SCAS293G - JANUARY 1993 - REVISED MARCH 2000

- EPIC™ (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- **Supports Mixed-Mode Signal Operation on** All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Ioff Supports Partial-Power-Down-Mode Operation
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

DB, DGV, DW, OR PW PACKAGE (TOP VIEW)

1				1
10E [1	U	20	Vcc
1A1 [2		19	20E
2Y4 [3		18	1Y1
1A2	4		17	2A4
2Y3	5		16	1Y2
1A3 🛚	6		15	2A3
2Y2 🛚	7		14	1Y3
1A4 🛚	8		13	2A2
2Y1 🛚	9		12] 1Y4
GND [10		11	2A1

description

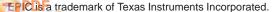
This octal buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC240A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

This device is organized as two 4-bit buffers/drivers with separate output-enable (OE) inputs. When OE is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state.

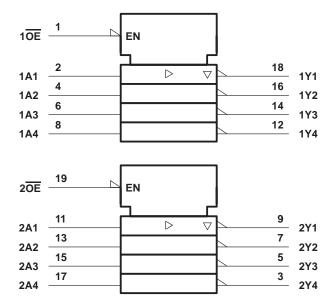
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, $\overline{\sf OE}$ should be tied to ${\sf V}_{\sf CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

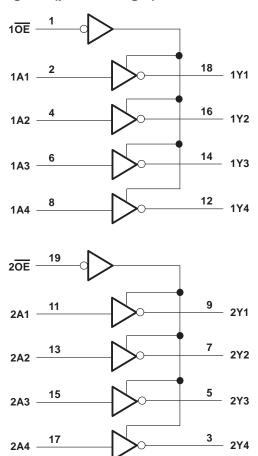

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. W.DZSC.CO

The SN74LVC240A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each 4-hit huffer)


	(cacii 4-bit builei)								
	INP	JTS	OUTPUT						
ı	OE	Α	Υ						
	L	Н	L						
	L	L	Н						
	Н	X	Z						

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†

 $\ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCAS293G - JANUARY 1993 - REVISED MARCH 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	
Package thermal impedance, θ _{.IA} (see Note 3): DB package	
DGV package	
DW package	
PW package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
\/00	Supply voltage	Operating	1.65	3.6	V
VCC	Supply voltage	Data retention only	1.5		V
V_{IH}		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	V
VIL	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	
	V _{CC} = 2.7 V to 3.6 V		0.8		
٧ _I	Input voltage	·	0	5.5	V
Vo	Output valta sa	High or low state	0	Vcc	٧
	Output voltage 3 state	3 state	0	5.5	
		V _{CC} = 1.65 V		-4	
1	High level output ourrest	High-level output current $ \frac{V_{CC} = 2.3 \text{ V}}{V_{CC} = 2.7 \text{ V}} $		-8	^
IOH	nigri-level output current			-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
1	Lavida al autorit aumant	V _{CC} = 2.3 V		8	mA
lOL	Low-level output current	V _{CC} = 2.7 V		12	
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate	<u> </u>	0	6	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVC240A **OCTAL BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS293G - JANUARY 1993 - REVISED MARCH 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	ONDITIONS	vcc	MIN	TYP [†]	MAX	UNIT	
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2				
	I _{OH} = -4 mA	1.65 V	1.2					
Vall	I _{OH} = -8 mA	2.3 V	1.7			V		
VOH	Ιου - 12 mΔ		2.7 V	2.2			\ \ \ \ \ \	
	IOH = -12 IIIA		3 V	2.4				
	I _{OH} = -24 mA		3 V	2.2				
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
$VOH \begin{tabular}{ll} & I_{OH} = -100 \ \mu A \\ \hline & I_{OH} = -4 \ mA \\ \hline & I_{OH} = -8 \ mA \\ \hline & I_{OH} = -12 \ mA \\ \hline & I_{OH} = -24 \ mA \\ \hline & I_{OL} = 100 \ \mu A \\ \hline & I_{OL} = 100 \ \mu A \\ \hline & I_{OL} = 4 \ mA \\ \hline & I_{OL} = 12 \ mA \\ \hline & I_{OL} = 12 \ mA \\ \hline & I_{OL} = 24 \ mA \\ \hline & I_{OL} = 20 \ mA \\ \hline & I_{OL} = $	I _{OL} = 4 mA	1.65 V			0.45			
	I _{OL} = 8 mA		2.3 V			0.7	V	
	I _{OL} = 12 mA	2.7 V			0.4			
	I _{OL} = 24 mA		3 V			0.55		
lį	$V_{I} = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±5	μΑ	
l _{off}	V _I or V _O = 5.5 V		0			±10	μΑ	
loz	$V_{O} = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±10	μА	
	V _I = V _{CC} or GND		0.01/			10	uΑ	
'CC	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\ddagger}$	IO = 0	3.6 V			10		
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or G		2.7 V to 3.6 V			500	μΑ	
Ci	V _I = V _{CC} or GND		3.3 V		4		pF	
Co	$V_O = V_{CC}$ or GND		3.3 V		5.5		pF	

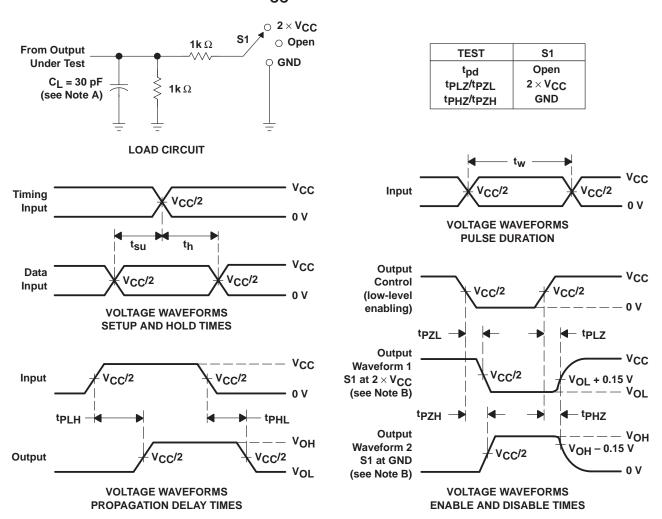
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO ±0	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(1141 01)	(001101)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Υ	§	§	§	§		7.5	1.3	6.5	ns
t _{en}	ŌĒ	Y	§	§	§	§		9	1.1	8	ns
^t dis	ŌĒ	Y	§	§	§	§		8	1.4	7	ns
t _{sk(o)} ¶										1	ns

[§] This information was not available at the time of publication.

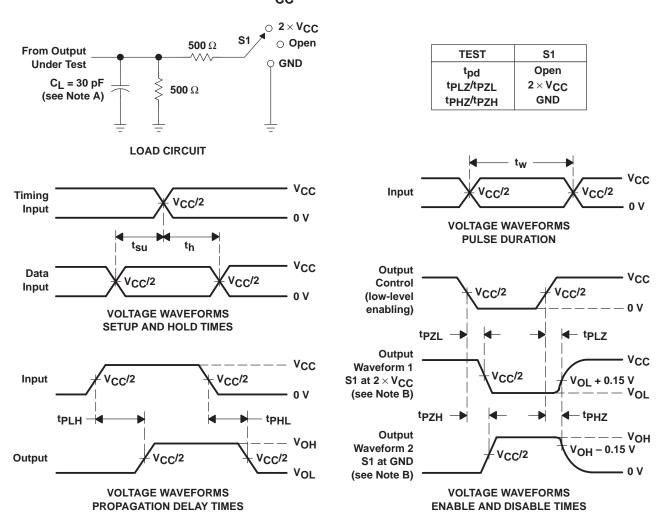
operating characteristics, T_A = 25°C


PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
		CONDITIONS	TYP	TYP	TYP			
C. I. Bernard Harington and Maria		Outputs enabled	f 40 MI I=	§	§	32	nE	
Сра	pd Power dissipation capacitance	Outputs disabled	f = 10 MHz	§	§	3	pF	

[§] This information was not available at the time of publication.

 $[\]P$ Skew between any two outputs of the same package switching in the same direction

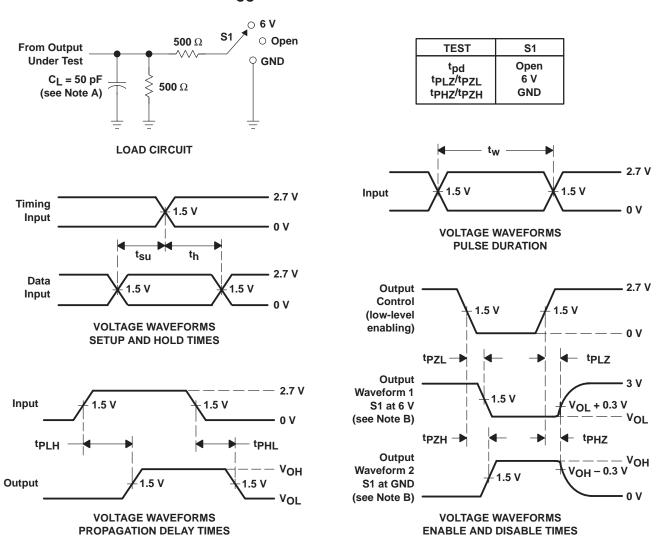
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated