General Description

The 100336 operates as either a modulo－16 up／down counter or as a 4－bit bidirectional shift register．Three Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs determine the mode of operation，as shown in the Function Select table．Two Count Enable（ $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ ）inputs are provided for ease of cascading in multistage counters． One Count Enable（ $\overline{\mathrm{CET}}$ ）input also doubles as a Serial Data $\left(D_{0}\right)$ input for shift－up operation．For shift－down operation，D_{3} is the Serial Data input．In counting operations the Terminal Count（ $\overline{\mathrm{TC}}$ ）output goes LOW when the counter reaches 15 in the count／up mode or 0 （zero）in the count／down mode．In the shift modes，the $\overline{T C}$ output repeats the Q_{3} output．The dual nature of this $\overline{\mathrm{TC}} / \mathrm{Q}_{3}$ output and the $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift－up operation．The individual Preset $\left(P_{n}\right)$ inputs are used
to enter data in parallel or to preset the counter in program－ mable counter applications．A HIGH signal on the Master Re－ set（MR）input overrides all other inputs and asynchronously clears the flip－flops．In addition，a synchronous clear is pro－ vided，as well as a complement function which synchro－ nously inverts the contents of the flip－flops．All inputs have 50 $k \Omega$ pull－down resistors．

Features

－ 40% power reduction of the 100136
－2000V ESD protection
－Pin／function compatible with 100136
－Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
－Standard Microcircuit Drawing （SMD）5962－9230601

Logic Symbol

Pin Names	Description
CP	Clock Pulse Input
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input（Active LOW）
$\mathrm{D}_{0} / \overline{\mathrm{CET}}$	Serial Data Input／Count Enable
	Trickle Input（Active LOW）
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs
MR	Master Reset Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Preset Inputs
D_{3}	Serial Data Input
$\overline{\mathrm{TC}}$	Terminal Count Output
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{3}$	Complementary Data Outputs

Connection Diagrams

\[

\]

Logic Diagram

Function Select Table

$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Function
L	L	L	Parallel Load
L	L	H	Complement
L	H	L	Shift Left
L	H	H	Shift Right
H	L	L	Count Down
H	L	H	Clear
H	H	L	Count Up
H	H	H	Hold

Truth Table

$\mathrm{Q}_{0}=$ LSB													
Inputs								Outputs					
MR	S_{2}	S_{1}	S_{0}	$\overline{\text { CEP }}$	$\mathrm{D}_{0} / \overline{\text { CET }}$	D_{3}	CP	Q_{3}	Q_{2}	Q_{1}	Q_{0}	$\overline{\text { TC }}$	Mode
L	L	L	L	X	X	X	-	P_{3}	P_{2}	P_{1}	P_{0}	L	Preset (Parallel Load)
L	L	L	H	X	X	X	\cdots	$\overline{\mathrm{Q}}_{3}$	$\overline{\mathrm{Q}}_{2}$	$\overline{\mathrm{Q}}_{1}$	$\overline{\mathrm{Q}}_{0}$	L	Invert
L	L	H	L	X	X	X	\cdots	D_{3}	Q_{3}	Q_{2}	Q_{1}	D_{3}	Shift to LSB
L	L	H	H	X	X	X	\sim	Q_{2}	Q_{1}	Q_{0}	D_{0}	Q_{3} (Note 1)	Shift to MSB
L	H	L	L	L	L	X	\checkmark		Q_{0-3}	minus	1	1	Count Down
L	H	L	L	H	L	x	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	1	Count Down with $\overline{\mathrm{CEP}}$ not active
L	H	L	L	x	H	x	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Count Down with $\overline{\mathrm{CET}}$ not active
L	H	L	H	X	X	X	\cdots	L	L	L	L	H	Clear
L	H	H	L	L	L	X	\checkmark		Q_{0-3}	plus 1		2	Count Up
L	H	H	L	H	L	x	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	2	Count Up with $\overline{\mathrm{CEP}}$ not active
L	H	H	L	x	H	x	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Count Up with $\overline{\text { CET }}$ not active
L	H	H	H	X	X	X	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Hold
H	L	L	L	X	X	X	X	L	L	L	L	L	
H	L	L	H	x	x	x	x	L	L	L	L	L	
H	L	H	L	x	x	x	x	L	L	L	L	L	
H	L	H	H	x	x	x	x	L	L	L	L	L	Asynchronous
H	H	L	L	x	L	x	x	L	L	L	L	L	Master Reset
H	H	L	L	x	H	x	x	L	L	L	L	H	
H	H	L	H	x	x	x	x	L	L	L	L	H	
H	H	H	L	x	x	x	x	L	L	L	L	H	
H	H	H	H	x	x	x	x	L	L	L	L	H	

$1=L$ if $Q_{0}-Q_{3}=L L L L$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{LLLL}$
$2=\mathrm{L}$ if $\mathrm{Q}_{0}-\mathrm{Q}_{3}=\mathrm{HHHH}$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{HHHH}$
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{L}=$ LOW Voltage
$\mathrm{X}=$ Don't Care
$\jmath=$ LOW-to-HIGH Transition
Note 1: Before the clock, $\overline{T C}$ is Q_{3}
After the clock, $\overline{T C}$ is Q_{2}

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+175^{\circ} \mathrm{C}$
\quad Ceramic	-7.0 V to +0.5 V
V $_{\text {EE }}$ Pin Potential to Ground Pin	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Input Voltage (DC)	-50 mA
Output Current (DC Output HIGH)	$\geq 2000 \mathrm{~V}$
ESD (Note 3)	

Recommended Operating Conditions

Case Temperature (T_{C}

Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 2: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics
$V_{\text {EE }}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V	(Notes 4, 5, 6)	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V	(Notes 4, 5, 6)	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & \hline-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed HIGH Signal for All Inputs		(Notes 4, 5, 6, 7)	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & \hline-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		(Notes 4, 5, 6, 7)	
$\mathrm{I}_{\text {L }}$	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$		(Notes 4, 5, 6)	
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \end{aligned}$		(Notes 4, 5, 6)	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	$\begin{aligned} & -185 \\ & -195 \end{aligned}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Inputs Open $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } \end{aligned}$	$\begin{aligned} & -4.8 \mathrm{~V} \\ & -5.7 \mathrm{~V} \end{aligned}$	(Notes 4, 5, 6)	

Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stablize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 5: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 6: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 7: Guaranteed by applying specified input conditon and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version

 AC Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {shift }}$	Shift Frequency	325		325		325		MHz	Figures 2, 3	(Note 11)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.40	2.30	0.50	2.20	0.40	2.50	ns	Figures 1, 3	(Notes 8, 9, 10, 12)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Shift)	1.30	3.90	1.70	3.80	1.70	4.20	ns	Figures 1, 7, 8	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Count)	1.20	4.60	1.50	4.60	1.60	5.20	ns	Figures 1, 9	(Notes 8, 9, 10, 12)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	0.60	2.90	0.80	2.80	0.90	3.20	ns	Figures 1, 4	(Notes 8, 9, 10, 12)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to $\overline{T C}$ (Count)	2.30	5.20	2.70	5.20	2.90	5.90	ns	Figures 1, 12	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	2.10	4.30	2.20	4.10	2.40	4.70	ns	Figures 1, 10, 11	(Notes 8, 9, 10, 12)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	0.70	3.20	1.00	3.20	1.30	4.10	ns	Figures 1, 5	(Notes 8, 9, 10, 12)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{T C}$	1.30	4.10	1.50	4.20	1.70	4.90	ns		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20\%	0.20	1.90	0.20	1.80	0.20	2.00	ns	Figures 1, 3	(Note 11)
$\mathrm{t}_{\text {s }}$	Setup Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\overline{C E P}$ S_{n} MR (Release Time)	$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		ns	Figure 6	(Note 11)
t_{n}	$\begin{aligned} & \text { Hold Time } \\ & D_{3} \\ & P_{n} \\ & D_{0} / \overline{C E T} \\ & \overline{C E P} \\ & S_{n} \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \end{aligned}$		ns	Figure 6	(Note 11)
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH: CP MR	$\begin{aligned} & \hline 1.60 \\ & 2.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.60 \\ & 2.00 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.60 \\ & 2.00 \\ & \hline \end{aligned}$		ns	Figures 3, 4	(Note 11)

Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold tempertures.
Note 9: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroups A9.
Note 10: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroups A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11. Note 11: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 12: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Test Circuitry

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak;
for DIP see logic symbol
FIGURE 1. AC Test Circuit

Test Circuitry (Continued)

Notes:
For shift right mode, +1.05 V is applied at S_{0}.
The feedback path from output to input should be as short as possible.
FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

Switching Waveforms (Continued)

FIGURE 5. Propagation Delay (Serial Data, Selects)

Switching Waveforms (Continued)

Notes:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input

FIGURE 6. Setup and Hold Time

Note: Shift Right Mode; $\mathrm{S}_{0}=\mathrm{H}, \mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{2}=\mathrm{L}$.
FIGURE 7. Propagation Delay, Clock to Terminal Count (Shift Right Mode)

Note: Shift Left Mode; $S_{0}=L, S_{1}=H, S_{2}=L$.
FIGURE 8. Propagation Delay, Clock to Terminal Count (Shift Left Mode)

Switching Waveforms (Continued)

Note:
*Decimal representation of binary outputs.
Count Up: $S_{0}=L, S_{1}=H, S_{2}=H$; Count Down: $S_{0}=L, S_{1}=L, S_{2}=H$.
Measurement taken at 50% point of waveform.
FIGURE 9. Propagation Delay, Clock to Terminal Count (Count Up and Count Down Modes)

Note: Shift Right Mode; $\mathrm{S}_{0}=\mathrm{H}, \mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{2}=\mathrm{L}$.
FIGURE 10. Propagation Delay, Master Reset to Terminal Count (Shift Right Mode)

Note: Shift Left Mode; $S_{0}=L, S_{1}=H, S_{2}=L$.
FIGURE 11. Propagation Delay, Master Reset to Terminal Count (Shift Left Mode)

Switching Waveforms (Continued)

Note:
*Decimal representation of binary outputs. Count Up Mode: $S_{0}=L, S_{1}=H, S_{2}=H$.

Note:
*Decimal representation of binary outputs. Count Down Mode: $\mathrm{S}_{0}=\mathrm{L}, \mathrm{S}_{1}=\mathrm{L}, \mathrm{S}_{2}=\mathrm{H}$.
FIGURE 12. Propagation Delay, Master Reset to Terminal Count (Count Up and Count Down Modes)

Applications

3-Stage Divider, Preset Count Down Mode

Note: If $\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=$ LOW, then $\mathrm{T}_{\mathrm{C}}=$ LOW

Physical Dimensions inches (millimeters) unless otherwise noted

W24B (REV D)
24-Lead Quad Cerpak (F)
NS Package Number W24B
Life SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Corporation Americas	Europe $\text { Fax: +49 (0) } 1 \text { 80-530 } 8586$	Asia Pacific Customer Response Group	Japan Ltd. Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

