

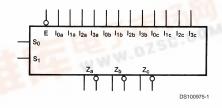
National Semiconductor

September 1998

100371

Low Power Triple 4-Input Multiplexer with Enable

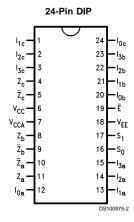
General Description

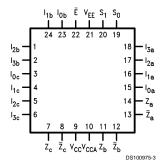

The 100371 contains three 4-input multiplexers which share a common decoder (inputs S₀ and S₁). Output buffer gates provide true and complement outputs. A HIGH on the Enable input (E) forces all true outputs LOW (see Truth Table). All inputs have 50 kΩ pull-down resistors.

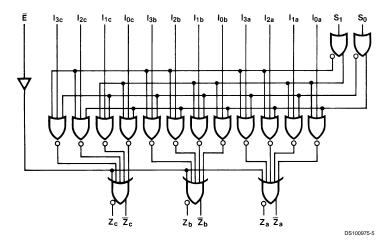
- 2000V ESD protection
- Pin/function compatible with 100171
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883

Features

■ 35% power reduction of the 100171


Logic Symbol


Pin Names	Description						
I _{0x} -I _{3x}	Data Inputs						
$I_{0x}-I_{3x}$ S_0 , S_1 \overline{E}	Select Inputs						
Ē	Enable Input (Active LOW)						
Z _a -Z _c	Data Outputs						
$Z_a - Z_c$ $\overline{Z}_a - \overline{Z}_c$	Complementary Data Outputs						


Connection Diagrams

24-Pin Quad Cerpak

Logic Diagram

www.national.com

Truth Table

	Outputs		
Ē	So	S ₁	Z _n
L	L	L	l _{ox}
L	Н	L	I _{1x}
L	L	Н	l _{2x}
L	Н	Н	l _{3x}
Н	Х	X	L

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature (T_{STG})

-65°C to +150°C

Maximum Junction Temperature (T_J)

V_{FF} Pin Potential to Ground Pin

-7.0V to +0.5V

+175°C

Input Voltage (DC)

 V_{EE} to +0.5V

Output current (DC Output HIGH) ESD (Note 2)

-50 mA

≥2000V

Recommended Operating Conditions

Case Temperature (T_C)

Military

-55°C to +125°C

-5.7V to -4.2V

Supply Voltage (V_{EE}) Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	T _C	Condit	Notes	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to			
					+125°C			
		-1085	-870	mV	−55°C	V _{IN} = V (Max)	Loading with	(Notes 3, 4
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL (Min)}	50Ω to -2.0V	5)
					+125°C			
		-1830	-1555	mV	−55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			
					+125°C			
		-1085		mV	−55°C	$V_{IN} = V_{IH} (Min)$	Loading with	(Notes 3, 4
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	50Ω to -2.0V	5)
					+125°C			
			-1555	mV	−55°C			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	−55°C to	Guaranteed HIGH	(Notes 3, 4	
					+125°C	for All Inputs	5, 6)	
V _{IL}	Input LOW Voltage	-1830	-1475	mV	−55°C to	Guaranteed LOW Signal		(Notes 3, 4,
					+125°C	for All Inputs	5, 6)	
I _{IL}	Input LOW Current	0.50		μA	−55°C to	V _{EE} = -4.2V		(Notes 3, 4
					+125°C	$V_{IN} = V_{IL} (Min)$		5)
I _{IH}	Input HIGH Current							
	$I_{0X}-I_{3X}$		340	μA	0°C to			(NI=4== 0 /
	S_0, S_1, \overline{E}		300		+125°C	V _{EE} = -5.7V		(Notes 3, 4 5)
	$I_{0X}-I_{3X}$		490	μA	−55°C	$V_{IN} = V_{IH} (Max)$		3)
	S_0, S_1, \overline{E}		450					
I _{EE}	Power Supply Current	-80	-30	mA	−55°C to	Inputs Open		(Notes 3, 4
					+125°C			5)

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissapation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL}.

Military Version AC Electrical Characteristics

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	T _C = -55°C		T _C = +25°C		T _C = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.10	1.90	0.20	1.70	0.20	2.00	ns		
t_{PHL}	I _{0x} -I _{3x} to Output									
t _{PLH}	Propagation Delay	0.40	2.70	0.60	2.40	0.50	2.90	ns		(Notes 7,
t_{PHL}	S₀, S₁to Output								Figures 1, 2	8, 9, 11)
t _{PLH}	Propagation Delay	0.50	2.70	0.60	2.40	0.50	2.90	ns		
t_{PHL}	E to Output									
t _{TLH}	Transition Time	0.20	1.60	0.30	1.50	0.20	1.60	ns		(Note 10)
t_{THL}	20% to 80%, 80% to 20%									(Note 10)

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 10: Not tested at +25°C, +125°C and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:

V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V L1 and L2 = equal length 50Ω impedance lines R_T = 50Ω terminator internal to scope

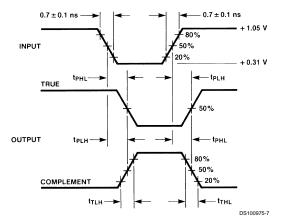
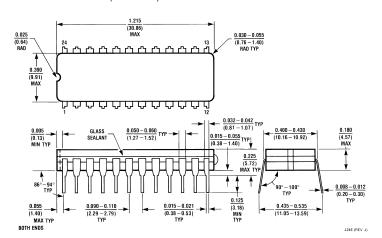
Decoupling 0.1 μF from GND to V_{CC} and V_{EE}

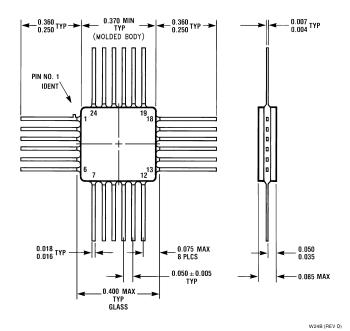
All unused outputs are loaded with 50 Ω to GND

 C_L = Fixture and stray capacitance \leq 3 pF Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circuit

Switching Waveforms


FIGURE 2. Propagation Delay and Transition Times

www.national.com

24-Lead Ceramic Dual-In-Line Package (D) Package Number J24E

24-Lead Ceramic Flatpak (F) Package Number W24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-330 50 60
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-534 16 80
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179