300	0.300	Reference
eB	7.874	9.906		0.310	0.390	
L	3.048	3.556		0.120	0.140	
N	18	18		18	18	
S	0.889	_		0.035	-	
S1	0.127	_		0.005	-	

17.3 <u>18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)(SO)</u>

	Package Group: Plastic SOIC (SO)					
	Millimeters					
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8°		0°	8°	
Α	2.362	2.642		0.093	0.104	
A1	0.101	0.300		0.004	0.012	
В	0.355	0.483		0.014	0.019	
С	0.241	0.318		0.009	0.013	
D	11.353	11.735		0.447	0.462	
E	7.416	7.595		0.292	0.299	
е	1.270	1.270	Reference	0.050	0.050	Reference
Н	10.007	10.643		0.394	0.419	
h	0.381	0.762		0.015	0.030	
L	0.406	1.143		0.016	0.045	
Ν	18	18		18	18	
CP	_	0.102		_	0.004	

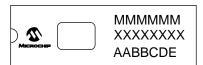
17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)



	Package Group: Plastic SSOP						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8°		0°	8°		
Α	1.730	1.990		0.068	0.078		
A1	0.050	0.210		0.002	0.008		
В	0.250	0.380		0.010	0.015		
С	0.130	0.220		0.005	0.009		
D	7.070	7.330		0.278	0.289		
E	5.200	5.380		0.205	0.212		
е	0.650	0.650	Reference	0.026	0.026	Reference	
Н	7.650	7.900		0.301	0.311		
L	0.550	0.950		0.022	0.037		
N	20	20		20	20		
CP	-	0.102		-	0.004		

- Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.
 - 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
 - 3: This outline conforms to JEDEC MS-026.

17.5 Package Marking Information


18-Lead PDIP

18-Lead SOIC

18-Lead CERDIP Windowed

20-Lead SSOP


Example

Example

Example

Example			
	PIC16C710 20I/SS025		

🐼 9517SBP

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.			
	D1 E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.			
Note:	line, it will	nt the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.			
* Standard	* Standard OTP marking consists of Microchip part number, year code, week code,				

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

NOTES:

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (1K now as opposed to 512 before) and register file (68 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

1. Minor changes, spelling and grammatical changes.

- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

INDEX

A A/D

AD .		
	ror	
ADIF bit		39
	t Model Block Diagram	
	igital Converter	
	Analog Port Pins	
	the Interrupt	
Configuring	the Module	39
Connection	Considerations	44
Conversion	Clock	41
	Time	
Conversions	3	42
Converter C	haracteristics	22, 145
Delays		40
Effects of a	Reset	44
Equations		40
	version - Lower Resolution Trade-off	
Flowchart of	f A/D Operation	45
GO/DONE b		39
	npling Switch (Rss) Impedence	
	narging Time	
	puring Sleep	
	equirements	
	edence	
	3	
	nction	
	im Ratings	
AC Characteristic		11, 155
		101
	ər	
-		
	~~	
0	er	
		,
		7
Application Notes		
		-
AN552		27
AN607, Pow	ver-up Trouble Shooting	53
Architecture		
Harvard		7
Overview		7
von Neumai	nn	7
Assembler		
MPASM Ass	sembler	86
D		
В		

Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	
PIC16C71X	8
RA3/RA0 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Pins	

RB7:RB4 Port Pins	
Timer0	31
Timer0/WDT Prescaler	34
Watchdog Timer	65
BODEN bit	48
BOR bit	22, 54
Brown-out Reset (BOR)	53
С	

C bit	17
C16C71	47
Carry bit	
CHS0 bit	
CHS1 bit	37
Clocking Scheme	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	24
Changing Prescaler (Timer0 to WDT)	35
Changing Prescaler (WDT to Timer0)	
Doing an A/D Conversion	42
I/O Programming	
Indirect Addressing	
Initializing PORTA	
Initializing PORTB	
Saving STATUS and W Registers in RAM	
Code Protection	
Computed GOTO	
Configuration Bits	
CP0 bit	
CP1 bit	

D

DC bit	17
DC Characteristics	
PIC16C71	
PIC16C710	
PIC16C711	
PIC16C715	113, 125
Development Support	
Development Tools	85
Diagrams - See Block Diagrams	
Digit Carry bit	7
Direct Addressing	24

Е

Electrical Characteristics	
PIC16C71	135
PIC16C710	89
PIC16C711	89
PIC16C715	111
External Brown-out Protection Circuit	60
External Power-on Reset Circuit	60

F

Family of Devices	
PIC16C71X	4
FOSC0 bit	47, 48
FOSC1 bit	47, 48
FSR Register	15, 16, 24
Fuzzy Logic Dev. System (fuzzyTECH [®] -MP)	87

G

General Description		3
GIE bit	19,	61
GO/DONE bit		.37

| 1/0 Pc

I/O Ports		
PORTA		25
PORTB		27
Section		25
I/O Programming Considerations		-
		50
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	•••••	85
In-Circuit Serial Programming		
INDF Register	14, 1	16, 24
Indirect Addressing		
Instruction Cycle		
Instruction Flow/Pipelining		
Instruction Format	•••••	69
Instruction Set		
ADDLW		71
ADDWF		
ANDLW		71
ANDWF		
BCF		
BSF		72
BTFSC		72
BTFSS		73
CALL		
CLRF		
CLRW		74
CLRWDT		74
COMF		75
DECF		75
DECFSZ		
GOTO		-
INCF		76
INCFSZ		77
IORLW		77
IORWF		
MOVF		-
-		-
MOVLW		-
MOVWF		78
NOP		79
OPTION		79
RETFIE		
RETLW		
RETURN		
RLF		81
RRF		81
SLEEP		82
SUBLW		
SUBWF		
SWAPF		
TRIS		83
XORLW		84
XORWF		84
Section		
Summary Table		
INT Interrupt		
INTCON Register		19
INTE bit		
INTEDG bit	1	18, 63
Internal Sampling Switch (Rss) Impedence		
Interrupts		
A/D		
External		
PORTB Change		
PortB Change		
RB7:RB4 Port Change		
Section		
TMR0		
		03

TMR0 Overflow 6 INTF bit 1 IRP bit 1	19
K	
KeeLoq [®] Evaluation and Programming Tools	37
L	
Loading of PC 2	
LP5	54
Μ	
MCLR	56
Memory	
Data Memory 1	12
Program Memory1	
Register File Maps	
PIC16C71 1	12
PIC16C7101	12
PIC16C7111	13
PIC16C7151	13
MP-DriveWay™ - Application Code Generator	37
MPEEN bit	18
MPLAB™ C8	37
MPLAB [™] Integrated Development Environment	
Software 8	36
0	
OPCODE	~~
OPCODE	
Orthogonal	
OSC selection	
Oscillator	F/
HS 49, 5	54
LP	
RC	
XT	-
Oscillator Configurations	19
Oscillator Start-up Timer (OST)5	. 0
P	
P	
Packaging	53
Packaging 18-Lead CERDIP w/Window	53 55
Packaging 18-Lead CERDIP w/Window	53 55 56
Packaging 18-Lead CERDIP w/Window	53 55 56
Packaging 18-Lead CERDIP w/Window	53 55 56 57 58
Packaging 18-Lead CERDIP w/Window	53 55 56 57 58 23
Packaging 18-Lead CERDIP w/Window	53 55 56 57 58 23 23
Packaging 18-Lead CERDIP w/Window	53 55 56 57 58 23 58 58

18-Lead PDIP156	
18-Lead SOIC 157	
20-Lead SSOP 158	
Paging, Program Memory23	
PCL Register	
PCLATH	
PCLATH Register	
PCON Register	
PD bit	
PER bit	
PIC16C71	
AC Characteristics 147	
PICDEM-1 Low-Cost PIC16/17 Demo Board	
PICDEM-2 Low-Cost PIC16CXX Demo Board	
PICDEM-3 Low-Cost PIC16CXXX Demo Board	
PICMASTER [®] In-Circuit Emulator	
PICSTART [®] Plus Entry Level Development System 85	
PIE1 Register	
Pin Functions	
MCLR/Vpp9	
OSC1/CLKIN9	
OSC2/CLKOUT9	
RA0/AN09	
RA1/AN19	

RA2/AN2		9
RA3/AN3/VREF		9
RA4/T0CKI		
RB0/INT		
RB1		
RB2		
RB3		
RB4		9
RB5		9
RB6		9
RB7		
VDD		
VSS		
		ອ
Pinout Descriptions PIC16C71		~
PIC16C710		
PIC16C711		9
PIC16C715		9
PIR1 Register		21
POP		
POR		
Oscillator Start-up Timer (OST)	,	
Power Control Register (PCON)	·····	54
Power-on Reset (POR) 47, 5	3, 57,	58
Power-up Timer (PWRT)		
Time-out Sequence		54
Time-out Sequence on Power-up		59
TO		
POR bit		
Port RB Interrupt		
PORTA		
PORTA Register1	4, 15,	
PORTB		
PORTB Register1	4, 15,	27
PORTB Register1 Power-down Mode (SLEEP)	4, 15,	27 66
	4, 15,	27 66
PORTB Register1 Power-down Mode (SLEEP) Prescaler, Switching Between Timer0 and WDT	4, 15,	27 66 35
PORTB Register1 Power-down Mode (SLEEP) Prescaler, Switching Between Timer0 and WDT PRO MATE [®] II Universal Programmer	4, 15,	27 66 35 85
PORTB Register1 Power-down Mode (SLEEP) Prescaler, Switching Between Timer0 and WDT PRO MATE [®] II Universal Programmer Program Branches	4, 15,	27 66 35 85
PORTB Register	4, 15,	27 66 35 85 7
PORTB Register	4, 15,	27 66 35 85 7
PORTB Register	4, 15,	27 66 35 85 7 23
PORTB Register	4, 15,	27 66 35 85 7 23 11
PORTB Register	4, 15,	27 66 35 85 7 23 11
PORTB Register	4, 15,	27 66 35 85 7 23 11
PORTB Register	4, 15,	27 66 35 85 7 23 11 11
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 67
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 67 18
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 67 18 18
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 67 18 18
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 67 18 18 18
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 67 18 18 18
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 67 18 18 18 23
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 23 53
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 23 53
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 23 53
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 23 48
PORTB Register	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 23 48
PORTB Register	4, 15,	27 66 35 85 .7 23 11 11 11 11 67 8 18 18 23 53 48 19
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 .7 23 11 11 11 11 67 8 18 18 23 53 48 19 63
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 11 11 67 8 18 18 23 53 48 19 63 18
PORTB Register 1 Power-down Mode (SLEEP)	4, 15,	27 66 35 85 7 23 11 11 11 11 11 11 16 7 8 18 18 23 53 48 19 318 54
PORTB Register 1 Power-down Mode (SLEEP)	4, 15, 	27 66 35 85 7 23 11 11 11 11 67 88 18 18 23 54 96 38 54 96 38 54 54
PORTB Register 1 Power-down Mode (SLEEP)	4, 15, 	27 63 58 35 85 7 23 111 111 111 111 167 188 188 23 34 196 38 54 53 48 196 38 54 53 48 196 54 54 54 54
PORTB Register 1 Power-down Mode (SLEEP)	4, 15, 	27635 357.7 231111167 1881823 534 193184 54 30

Maps

Reset Conc	ditions	
	s for Special Registers	
		,
S		
SEEVAL [®] Evalu	ation and Programming System	
Services		
	Programmable (OTP) Devices	5
	around-Production (QTP) Device	
	Quick-Turnaround Production (SC	
SLLLF	tor (MPLAB™ SIM)	
Soliwale Sillua	s of the CPU	01
		47
Special Function		
	· · · · · · · · · · · · · · · · · · ·	
)	
	l	
	Registers, Section	
Stack		23
Overflows .		23
Underflow		23
STATUS Registe	er	17
т		
-		
T0CS bit		18
T0IE bit		19
T0IF bit		19
TAD		41
Timer0		
		57, 58
		57, 58
RTCC		57, 58
RTCC Timers Timer0		
RTCC Timers Timer0 Block	Diagram	31
RTCC Timers Timer0 Block Extern	Diagram al Clock	31
RTCC Timers Timer0 Block Extern Extern	Diagram al Clock al Clock Timing	31 33 33
RTCC Timers Timer0 Block Extern Extern Increm	Diagram al Clock al Clock Timing nent Delay	31 33 33 33
RTCC Timers Timer0 Block Extern Extern Increm Interru	Diagram al Clock al Clock Timing nent Delay ıpt	31 33 33 33 31
RTCC Timers Timer0 Block Extern Extern Increm Interru Interru	Diagram al Clock al Clock Timing nent Delay ıpt ıpt Timing	
RTCC Timers Timer0 Block Extern Extern Increm Interru Interru Presca	Diagram nal Clocknal Clock Timing nent Delay upt upt Timing aler	
RTCC Timers Timer0 Block Extern Extern Increm Interru Interru Presca Presca	Diagram al Clock al Clock Timing nent Delay upt upt Timing aler Block Diagram	
RTCC Timers Timer0 Block Extern Extern Increm Interru Interru Presca Sectio	Diagram nal Clock nal Clock Timing nent Delay upt upt Timing aler Block Diagram n	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch	Diagram nal Clocknal Clock Timing nent Delay upt Timing aler Block Diagram nning Prescaler Assignment	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch	Diagram nal Clocknal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI	Diagram al Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization	
RTCC Timers Timer0 Block Extern Extern Increm Interru Interru Presca Sectio Switch Synch TOCKI TOIF	Diagram al Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing	Diagram al Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0	Diagram al Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization I n	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0	Diagram nal Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment ronization I J Interrupt	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver	Diagram nal Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n ning Prescaler Assignment nonization I I I S rsion	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out	Diagram nal Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out f CLKOUT au	Diagram nal Clock	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out F CLKOUT an External Clo	Diagram nal Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n aler Block Diagram n n n n n n n s rsion Reset n l/O c ock Timing	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out f CLKOUT an External Cla Power-up T	Diagram nal Clock	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out f CLKOUT an External Cla Power-up T	Diagram nal Clock nal Clock Timing nent Delay upt Timing aler Block Diagram n aler Block Diagram n n n n n n n s rsion Reset n l/O c ock Timing	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out R CLKOUT at External Cla Power-up T Reset Start-up Tim	Diagram nal Clock	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out R CLKOUT at External Cla Power-up T Reset Start-up Tim	Diagram nal Clock	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out F CLKOUT an External Cla Power-up T Reset Start-up Tin Time-out Se Timer0	Diagram	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out F CLKOUT an External Cla Power-up T Reset Start-up Tin Time-out Se Timer0	Diagram	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out F CLKOUT an External Cla Power-up T Reset Start-up Tin Time-out Se Timer0	Diagram	
RTCC Timers Timer0 Block Extern Increm Interru Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out F CLKOUT au External Ck Power-up T Reset Start-up Tin Timer0 Inte Timer0 with	Diagram	
RTCC Timers Timer0 Block Extern Extern Increm Interru Presca Presca Sectio Switch Synch TOCKI TOIF . Timing TMR0 Timing Diagrams A/D Conver Brown-out f CLKOUT au External Cla Power-up T Reset Start-up Tin Time-out Sa Timer0	Diagram	

TO bit	17
TOSE bit	
TRISA Register	14, 16, 25
TRISB Register	14, 16, 27
Two's Complement	7

U

Upward Compatibility	
UV Erasable Devices	5

W

W Register	
ALU	7
Wake-up from SLEEP	66
Watchdog Timer (WDT)	47, 52, 56, 65
WDT	
Block Diagram	65
Programming Considerations	65
Timeout	57, 58
WDT Period	65
WDTE bit	
Z	
Z bit	

Zero bit7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow	10
Example 4-1:	Call of a Subroutine in Page 1 from	
	Page 0	24
Example 4-2:	Indirect Addressing	24
Example 5-1:	Initializing PORTA	25
Example 5-2:	Initializing PORTB	27
Example 5-3:	Read-Modify-Write Instructions	
	on an I/O Port	30
Example 6-1:	Changing Prescaler (Timer0→WDT)	35
Example 6-2:	Changing Prescaler (WDT→Timer0)	35
Equation 7-1:	A/D Minimum Charging Time	40
Example 7-1:	Calculating the Minimum Required	
	Aquisition Time	40
Example 7-2:	A/D Conversion	42
Example 7-3:	4-bit vs. 8-bit Conversion Times	43
Example 8-1:	Saving STATUS and W Registers	
	in RAM	64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C710 Program Memory Map	
-	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	! !
Figure 4-3.	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	
Figure 4-5:	PIC16C711 Register File Map	
Figure 4-6:	PIC16C715 Register File Map	
Figure 4-7:	Status Register (Address 03h, 83h)	
Figure 4-8:	OPTION Register (Address 81h, 181h).	
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	
Figure 4-10:	PIE1 Register (Address 8Ch)	
Figure 4-11:	PIR1 Register (Address 0Ch)	
Figure 4-12:	PCON Register (Address 8Eh),	
0	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
0	PIC16C715	22
Figure 4-14:	Loading of PC In Different Situations	
Figure 4-15:	Direct/Indirect Addressing	
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	28
Figure 5-6:	Successive I/O Operation	30
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	32
Figure 6-4:	Timer0 Interrupt Timing	32
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

Figure 7-3:	ADCON1 Register, PIC16C710/71/711 (Address 88h),
	PIC16C715 (Address 9Fh)
Figure 7-4:	A/D Block Diagram
Figure 7-5:	Analog Input Model 40
Figure 7-6:	A/D Transfer Function
Figure 7-7:	Flowchart of A/D Operation
Figure 8-1:	Configuration Word for PIC16C71
Figure 8-2:	Configuration Word, PIC16C710/711 48
Figure 8-3:	Configuration Word, PIC16C715
Figure 8-4:	Crystal/Ceramic Resonator Operation
riguie 0 4.	(HS, XT or LP OSC Configuration)
Figure 8-5:	External Clock Input Operation
rigure 0-0.	(HS, XT or LP OSC Configuration)
Figuro 8 6	External Parallel Resonant Crystal
Figure 8-6:	Oscillator Circuit
Figure 8-7:	External Series Resonant Crystal Oscillator Circuit
Figure 8-8:	RC Oscillator Mode
Figure 8-9:	Simplified Block Diagram of On-chip
-	Reset Circuit
Figure 8-10:	Brown-out Situations
Figure 8-11:	Time-out Sequence on Power-up
	(MCLR not Tied to VDD): Case 159
Figure 8-12:	Time-out Sequence on Power-up
	(MCLR Not Tied To VDD): Case 259
Figure 8-13:	Time-out Sequence on Power-up
	(MCLR Tied to VDD)59
Figure 8-14:	External Power-on Reset Circuit
	(for Slow VDD Power-up)60
Figure 8-15:	External Brown-out Protection Circuit 1 60
Figure 8-16:	External Brown-out Protection Circuit 2 60
Figure 8-17:	Interrupt Logic, PIC16C710, 71, 71162
Figure 8-18:	Interrupt Logic, PIC16C71562
Figure 8-19:	INT Pin Interrupt Timing63
Figure 8-20:	Watchdog Timer Block Diagram
Figure 8-21:	Summary of Watchdog Timer Registers 65
Figure 8-22:	Wake-up from Sleep Through Interrupt 67
Figure 8-23:	Typical In-Circuit Serial Programming
C	Connection
Figure 9-1:	General Format for Instructions
Figure 11-1:	Load Conditions
Figure 11-2:	External Clock Timing95
Figure 11-3:	CLKOUT and I/O Timing
Figure 11-4:	Reset, Watchdog Timer, Oscillator
. igure i i ii	Start-up Timer and Power-up Timer
	Timing
Figure 11-5:	Brown-out Reset Timing
Figure 11-6:	Timer0 External Clock Timings
Figure 11-7:	A/D Conversion Timing
Figure 12-1:	Typical IPD vs. VDD
rigule 12-1.	(WDT Disabled, RC Mode)
Figure 12 2	
Figure 12-2:	Maximum IPD vs. VDD
Eigene 40.0	(WDT Disabled, RC Mode) 101
Figure 12-3:	Typical IPD vs. VDD @ 25°C
F '	(WDT Enabled, RC Mode) 102
Figure 12-4:	Maximum IPD vs. VDD
	(WDT Enabled, RC Mode) 102
Figure 12-5:	Typical RC Oscillator Frequency
	vs. VDD
Figure 12-6:	Typical RC Oscillator Frequency
	vs. VDD102
Figure 12-7:	Typical RC Oscillator Frequency
	vs. VDD102
Figure 12-8:	Typical IPD vs. VDD Brown-out Detect
	Enabled (RC Mode) 103

Figure 12-9:	Maximum IPD vs. VDD Brown-out Detect
	Enabled (85°C to -40°C, RC Mode) 103
Figure 12-10:	Typical IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
E '	RC Mode) 103
Figure 12-11:	Maximum IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
F ilmen 10 10	85°C to -40°C, RC Mode) 103
Figure 12-12:	Typical IDD vs. Frequency
E '	(RC Mode @ 22 pF, 25°C) 104
Figure 12-13:	Maximum IDD vs. Frequency
E '	(RC Mode @ 22 pF, -40°C to 85°C) 104
Figure 12-14:	Typical IDD vs. Frequency
Figure 10 1E	(RC Mode @ 100 pF, 25°C) 105
Figure 12-15:	Maximum IDD vs. Frequency
	(RC Mode @ 100 pF, -40°C to 85°C) 105
Figure 12-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 12 17	
Figure 12-17:	Maximum IDD vs. Frequency
Figure 10 10	(RC Mode @ 300 pF, -40°C to 85°C) 106
Figure 12-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)
Eigure 12 10	
Figure 12-19:	Transconductance(gm) of HS Oscillator vs. VDD
Figure 12-20:	Transconductance(gm) of
Figure 12-20.	LP Oscillator vs. VDD 107
Figure 12-21:	Transconductance(gm) of
1 igule 12-21.	XT Oscillator vs. VDD 107
Figure 12-22:	Typical XTAL Startup Time vs.
1 igule 12-22.	VDD (LP Mode, 25°C) 108
Figure 12-23:	Typical XTAL Startup Time vs.
1 iguic 12-20.	VDD (HS Mode, 25°C)
Figure 12-24:	Typical XTAL Startup Time vs.
1 igure 12 24.	VDD (XT Mode, 25°C)
Figure 12-25:	Typical IDD vs. Frequency
1 igure 12 20.	(LP Mode, 25°C) 109
Figure 12-26:	Maximum IDD vs. Frequency
	(LP Mode, 85°C to -40°C)
Figure 12-27:	Typical IDD vs. Frequency
0	(XT Mode, 25°C) 109
Figure 12-28:	Maximum IDD vs. Frequency
0	(XT Mode, -40°C to 85°C) 109
Figure 12-29:	Typical IDD vs. Frequency
-	(HS Mode, 25°C) 110
Figure 12-30:	Maximum IDD vs. Frequency
	(HS Mode, -40°C to 85°C) 110
Figure 13-1:	Load Conditions 117
Figure 13-2:	External Clock Timing 118
Figure 13-3:	CLKOUT and I/O Timing 119
Figure 13-4:	Reset, Watchdog Timer, Oscillator
	Start-Up Timer, and Power-Up Timer
	Timing 120
Figure 13-5:	Brown-out Reset Timing 120
Figure 13-6:	Timer0 Clock Timings 121
Figure 13-7:	A/D Conversion Timing 124
Figure 14-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode) 125
Figure 14-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode) 125
Figure 14-3:	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 126
Figure 14-4:	Maximum IPD vs. VDD
Figure 44.5	(WDT Enabled, RC Mode) 126
Figure 14-5:	Typical RC Oscillator Frequency vs.
	VDD 126

Figure 14-6:	Typical RC Oscillator Frequency vs.
Figure 14-7:	VDD126 Typical RC Oscillator Frequency vs.
Figure 14-8:	VDD126 Typical IPD vs. VDD Brown-out Detect
Figure 14-9:	Enabled (RC Mode)127 Maximum IPD vs. VDD Brown-out Detect
Figure 14-9.	Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	RC0/RC1 = 33 pF/33 pF, RC Mode) 127 Maximum IPD vs. Timer1 Enabled
0	(32 kHz, RC0/RC1 = 33 pF/33 pF, 85°C to -40°C, RC Mode)127
Figure 14-12:	Typical IDD vs. Frequency
Figure 14-13:	(RC Mode @ 22 pF, 25°C)128 Maximum IDD vs. Frequency
Figure 14-14:	(RC Mode @ 22 pF, -40°C to 85°C) 128 Typical IDD vs. Frequency
Figure 14-15:	(RC Mode @ 100 pF, 25°C)129 Maximum IDD vs. Frequency
-	(RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)130
Figure 14-17:	Maximum IDD vs. Frequency
Figure 14-18:	(RC Mode @ 300 pF, -40°C to 85°C) 130 Typical IDD vs. Capacitance @ 500 kHz
-	(RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of
Figure 14-22:	XT Oscillator vs. VDD131 Typical XTAL Startup Time vs.
Figure 14-23:	VDD (LP Mode, 25°C)132 Typical XTAL Startup Time vs.
Figure 14-24:	VDD (HS Mode, 25°C)132 Typical XTAL Startup Time vs.
Figure 14-24.	VDD (XT Mode, 25°C) 132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency
Figure 14-27:	(LP Mode, 85°C to -40°C)133 Typical IDD vs. Frequency
Eiguro 14 29	(XT Mode, 25°C)133 Maximum IDD vs. Frequency
Figure 14-28:	(XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency
Figure 15-1:	(HS Mode, -40°C to 85°C)134 Load Conditions140
Figure 15-2:	External Clock Timing
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator
riguie 10 4.	Start-up Timer and Power-up Timer
	Timing
Figure 15-5:	Timer0 External Clock Timings144
Figure 15-6:	A/D Conversion Timing146
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature147 Typical RC Oscillator Frequency vs.
J	Vdd147
Figure 16-3:	Typical RC Oscillator Frequency vs. VDD147

Figure 16-4:	Typical RC Oscillator Frequency vs.
Figure 16-5:	VDD
<u>.</u>	Disabled 25°C 148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog
-	Disabled
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled
Figure 16-9:	Vth (Input Threshold Voltage) of
F : 40.40	I/O Pins vs. VDD
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage)
	of OSC1 Input (in XT, HS, and
Figure 16-12:	LP Modes) vs. VDD
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock,
F irmer 40 44	-40° to +85°C)
Figure 16-14:	Maximum IDD vs. Freq with A/D Off (Ext Clock, -55° to +125°C)
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
Figure 16-17:	HS Oscillator vs. VDD152 Transconductance (gm) of
	LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
Figure 16-19:	XT Oscillator vs. VDD
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154

LIST OF TABLES

Table 1-1:	PIC16C71X Family of Devices	4
Table 3-1:	PIC16C710/71/711/715 Pinout Description	9
Table 4-1:	PIC16C710/71/711 Special Function	
T 1 1 1 0	Register Summary	. 14
Table 4-2:	PIC16C715 Special Function Register	45
Table 5 1.	Summary	
Table 5-1: Table 5-2:	PORTA Functions Summary of Registers Associated with	. 20
Table 5-2.	PORTA	. 26
Table 5-3:	PORTB Functions	. 28
Table 5-4:	Summary of Registers Associated with	
T 1 1 0 4	PORTB	
Table 6-1: Table 7-1:	Registers Associated with Timer0	. 35
Table 7-1:	TAD vs. Device Operating Frequencies, PIC16C71	11
Table 7-2:	TAD vs. Device Operating Frequencies,	. 41
Table 7-2.	PIC16C710/711, PIC16C715	. 41
Table 7-3:	Registers/Bits Associated with A/D,	
	PIC16C710/71/711	. 46
Table 7-4:	Registers/Bits Associated with A/D,	
	PIC16C715	
Table 8-1:	Ceramic Resonators, PIC16C71	. 49
Table 8-2:	Capacitor Selection For Crystal	40
Table 0.2	Oscillator, PIC16C71	. 49
Table 8-3:	Ceramic Resonators, PIC16C710/711/715	50
Table 8-4:	Capacitor Selection for Crystal	. 00
	Oscillator, PIC16C710/711/715	50
Table 8-5:	Time-out in Various Situations,	
	PIC16C71	. 54
Table 8-6:	Time-out in Various Situations,	
	PIC16C710/711/715	. 54
Table 8-7:	Status Bits and Their Significance, PIC16C71	55
Table 8-8:	Status Bits and Their Significance,	. 00
	PIC16C710/711	. 55
Table 8-9:	Status Bits and Their Significance,	
	PIC16C715	. 55
Table 8-10:	Reset Condition for Special Registers,	
	PIC16C710/71/711	. 56
Table 8-11:	Reset Condition for Special Registers,	
T 1 1 0 40	PIC16C715	
Table 8-12:	Initialization Conditions For All Registers, PIC16C710/71/711	
Table 8-13:	Initialization Conditions for All Registers,	. 01
	PIC16C715	.58
Table 9-1:	Opcode Field Descriptions	
Table 9-2:	PIC16CXX Instruction Set	
Table 10-1:	Development Tools From Microchip	. 88
Table 11-1:	Cross Reference of Device Specs for	
	Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices)	
Table 11-2:	External Clock Timing Requirements	
Table 11-3:	CLKOUT and I/O Timing Requirements	. 96
Table 11-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer, Power-up Timer,	07
Table 11-5:	and Brown-out Reset Requirements Timer0 External Clock Requirements	
	The second cook requirements	

Table 11-6:	A/D Converter Characteristics: PIC16C710/711-04	
	(Commercial, Industrial, Extended) PIC16C710/711-10	
	(Commercial, Industrial, Extended) PIC16C710/711-20	
	(Commercial, Industrial, Extended) PIC16LC710/711-04	
	(Commercial, Industrial, Extended)	99
Table 11-7:	A/D Conversion Requirements	100
Table 12-1:	RC Oscillator Frequencies	107
Table 12-2:	Capacitor Selection for Crystal	
	Oscillators	108
Table 13-1:	Cross Reference of Device Specs for	
	Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices)	112
Table 13-2:	Clock Timing Requirements	
Table 13-3:	CLKOUT and I/O Timing Requirements.	119
Table 13-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer, Power-up Timer,	
	and Brown-out Reset Requirements	120
Table 13-5:	Timer0 Clock Requirements	121
Table 13-6:	A/D Converter Characteristics:	
	PIC16C715-04	
	(Commercial, Industrial, Extended) PIC16C715-10	
	(Commercial, Industrial, Extended) PIC16C715-20	
	(Commercial, Industrial, Extended)	122
Table 13-7:	A/D Converter Characteristics:	
	PIC16LC715-04 (Commercial,	
	Industrial)	123
Table 13-8:	A/D Conversion Requirements	
Table 14-1:	RC Oscillator Frequencies	
Table 14-2:	Capacitor Selection for Crystal	
	Oscillators	132
Table 15-1:	Cross Reference of Device Specs	
	for Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices)	135
Table 15-2:	External Clock Timing Requirements	
Table 15-3:	CLKOUT and I/O Timing Requirements.	
Table 15-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
	Requirements	143
Table 15-5:	Timer0 External Clock Requirements	
Table 15-6:	A/D Converter Characteristics	
Table 15-7:	A/D Conversion Requirements	
Table 16-1:	RC Oscillator Frequencies	

NOTES:

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe $^{\ensuremath{\mathbb{B}}}$ communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

- 1-800-755-2345 for U.S. and most of Canada, and
- 1-602-786-7302 for the rest of the world.

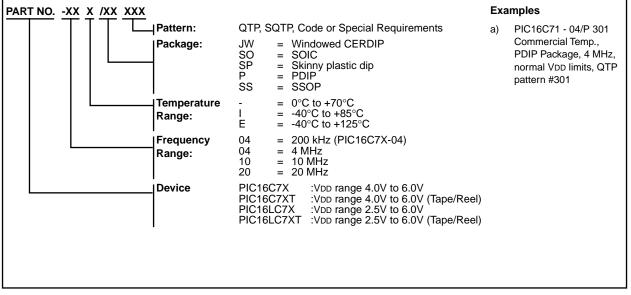
970301

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzyLAB*, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
From	n: Name		
	Company		
	City / State / ZIP / Country		
		FAX: ()	
Арр	lication (optional):		
Wou	Ild you like a reply?YN		
Dev	ice: PIC16C71X Litera	ature Number: DS30272A	
Que	stions:		
1.	What are the best features of this docu	iment?	
2.	How does this document meet your ha	rdware and software development needs?	
-			
3.	3. Do you find the organization of this data sheet easy to follow? If not, why?		
4.	What additions to the data sheet do yo	ou think would enhance the structure and subject?	
5.	What deletions from the data sheet co	uld be made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading inf	ormation (what and where)?	
7.	How would you improve this document	?	
8.	How would you improve our software,	systems, and silicon products?	

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office (see below)
 The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

NOTES:

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 Beijing Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104 India Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062 Japan Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor

Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Shanghai

Microchip Technology

RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan, R.O.C Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835 Denmark Microchip Technology Denmark ApS

Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELOQ[®] code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99 🦃 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. In the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.