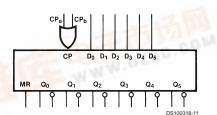
查询100351供应商


National Semiconductor

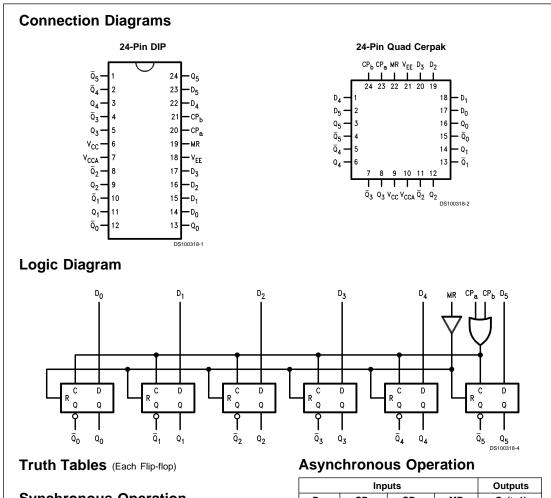
100351 Low Power Hex D Flip-Flop

General Description

The 100351 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 kΩ pull-down resistors.

Logic Symbol

Features


- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9457901

Pin Names	Description						
D ₀ -D ₅	Data Inputs						
$D_0 - D_5$ CP_a, CP_b	Common Clock Inputs						
MR	Asynchronous Master Reset Input						
Q ₀ -Q ₅	Data Outputs						
$\overline{Q}_0 - \overline{Q}_5$	Complementary Data Outputs						

00351 Low Power Hex D Flip-Flop

August 1998

Synchronous Operation

	Inputs							
D _n	CPa	СРь	Q _n (t+1)					
L	~	L	L	L				
н	~	L	L	н				
L	L	~	L	L				
н	L	~	L	н				
Х	Н	~	L	Q _n (t)				
X	~	н	L	Q _n (t)				
х	L	L	L	Q _n (t)				

	Outputs			
Dn	CPa	СРь	MR	Q _n (t+1)
Х	Х	Х	н	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care t = Time before CP positive transition

t+1 = Time after CP positive transition \checkmark = LOW-to-HIGH transition

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired

Storage Temperature (T _{STG})	-65°C to +150°C
Maximum Junction Temperature (T_J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA

ESD (Note 2)

Recommended Operating Conditions

Case Temperature (T_C) Military

-55°C to +125°C

≥2000V

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

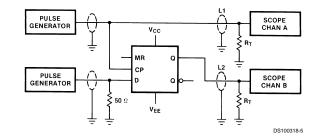
Symbol	Parameter	Min	Max	Units	T _C Conditions	ions	Notes	
V _{он}	Output HIGH Voltage	-1025	-870	mV	0°C to	$V_{IN} = V_{IH}$ (Max)	Loading with	(Notes 3, 4, 5)
					+125°C	or V _{IL} (Min)	50Ω to -2.0V	
		-1085	-870	mV	–55°C			
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to			
					+125°C			
		-1830	-1555	mV	–55°C			
V _{онс}	Output HIGH Voltage	-1035		mV	0°C to	$V_{IN} = V_{IH}$ (Min)	Loading with	(Notes 3, 4, 5
					+125°C	or V _{IL} (Max)	50Ω to -2.0V	
		-1085		mV	–55°C			
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to			
					+125°C			
			-1555	mV	–55°C			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH Signal		(Notes 3, 4, 5,
					+125°C	for All Inputs		
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal		(Notes 3, 4, 5,
					+125°C	for All Inputs		
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current					$V_{EE} = -5.7V$		(Notes 3, 4, 5)
	CP, MR		350	μA	0°C to	$V_{IN} = V_{IH}$ (Max)		
	D ₀ -D ₅		240		+125°C			
	CP, MR		500	μA	–55°C			
	D ₀ -D ₅		340					
I _{EE}	Power Supply Current	-135	-50	mA	–55°C to	Inputs Open		(Notes 3, 4, 5)
					+125°C			

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

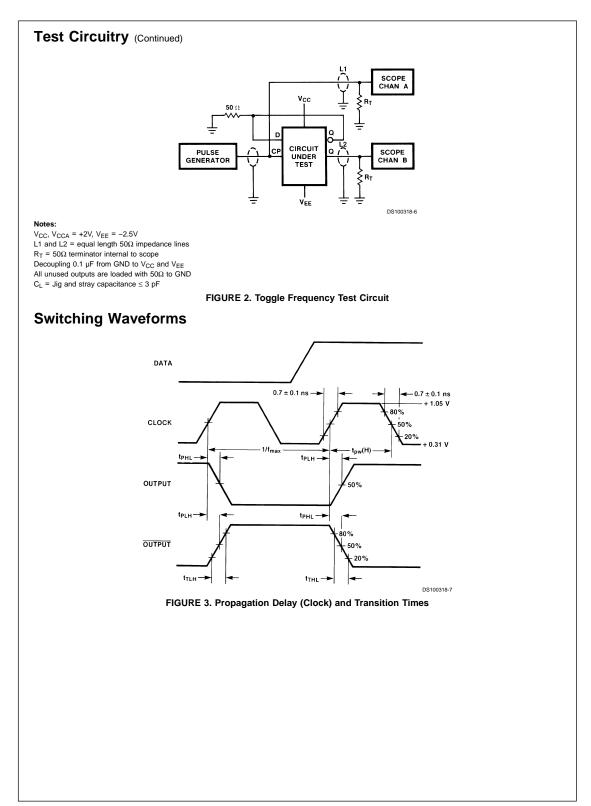

Symbol	Parameter	T _c = -55°C		T _C = +25°C		T _c = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2, 3	(Note 10)
t _{PLH}	Propagation Delay	0.40	2.40	0.50	2.20	0.50	2.60	ns	Figures 1, 3	
t _{PHL}	CP _a , CP _b to Output									(Notes 7, 8, 9)
t _{PLH}	Propagation Delay	0.60	2.70	0.70	2.60	0.80	2.90	ns	Figures 1, 4	
t _{PHL}	MR to Output									
t _{TLH}	Transition Time	0.20	1.60	0.20	1.60	0.20	1.60	ns	Figures 1, 3	(Note 10)
t _{THL}	20% to 80%, 80% to 20%									
t _s	Setup Time									
	D ₀ -D ₅	0.90		0.80		0.90		ns	Figure 5	
	MR (Release Time)	1.60		1.80		2.60			Figure 4	
t _h	Hold Time	1.50		1.40		1.60		ns	Figure 5	
	D ₀ -D ₅									
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4	
	CP _a , CP _b , MR									

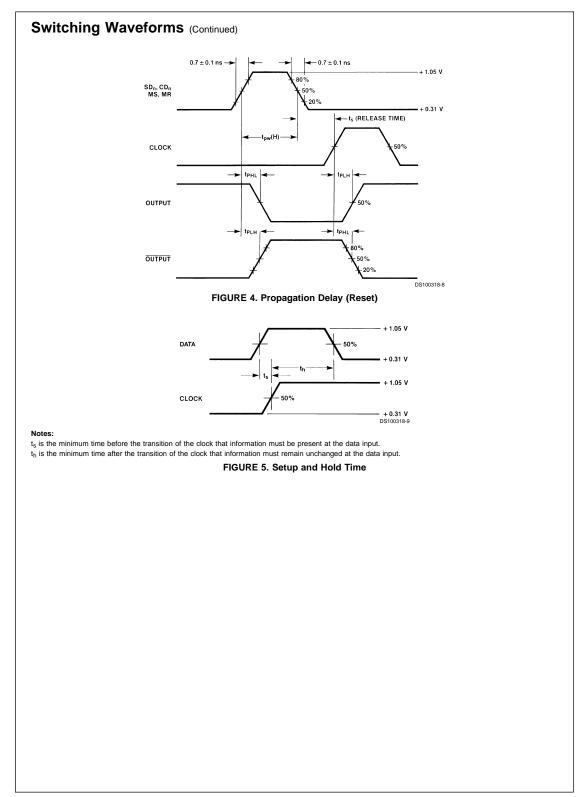
Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C, Temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each Mfg. lot at +25°C, Subgroup A9, and at +125°C, and -55°C Temperature, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C and -55°C Temperature (design characterization data).

Test Circuitry




Notes:

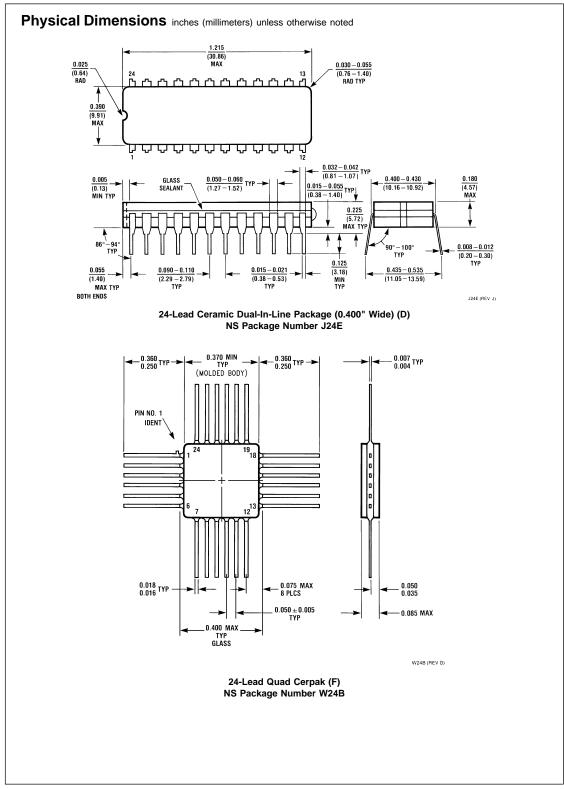

 $\label{eq:linear} \begin{array}{l} \text{Nute:}\\ \text{V}_{CC}, \text{V}_{CCA} = +2\text{V}, \text{V}_{EE} = -2.5\text{V}\\ \text{L1 and L2} = \text{equal length } 50\Omega \text{ impedance lines}\\ \text{R}_{T} = 50\Omega \text{ terminator internal to scope}\\ \text{Decoupling } 0.1 \ \mu\text{F from GND to } \text{V}_{CC} \text{ and } \text{V}_{EE}\\ \text{All unused outputs are loaded with } 50\Omega \text{ to GND}\\ \text{C}_{L} = \text{Fixture and stray capacitance} \leq 3 \ \text{pF} \end{array}$

FIGURE 1. AC Test Circuit

4

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tei: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 98 32 Francis Tel: +49 (0) 1 80-532 93 58	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
www.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.