DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4093B gates
 Quadruple 2-input NAND Schmitt trigger

File under Integrated Circuits, IC04

PHILIPS

Quadruple 2-input NAND Schmitt trigger

DESCRIPTION

The HEF4093B consists of four Schmitt-trigger circuits. Each circuit functions as a two-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive voltage (V_{P}) and the negative voltage $\left(\mathrm{V}_{\mathrm{N}}\right)$ is defined as hysteresis voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4093BP(N): 14-lead DIL; plastic (SOT27-1)
HEF4093BD(F): 14-lead DIL; ceramic (cerdip)
(SOT73)

HEF4093BT(D): 14-lead SO; plastic (SOT108-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category GATES
See Family Specifications

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\mathbf{V}_{\mathbf{D D}}$	SYMBOL	MIN.	TYP.	MAX.	
Hysteresis	\mathbf{V}			0,4	0,7	-
voltage	10	V_{H}	0,6	1,0	-	V
	15		0,7	1,3	-	V
Switching levels	5		1,9	2,9	3,5	V
positive-going	10	$\mathrm{~V}_{\mathrm{P}}$	3,6	5,2	7	V
input voltage	15		4,7	7,3	11	V
negative-going	5		1,5	2,2	3,1	V
input voltage	10	$\mathrm{~V}_{\mathrm{N}}$	3	4,2	6,4	V
			4	6,0	10,3	V

Fig. 4 Transfer characteristic.

Quadruple 2-input NAND Schmitt trigger

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 185 \mathrm{~ns} \\ 80 \mathrm{~ns} \\ 60 \mathrm{~ns} \end{array}$	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 85 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 170 \mathrm{~ns} \\ 80 \mathrm{~ns} \\ 60 \mathrm{~ns} \end{array}$	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1300 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 6400 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 18700 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(f_{0} C_{L}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Quadruple 2-input NAND Schmitt trigger

Fig. 6 Typical drain current as a function of input voltage; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 7 Typical drain current as a function of input voltage; $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Quadruple 2-input NAND Schmitt trigger

Fig. 9 Typical switching levels as a function of supply voltage $\mathrm{V}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

APPLICATION INFORMATION

Some examples of applications for the HEF4093B are:

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators.

Fig. 10 The HEF4093B used as a astable multivibrator.

Fig. 11 Schmitt trigger driven via a high impedance ($R>1 \mathrm{k} \Omega$).

If a Schmitt trigger is driven via a high impedance $(R>1 k \Omega)$ then it is necessary to incorporate a capacitor C of such value that:

$$
\frac{C}{C_{p}}>\frac{V_{D D}-V_{S S}}{V_{H}} \text {, otherwise oscillation can occur on the edges of a pulse. }
$$

C_{p} is the external parasitic capacitance between inputs and output; the value depends on the circuit board layout.

Note

The two inputs may be connected together, but this will result in a larger through-current at the moment of switching.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.

Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

