DATA SHEET 74ALS240A/74ALS240A-1 Octal inverter buffer (3–State)

INTEGRATED CIRCUITS

Product specification IC05 Data Handbook 1991 Feb 08

74ALS240A/ 74ALS240A-1

FEATURES

- Octal bus interface
- 3-State buffer outputs sink 24mA and source 15mA
- The -1 version sinks 48 mA

DESCRIPTION

The 74ALS240A is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The outputs are all capable of sinking 24mA and sourcing up to 15mA, producing very good capacitive drive characteristics. The device features two output enables, $\overline{OE}a$ and $\overline{OE}b$, each controlling four of the 3-State outputs.

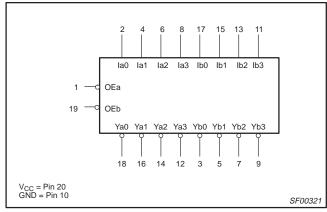
The 74ALS240A-1 sinks 48 mA I_{OL} if the V_{CC} is limited to 5.0V ± 0.25 V.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74ALS240A	4.5ns	15mA
74ALS240A-1	4.5ns	15mA

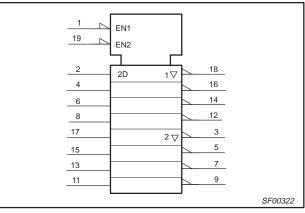
PIN CONFIGURATION

OEa 1	20 V _{CC}	
la0 2	19 OEb	
¥b0 3	18 Ya0	
la1 4	17 Ib0	
¥b1 5	16 Ya1	
la2 6	15 lb1	
Ÿb2 7	14 Ya2	
la3 8	13 lb2	
¥b3 9	12 Ya3	
GND 10	11 lb3	
	S	F00320

ORDERING INFORMATION

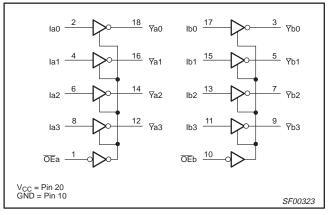

	ORDER CODE	
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V ±10%, T_{amb} = 0°C to +70°C	DRAWING NUMBER
20-pin plastic DIP	74ALS240AN, 74ALS240A-1N	SOT146-1
20-pin plastic SOL	74ALS240AD, 74ALS240A-1D	SOT163-1
20-pin plastic SSOP Type II	74ALS240ADB, 74ALS240A-1DB	SOT339-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
lan, Ibn	Data inputs	1.0/1.0	20µA/0.1mA
OEa, OEb	Output Enable inputs (active-Low)	1.0/1.0	20µA/0.1mA
Yan, Ybn	Data outputs	750/240	15mA/24mA
Yan, Ybn	Data outputs (-1 version)	750/480	15mA/48mA

NOTE: One (1.0) ALS unit load is defined as: 20µA in the High state and 0.1mA in the Low state.

LOGIC SYMBOL



IEC/IEEE SYMBOL

74ALS240A/ 74ALS240A-1

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTF	PUTS
OEa	la	OEb	lb	Ya	Yb
L	L	L	L	Н	Н
L	Н	L	Н	L	L
н	Х	Н	Х	Z	Z

H = High voltage level L = Low voltage level

X = Don't care Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V	
I _{IN}	Input current	-30 to +5	mA	
V _{OUT}	Voltage applied to output in High output state	–0.5 to V _{CC}	V	
		All versions	48	mA
IOUT	I _{OUT} Current applied to output in Low output state		96	mA
T _{amb}	Operating free-air temperature range		0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

CYMDOL	PARAMETER			LIMITS			
SYMBOL			MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		4.5	5.0	5.5	V	
V _{IH}	High-level input voltage		2.0			V	
V _{IL}	Low-level input voltage			0.8	V		
I _{IK}	Input clamp current			-18	mA		
I _{OH}	High-level output current				-15	mA	
		All versions			24	mA	
IOL	Low-level output current	-1 version			48 ¹	mA	
T _{amb}	Operating free-air temperature range		0		+70	°C	

NOTE:

1. The 48mA limit applies only under the condition of V_{CC} = 5.0V $\pm 5\%.$

74ALS240A/ 74ALS240A-1

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

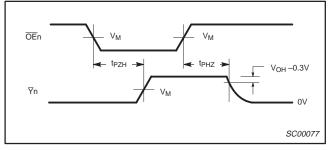
	DADAMETER		TEAT CONDITI	LIMITS				
SYMBOL	PARAMETER		TEST CONDITI	TEST CONDITIONS ¹		TYP ²	MAX	UNIT
				$V_{CC} \pm 10\%, V_{IL} = MAX,$ $I_{OH} = -0.4mA$	$V_{CC} - 2$			V
V _{OH} High-level output voltage		V _{IH} = MIN	I _{OH} = -3mA	2.4	3.2		V	
011				I _{OH} = -15mA	2.0			
		All versions	V _{CC} = MIN, V _{IL} = MAX,	$I_{OL} = 12mA$		0.25	0.40	V
V _{OL}	Low-level output voltage	All versions	$V_{\rm IH} = MIN$ $I_{\rm OI}$	$I_{OL} = 24mA$		0.35	0.50	V
0L		-1 version		I _{OL} = 48mA		0.35	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.5	V
I _I	Input current at maximum	Input current at maximum input voltage					0.1	mA
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
Ι _{ΙL}	Low-level input current		$V_{CC} = MAX, V_I = 0.4V$				-0.1	mA
I _{OZH}	Off-state output current, High-level voltage applied		$V_{CC} = MAX, V_I = 2.7V$				20	μA
I _{OZL}	Off-state output current, Low-level voltage applied			$V_{CC} = MAX, V_I = 0.4V$			-20	μA
Ι _Ο	Output current ³		$V_{CC} = MAX, V_{O} = 2.25V$		-30		-112	mA
		I _{CCH}				2.5	11	mA
I _{CC}	Supply current (total)	current (total) I _{CCL} V _{CC} = MAX				19.5	23	mA
		I _{CCZ}				23	30	

NOTES:

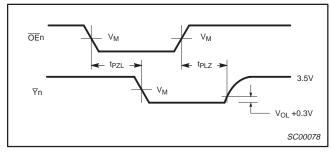
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. 2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. 3. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

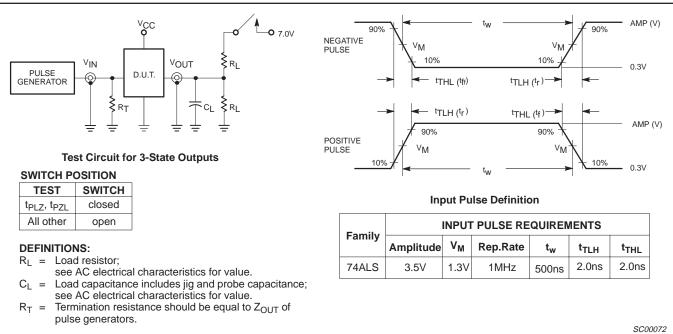

AC ELECTRICAL CHARACTERISTICS

			LIM		
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	MAX]
t _{PLH} t _{PHL}	Propagation delay In to Yn	Waveform 1	2.0 2.0	9.0 9.0	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level	Waveform 2 Waveform 3	2.0 3.0	10.0 12.0	ns
t _{PHZ} t _{PLZ}	Output disable time from High or Low level	Waveform 2 Waveform 3	2.0 3.0	10.0 12.0	ns

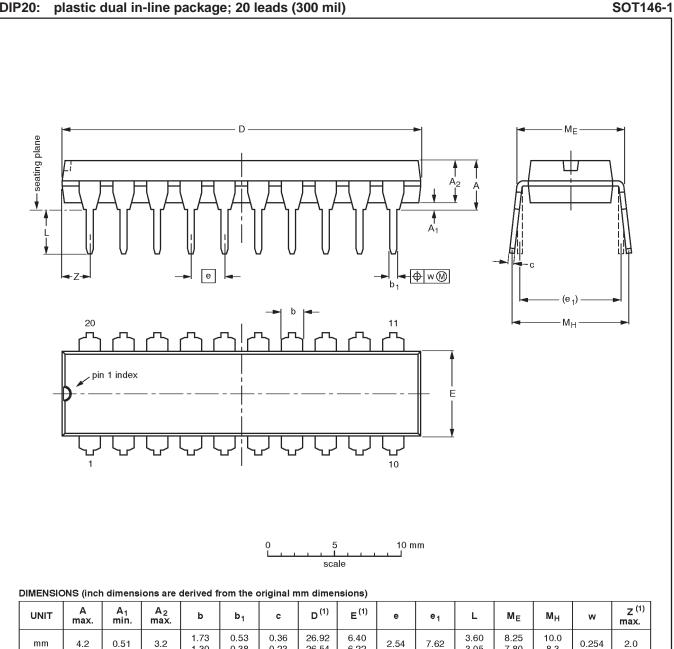

74ALS240A/ 74ALS240A-1

AC WAVEFORMS


For all waveforms, $V_M = 1.3V$.


Waveform 1. Propagation Delay for Non-Inverting Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level



Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

74ALS240A/74ALS240A-1

DIP20: plastic dual in-line package; 20 leads (300 mil)

mm

inches

0.17

0.020

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

0.13

1.30 0.068

0.051

0.38

0.021

0.015

0.23

0.014

0.009

26.54

1.060

1.045

6.22

0.25

0.24

0.10

0.30

3.05

0.14

0.12

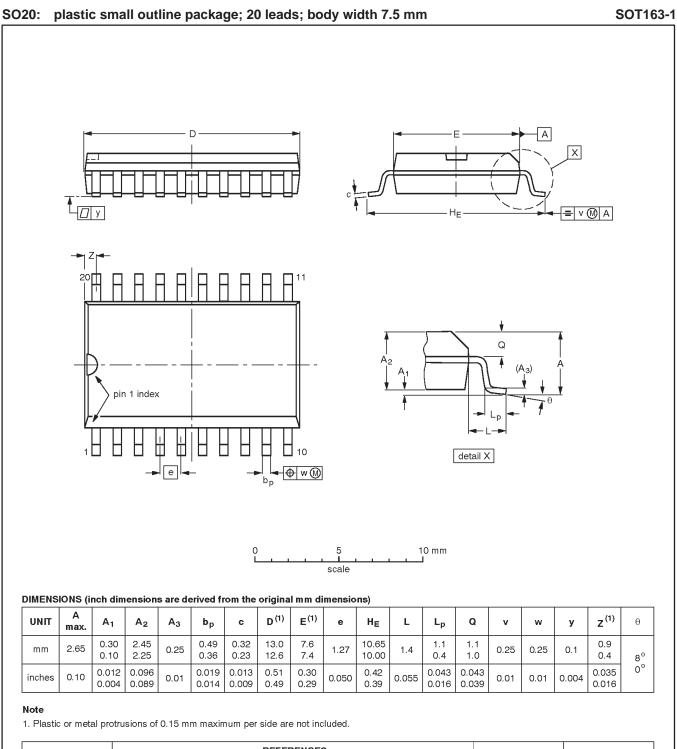
7.80

0.32

0.31

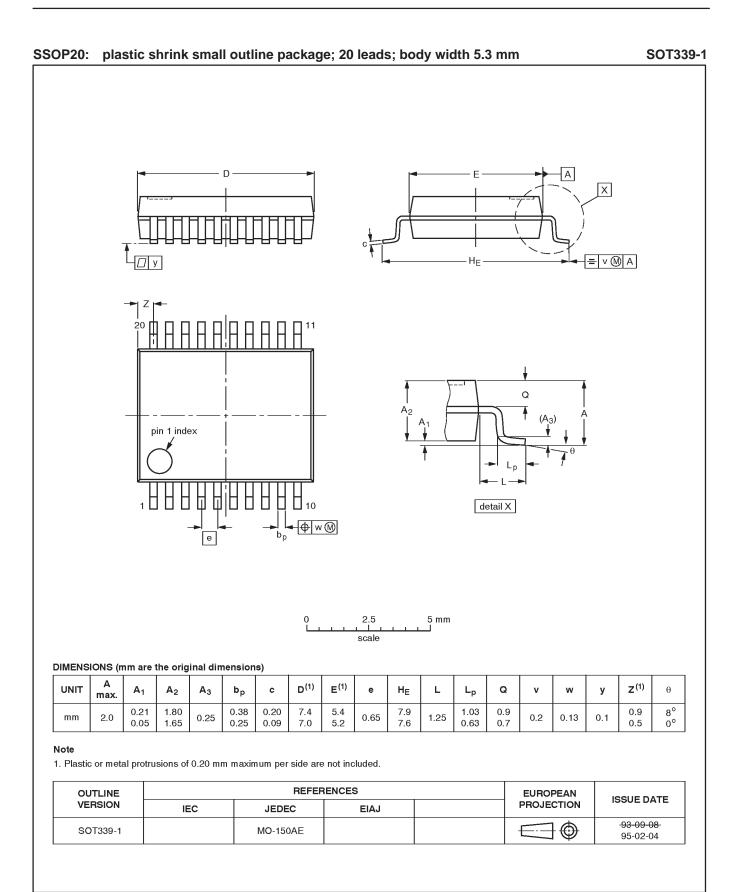
8.3

0.39


0.33

0.01

0.078


OUTLINE		REFERENCES				ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT146-1			SC603			-92-11-17- 95-05-24

74ALS240A/74ALS240A-1

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE	
SOT163-1	075E04	MS-013AC				-92-11-17 95-01-24	

74ALS240A/74ALS240A-1

74ALS240A/74ALS240A-1

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Philips Semiconductors

