INTEGRATED CIRCUITSPOBIT样工厂, 24小时加

DATA SHEET

74LVC240A Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)

Product specification IC24 Data Handbook 1998 May 20

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)

74LVC240A

FEATURES

- 5-volt tolerant inputs/outputs, for interfacing with 5-volt logic
- Supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- High impedance when $V_{CC} = 0V$

DESCRIPTION

The 74LVC240A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3V or 5V devices. In 3-State operation, outputs can handle 5V. These features allow the use of these devices as translators in a mixed 3.3V/5V environment.

The '240A is an octal non-inverting buffer/line driver with 3-State outputs. The 3-State outputs are controlled by the output enable inputs 10E and 20E. A HIGH on nOE causes the outputs to assume a high impedance OFF-state. Schmitt-trigger action at all inputs makes the circuit highly tolerant for slower input rise and fall times.

The '240' is functionally identical to the '244', but the '244' has inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay $1A_n$ to $1Y_n$; $2A_n$ to $2Y_n$	$C_L = 50 pF$ $V_{CC} = 3.3V$	3.5	ns
Cl	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per buffer	Notes 1 and 2	20	pF

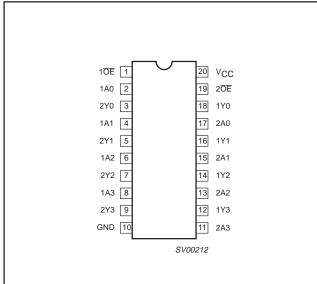
NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

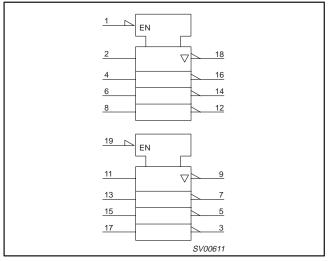
P_D = C_{PD} x V_{CC}² x f_i + Σ (C_L x V_{CC}² x f_o) where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; Σ (C_L x V_{CC}² x f_o) = sum of outputs. 2. The condition is V_I = GND to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
20-Pin Plastic Small Outline (SO)	–40°C to +85°C	74LVC240A D	74LVC240A D	SOT163-1
20-Pin Plastic Shrink Small Outline (SSOP) Type II	–40°C to +85°C	74LVC240A DB	74LVC240A DB	SOT339-1
20-Pin Plastic Thin Shrink Small Outline (TSSOP) Type I	–40°C to +85°C	74LVC240A PW	7LVC240APW DH	SOT360-1


74LVC240A

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)


PIN DESCRIPTION

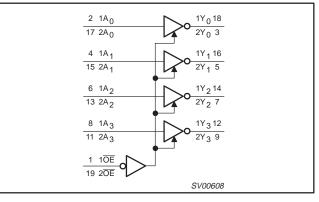
PIN NUMBER	SYMBOL	FUNCTION
1	1 0E	Output enable input (active LOW)
2, 4, 6, 8	1A ₀ to 1A ₃	Data inputs
3, 5, 7, 9	$2Y_0$ to $2Y_3$	Bus outputs
10	GND	Ground (0V)
17, 15, 13, 11	$2A_0$ to $2A_3$	Bus inputs
18, 16, 14, 12	$1Y_0$ to $1Y_3$	Bus outputs
19	20E	Output enable input (active-LOW)
20	V _{CC}	Positive power supply

PIN CONFIGURATION

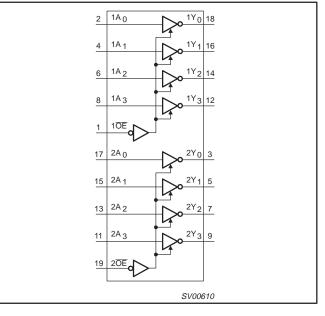
LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INP	UTS	OUTPUT			
nOE	nA _n	nY _n			
L	L	Н			
L	Н	L			
Н	Х	Z			


H = HIGH voltage level

L = LOW voltage level


X = Don't care

Z = High impedance OFF-state

LOGIC SYMBOL

FUNCTIONAL DIAGRAM

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)

74LVC240A

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWBOL	PARAIVIETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V
VI	DC Input voltage range		0	5.5	V
Vo	DC Output voltage range; output HIGH or LOW state		0	V _{CC}	V
	DC output voltage range; output 3-State		0	5.5	
T _{amb}	Operating ambient temperature range in free-air		-40	+85	°C
t _r , t _f	Input rise and fall times $V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$		0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	V ₁ <0	-50	mA
VI	DC input voltage	Note 2	-0.5 to +6.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50	mA
\/	DC output voltage; output HIGH or LOW state	Note 2	-0.5 to V _{CC} +0.5	V
Vo	DC output voltage; output 3-State	Note 2	–0.5 to 6.5	
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)

74LVC240A

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

			L	IMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	Temp = -40°C to +85°C		
			MIN	TYP ¹	MAX	1
M		V _{CC} = 1.2V	V _{CC}			v
VIH	V _{IH} HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0			
M		$V_{CC} = 1.2V$			GND	v
V _{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8	
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.5			
M	V _{OH} HIGH level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu A$	V _{CC} -0.2	V _{CC}		v
∨он		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -18\text{mA}$	V _{CC} -0.6			
		V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = -24mA	V _{CC} -0.8			1
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 12mA			0.40	
V _{OL}	LOW level output voltage	V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		GND	0.20	V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 24mA$			0.55	1
t _l	Input leakage current ²	$V_{CC} = 3.6V; V_1 = 5.5V \text{ or GND}$		±0.1	±5	μA
I _{OZ}	3-State output OFF-state current	$V_{CC} = 3.6V; V_I = V_{IH} \text{ or } V_{IL}; V_O = 5.5V \text{ or GND}$		0.1	±10	μA
I _{off}	Power off leakage current	$V_{CC} = 0.0V; V_{I} \text{ or } V_{O} = 5.5V$		0.1	±10	μA
Icc	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$		0.1	10	μΑ
ΔI_{CC}	Additional quiescent supply current per input pin	V_{CC} = 2.7V to 3.6V; $V_{\rm I}$ = V_{CC} –0.6V; I_{O} = 0		5	500	μΑ

NOTES:

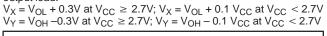
1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. 2. The specified overdrive current at the data input forces the data input to the opposite logic input state.

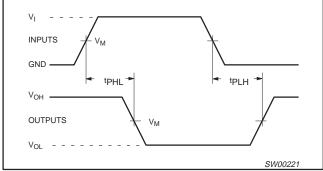
AC CHARACTERISTICS

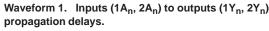
GND = 0V; $t_r = t_f \le 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

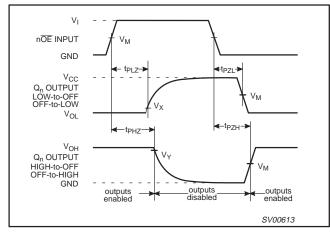
			LIMITS						
SYMBOL	PARAMETER	WAVEFORM	Vcc	; = 3.3V ±0).3V	V _{CC} =	: 2.7V	V _{CC} = 1.2V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	TYP	
t _{PLH} t _{PHL}	Propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n	1, 3	1.5	3.5	6.5	1.5	7.5	16.0	ns
t _{PZH} t _{PZL}	$\frac{3-\text{State output enable time}}{10E \text{ to } 1Y_n;}$ $\frac{20E}{20E} \text{ to } 2Y_n$	2, 3	1.5	4.3	8.0	1.5	9.0	19.0	ns
t _{PHZ} t _{PLZ}	$\begin{array}{l} 3 - \text{State output disable time} \\ \hline 10\text{E to } 1\text{Y}_n; \\ \hline 20\text{E to } 2\text{Y}_n \end{array}$	2, 3	1.5	3.7	7.0	1.5	8.0	17.0	ns

NOTE:

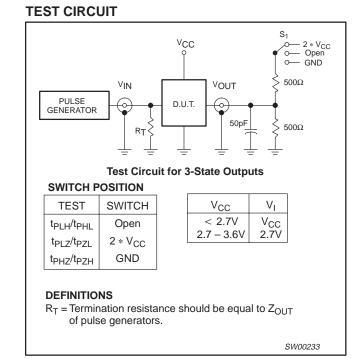

1. Unless otherwise stated, all typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

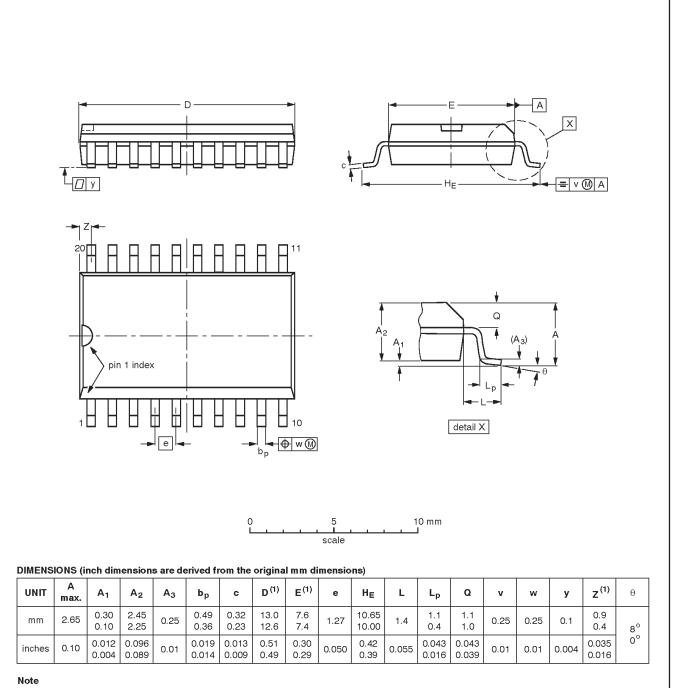

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State)


74LVC240A


AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \geq$ 2.7V; V_M = 0.5 V_{CC} at $V_{CC} <$ 2.7V. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.




Waveform 2. 3-State enable and disable times.

Waveform 3. Load circuitry for switching times.

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State);

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

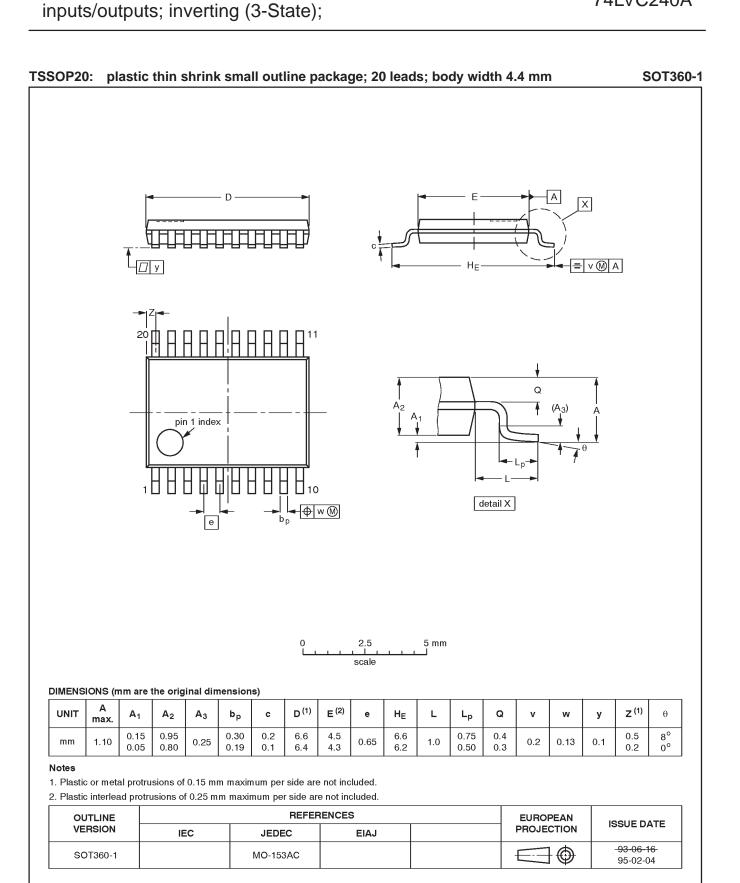
OUTLINE	REFERENCES EUROPEAN			ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC			-92-11-17 95-01-24

Product specification

SOT163-1

74LVC240A

Product specification


74LVC240A

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State);

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm SOT339-1 Α X = v 🕅 A Π^{11} Q ٩, (A₃) pin 1 index n detail X ⊕ w M 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) Α D⁽¹⁾ E⁽¹⁾ Z⁽¹⁾ UNIT L Q A_2 с е $H_{\rm E}$ Lp v θ A1 A_3 bp w У max. 8° 0° 0.21 1.80 0.38 0.20 7.4 5.4 7.9 1.03 0.9 0.9 2.0 0.65 1.25 mm 0.25 0.2 0.13 0.1 0.05 1.65 0.25 0.09 7.0 5.2 7.6 0.63 0.7 0.5 Note 1. Plastic or metal protrusions of 0.20 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ 93-09-08 SOT339-1 MO-150AE E .- \odot 95-02-04

Octal buffer/line driver with 5-volt tolerant

74LVC240A

Octal buffer/line driver with 5-volt tolerant inputs/outputs; inverting (3-State);

Product specification

74LVC240A

NOTES

74LVC240A

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number: Date of release: 05-96 9397-750-04499

Let's make things better.

