

FAIRCHILD

SEMICONDUCTOR

100353 Low Power 8-Bit Register

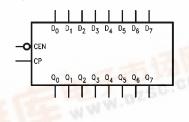
General Description

The 100353 contains eight D-type edge triggered, master/ slave flip-flops with individual inputs (D_n) , true outputs (Q_n) , a clock input (CP), and a common clock enable pin (CEN). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive 50Ω termination to -2.0V. All inputs have 50 k Ω pull-down resistors.

July 1988 Revised August 2000

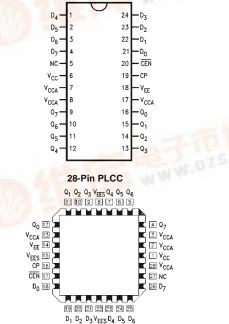
00353 Low Power 8-Bit Register

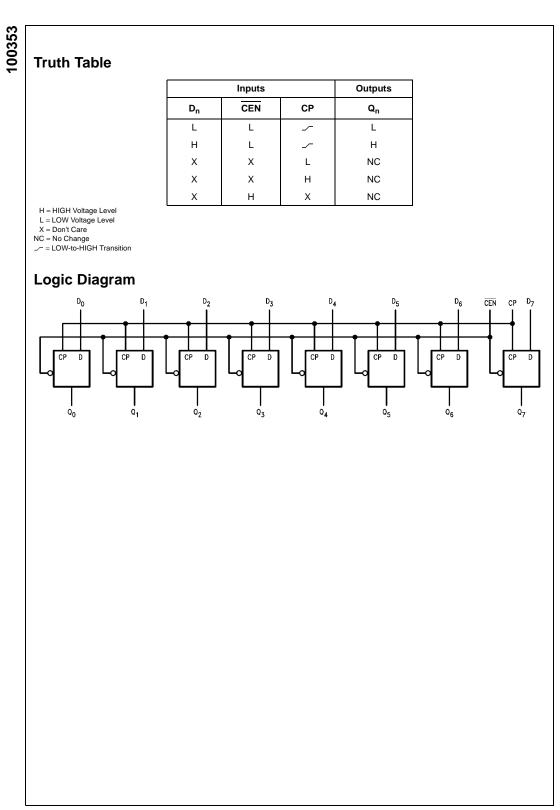

Features

- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100353PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100353QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100353QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)


Logic Symbol


Connection Diagrams

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
CEN	Clock Enable Input
СР	Clock Input (Active Rising Edge)
Q ₀ –Q ₇	Data Outputs
NC	No Connect

24-Pin DIP

Absolute Maximum Ratings(Note 1)

-65°C to +150°C +150°C -7.0V to +0.5V V_{EE} to + 0.5V -50 mA ≥2000V

Recommended Operating Conditions

Case Temperature (T_C)	
Commercial	

Industrial

Supply Voltage (V_{EE})

0°C to +85°C -40°C to +85°C -5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH}$ (Max)	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50 Ω to –2.0V		
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH}$ (Min)	Loading with		
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$		
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs			
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs			
IIL	Input LOW Current	0.50			μA	$V_{IN} = V_{IL}$ (Min)			
I _{IH}	Input HIGH Current			240	μA	$V_{IN} = V_{IH}$ (Max)			
I _{EE}	Power Supply Current					Inputs OPEN			
		-119		-61	mA	$V_{\text{EE}} = -4.2 \text{V}$ to -4.8V			
		-122		-61		$V_{EE} = -4.2V$ to $-5.7V$			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	+25°C	$T_C = +85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	onita	Conditions
f _{MAX}	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 2 (Note 4)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2
t _S	Setup Time								
	D _n CEN (Disable Time) CEN (Release Time)	1.10 0.40 1.10		1.10 0.40 1.10		1.10 0.40 1.10		ns	Figures 1, 3
t _H	Hold Time D _n	0.10		0.10		0.10		ns	Figures 1, 4
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

100353

PLCC AC Electrical Characteristics

Symbol	Parameter	T _C =	= 0°C	T _C = -	+ 25°C	$T_C = +85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH}	Propagation Delay	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2
t _{PHL}	CP to Output	1.40	2.00	1.40	2.00	1.50	2.90	115	(Note 5)
t _{TLH}	Transition Time	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.43	1.50	0.45	1.50	0.45	1.90	115	Tigures 1, 2
t _S	Setup Time								
	D _n	1.00		1.00		1.00			
	CEN (Disable Time)	0.30		0.30		0.30		ns	Figures 1, 3
	CEN (Release Time)	1.00		1.00		1.00			
t _H	Hold Time D _n	0		0		0		ns	Figures 1, 4
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 6)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 6)
	Data to Output Path								
t _{ost}	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		260		260		260	ps	(Note 6)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		280		280		280	ps	(Note 6)
	Data to Output Path								

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

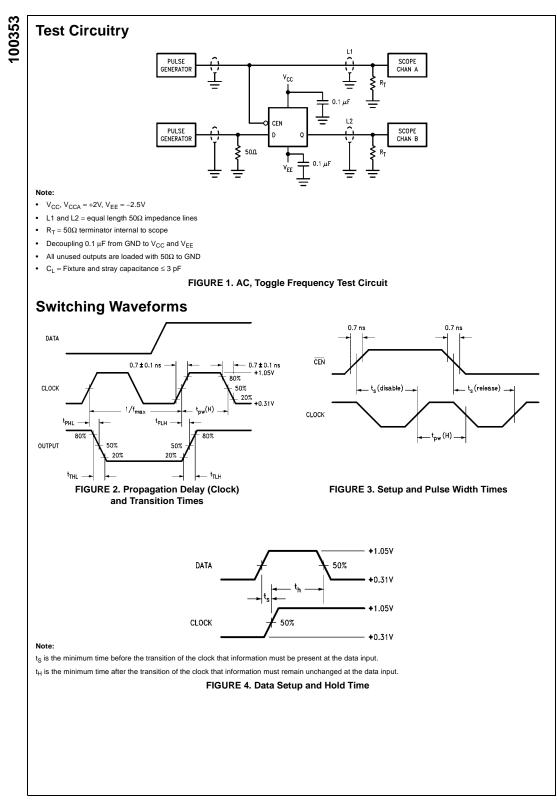
Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

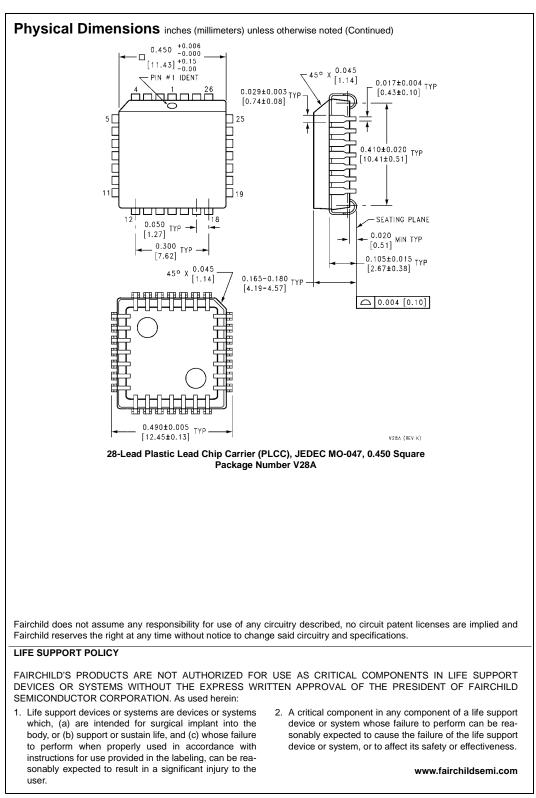
PLCC DC Electrical Characteristics

 v_{EE} = –4.2V to –5.7V, V_{CC} = V_{CCA} = GND, T_C = –40°C to +85°C (Note 7)

Symbol	Parameter	T _C = -	–40°C	$T_{C} = 0^{\circ}C$	to +85°C	Units	Conditions		
Symbol		Min	Max	Min	Max	Units			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50 Ω to –2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min) Loading wit		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50 Ω to –2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Si	gnal for all Inputs	
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Sig	gnal for all Inputs	
IIL	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current		240		240	μA	$V_{IN} = V_{IH}$ (Max)		
I _{EE}	Power Supply Current						Inputs OPEN		
		-119	-61	-119	-61	mA	$V_{EE} = -4.2V$ to $-4.8V$	/	
		-122	-61	-122	-61		$V_{EE} = -4.2V$ to $-5.7V$		
Note 7: The	e specified limits represent the "worst cas	e" value for	the paramete	er. Since the	se values no	mally occu	r at the temperature ext	remes, additional	


noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics


 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = -	–40°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Cynhoor		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2 (Note 8)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t _S	Setup Time D _n CEN (Disable Time) CEN (Release Time)	0.60 0.90 1.40		1.00 0.30 1.00		1.00 0.30 1.00		ns	Figures 1, 3
t _H	Hold Time D _n	0.30		0		0		ns	Figures 1, 4
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

