查询SN54ABT240供应商

捷多邦,专业PCB打场N54ABT240急SN74ABT240A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS098H – JANUARY 1991 – REVISED JANUARY 1997

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Plastic (N) and Ceramic (J) DIPs, and Ceramic Flat (W) Package

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Together with the SN54ABT241, SN74ABT241A, SN54ABT244, and SN74ABT244A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE) inputs, and complementary OE and OE inputs.

SN54ABT240J OR W PACKAGE SN74ABT240ADB, DW, N, OR PW PACKAGE (TOP VIEW)									
10E 1	20 V <u>CC</u>								
1A1 2	19 2OE								
2Y4 3	18 1Y1								
1A2 4	17 2A4								
2Y3 5	16 1Y2								
1A3 6	15 2A3								
2Y2 7	14 1Y3								
1A4 8	13 2A2								
2Y1 9	12 1Y4								
GND 10	11 2A1								

SN54ABT240 ... FK PACKAGE (TOP VIEW)

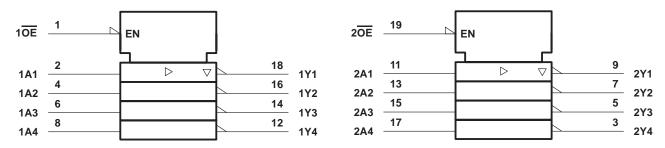
2 2 4 1 0 1 0 1 0 2 0 6		
1A2 4 4 2 1 20 19 2Y3 5 1A3 6	18 [17 [16 [15 [14 [1Y1 2A4 1Y2 2A3 1Y3

The SN54ABT240 and SN74ABT240A are organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the devices pass inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

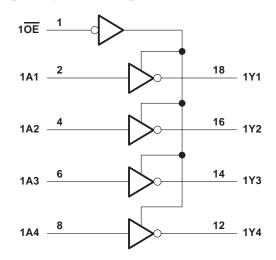
To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

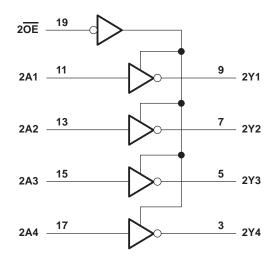
The SN54ABT240 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT240A is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


CIIB is a trademark of Texas Instruments Incorporated.

SCBS098H - JANUARY 1	991 – REVISED JANUARY 1997


FUNCTION TABLE (each buffer)							
INP	UTS	OUTPUT					
OE	А	Y					
L	Н	L					
L	L	н					
Н	Х	Z					


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS098H – JANUARY 1991 – REVISED JANUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high		–0.5 V to 7 V
Current into any output in the low state, I_{O} : SN		
• • • •	N74ABT240A	
Input clamp current, I _{IK} (V _I < 0)		
Output clamp current, I_{OK} (V _O < 0)		
Package thermal impedance, θ_{JA} (see Note 2)		
	DW package	97°C/W
	N package	67°C/W
	PW package	128°C/W
Storage temperature range, T _{stg}		. –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

					SN74ABT240A		UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage	ut voltage		0.8		0.8	V
VI	V _I Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current	ow-level output current		48		64	mA
Δt/Δv	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
Т _А	Operating free-air temperature	ire		125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SN54ABT240, SN74ABT240A **OCTAL BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS SCBS098H – JANUARY 1991 – REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COND	TIONS	Т	A = 25°C	;	SN54A	BT240	SN74AB	T240A	UNIT	
PARA	METER	TEST COND	TIONS	MIN	TYP†	MAX	MIN MAX		MIN MAX			
VIK		V _{CC} = 4.5 V,	l _l = –18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
Varia		V _{CC} = 5 V,	IOH = -3 mA	3			3		3		V	
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2					
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC - 4.5 V	I _{OL} = 64 mA			0.55*				0.55	v	
V _{hys}					100						mV	
lį		V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND			±1		±1		±1	μΑ	
IOZH		V _{CC} = 5.5 V,	$V_{O} = 2.7 V$			10		10		10	μΑ	
IOZL		V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-10		-10		-10	μΑ	
l _{off}		V _{CC} = 0,	$V_I \text{ or } V_O \leq 4.5 \text{ V}$			±100				±100	μΑ	
ICEX		$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 5.5 \text{ V}$	Outputs high			50		50		50	μΑ	
10‡		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
			Outputs high		1	250		250		250	μΑ	
ICC		$V_{CC} = 5.5 \text{ V}, I_O = 0,$ $V_I = V_{CC} \text{ or GND}$	Outputs low		24	30		30		30	mA	
			Outputs disabled		0.5	250		250		250	μΑ	
	Data	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5		
∆ICC§	inputs	Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05		0.05	mA	
	Control inputs	$V_{CC} = 5.5$ V, One input at 3.4 V, Other inputs at V _{CC} or GND				1.5		1.5		1.5		
Ci		VI = 2.5 V or 0.5 V			4						pF	
Co		V _O = 2.5 V or 0.5 V			7.5						pF	

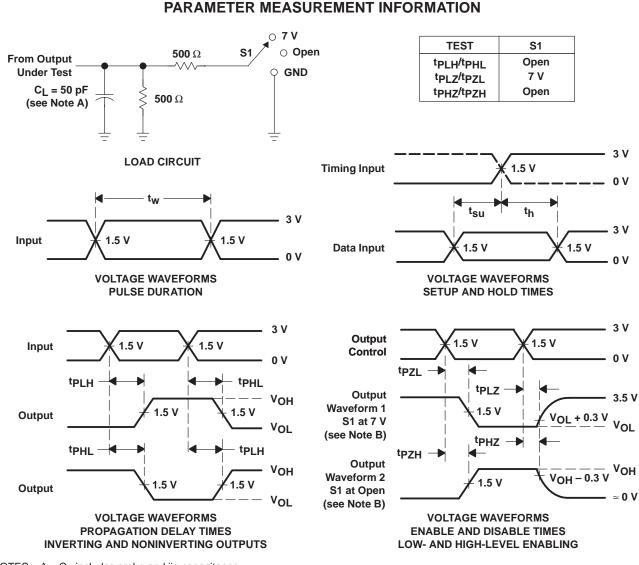
* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at V_{CC} = 5 V. [‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		SN54ABT240						
PARAMETER	FROM (INPUT)		V(Tj	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
		MIN	TYP	MAX				
^t PLH	A	V	1	2.9	4.3	0.8	5.5	ns
^t PHL		T	1.6	3.1	4.5	1	5.5	115
^t PZH		V	1.1	3.1	5.8	0.8	7.5	20
^t PZL	OE	T	1.1	2.7	6.2	0.8	7.7	ns
^t PHZ	ŌĒ	V	1.8	4.6	5.9	1.7	7	ns
^t PLZ	UE	1	1.6	4	5.9	1.3	7.2	115


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER FROM (INPUT) (SN74ABT240A					
		TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN M	MAX	UNIT
		MIN	TYP	MAX				
^t PLH	A	v	1	2.9	4.1	1	4.8	ns
^t PHL		I	1.6	3.1	4.6	1.6	4.8	115
^t PZH	ŌĒ	v	1.1	3.1	4.7	1.1	5.2	ns
^t PZL			1.1	2.7	5.8	1.1	6.2	115
^t PHZ	OE	v	1.8	4.6	5.7	1.8	6.4	ns
^t PLZ	UE	1	1.6	4	5.4	1.6	5.8	115

SN54ABT240, SN74ABT240A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS098H - JANUARY 1991 - REVISED JANUARY 1997

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated