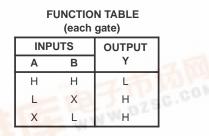
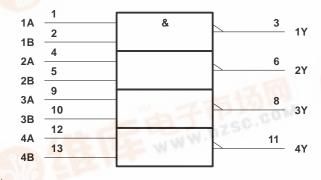
查询SN54ALS00A供应商

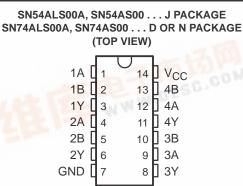
SN54AL SOOA, SN54ASOO, SN74AL SOOAF SN74ASOO QUADRUPLE 2-INPUT POSITIVE-NAND GATES

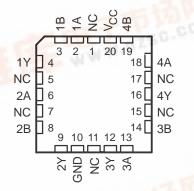

SDAS187A - APRIL 1982 - REVISED DECEMBER 1994

 Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs


description

These devices contain four independent 2-input positive-NAND gates. They perform the Boolean functions $Y = \overline{A} \bullet \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

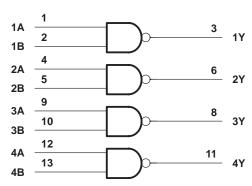

The SN54ALS00A and SN54AS00 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS00A and SN74AS00 are characterized for operation from 0°C to 70°C.


logic symbol[†]

 This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
 Pin numbers shown are for the D, J, and N packages.

SN54ALS00A, SN54AS00 ... FK PACKAGE (TOP VIEW)

NC – No internal connection


PDF Product conform to specifications per the terms of Texas Instruments products conform to specifications per the terms of Texas Instruments potential structure of the terms of terms

SN54ALS00A, SN54AS00, SN74ALS00A, SN74AS00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SDAS187A - APRIL 1982 - REVISED DECEMBER 1994

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC}	
Input voltage, V _I	
Operating free-air temperature range, T _A : SN54ALS00A	
SN74ALS00A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54ALS00A		DA	SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8‡			0.8	V
	Low-level input voltage			0.7§				V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

[‡] Applies over temperature range –55°C to 70°C

§ Applies over temperature range 70°C to 125°C

SDAS187A - APRIL 1982 - REVISED DECEMBER 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST OF	ONDITIONS	SN	54ALS0	0A	SN	74ALS0	DA	V V	
PARAMETER	TEST CO	JNDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX		
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2			-1.5	V	
VOH	V_{CC} = 4.5 V to 5.5 V,	I _{OH} = -0.4 mA	V _{CC} -2	2		V _{CC} -2			V	
V _{OL}	VCC = 4.5 V	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V 4 V 5 μA 1 mA 1 mA	
	VCC = 4.5 V	I _{OL} = 8 mA					0.35	0.5	v	
l	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
Ι _{ΙΗ}	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ	
١ _{١L}	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.1			-0.1	mA	
IO‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA	
Іссн	V _{CC} = 5.5 V,	$V_{I} = 0$		0.5	0.85		0.5	0.85	mA	
ICCL	V _{CC} = 5.5 V,	V _I = 4.5 V		1.5	3		1.5	3	mA	

[†] All typical values are at V_{CC} = 5 V, T_A = 25° C.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX§				UNIT
			SN54A				
			MIN	MAX	MIN	MAX	
^t PLH	A or B	V	3	15	3	11	ns
^t PHL	AUB	Y	2	9	2	8	115

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54ALS00A, SN54AS00, SN74ALS00A, SN74AS00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SDAS187A - APRIL 1982 - REVISED DECEMBER 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} Input voltage, V _I	
Operating free-air temperature range, T _A : SN54AS00	-55°C to 125°C
SN74AS00	0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54AS00			S	N74AS0	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-2			-2	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

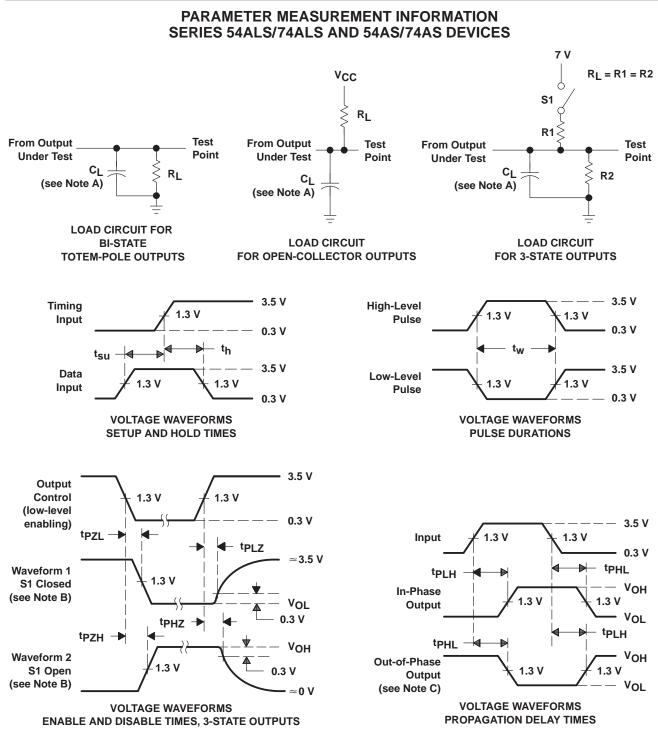
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TEST	ONDITIONS	SN54	AS00	s	N74AS0	D	UNIT
IESI C	TEST CONDITIONS		P‡ MAX	MIN	TYP‡	MAX	UNIT
V _{CC} = 4.5 V,	I _I = -18 mA		-1.2			-1.2	V
V_{CC} = 4.5 V to 5.5 V,	$I_{OH} = -2 \text{ mA}$	V _{CC} -2		V _{CC} -2	2		V
V _{CC} = 4.5 V,	I _{OL} = 20 mA	0.	35 0.5		0.35	0.5	V
V _{CC} = 5.5 V,	$V_{I} = 7 V$		0.1			0.1	mA
V _{CC} = 5.5 V,	Vj = 2.7 V		20			20	μA
V _{CC} = 5.5 V,	$V_{I} = 0.4 V$		-0.5			-0.5	mA
V _{CC} = 5.5 V,	V _O = 2.25 V	-30	-112	-30		-112	mA
V _{CC} = 5.5 V,	$V_{I} = 0$		2 3.2		2	3.2	mA
V _{CC} = 5.5 V,	V _I = 4.5 V	1(0.8 17.4		10.8	17.4	mA
	$V_{CC} = 4.5 V,$ $V_{CC} = 4.5 V, to 5.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 5.5 V,$	$\begin{split} & V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, & I_{OH} = -2 \text{ mA} \\ & V_{CC} = 4.5 \text{ V}, & I_{OL} = 20 \text{ mA} \\ & V_{CC} = 5.5 \text{ V}, & V_I = 7 \text{ V} \\ & V_{CC} = 5.5 \text{ V}, & V_I = 2.7 \text{ V} \\ & V_{CC} = 5.5 \text{ V}, & V_I = 0.4 \text{ V} \\ & V_{CC} = 5.5 \text{ V}, & V_O = 2.25 \text{ V} \\ & V_{CC} = 5.5 \text{ V}, & V_I = 0 \end{split}$	TEST CONDITIONS MIN TY $V_{CC} = 4.5 V$, $I_I = -18 \text{ mA}$ $V_{CC} = 4.5 V$ to $5.5 V$, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} = 4.5 V$, $I_{OL} = 20 \text{ mA}$ 0.4 $V_{CC} = 5.5 V$, $V_I = 7 V$ $V_{CC} = 5.5 V$, $V_I = 2.7 V$ $V_{CC} = 5.5 V$, $V_I = 0.4 V$ $V_{CC} = 5.5 V$, $V_I = 0.4 V$ $V_{CC} = 5.5 V$, $V_I = 0$ -30	MINTYP‡MAX $V_{CC} = 4.5 V$, $I_I = -18 \text{ mA}$ -1.2 $V_{CC} = 4.5 V$ to $5.5 V$, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} = 4.5 V$, $I_{OL} = 20 \text{ mA}$ 0.35 0.5 $V_{CC} = 5.5 V$, $V_I = 7 V$ 0.1 $V_{CC} = 5.5 V$, $V_I = 2.7 V$ 20 $V_{CC} = 5.5 V$, $V_I = 0.4 V$ -0.5 $V_{CC} = 5.5 V$, $V_I = 0.4 V$ -0.5 $V_{CC} = 5.5 V$, $V_I = 0$ 2 3.2	MIN TYP‡ MAX MIN $V_{CC} = 4.5 V$, $I_I = -18 \text{ mA}$ -1.2 $V_{CC} = 4.5 V$, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} -2$ $V_{CC} = 4.5 V$, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} -2$ $V_{CC} -2$ $V_{CC} = 5.5 V$, $I_{OL} = 20 \text{ mA}$ 0.35 0.5 $V_{CC} = 5.5 V$, $V_{I} = 7 V$ 0.11 $V_{CC} = 5.5 V$, $V_{I} = 2.7 V$ 20 $V_{CC} = 5.5 V$, $V_{I} = 0.4 V$ -0.5 $V_{CC} = 5.5 V$, $V_{I} = 0.4 V$ -0.5 $V_{CC} = 5.5 V$, $V_{I} = 0$ 2 3.2	TEST CONDITIONSMINTYP‡MAXMINTYP‡ $V_{CC} = 4.5 V$, $I_I = -18 \text{ mA}$ -1.2 $V_{CC} = 4.5 V$ to 5.5 V, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} -2$ $V_{CC} = 4.5 V$, $I_{OL} = 20 \text{ mA}$ 0.35 0.5 0.35 $V_{CC} = 5.5 V$, $V_I = 7 V$ 0.1 $V_{CC} = 5.5 V$, $V_I = 2.7 V$ $V_{CC} = 5.5 V$, $V_I = 0.4 V$ -0.5 $V_{CC} = 5.5 V$, $V_O = 2.25 V$ $V_{CC} = 5.5 V$, $V_I = 0$ 2 3.2 2	TEST CONDITIONSMINTYP‡MAXMINTYP‡MAX $V_{CC} = 4.5 V$, $I_I = -18 \text{ mA}$ -1.2 -1.2 $V_{CC} = 4.5 V$ to 5.5 V, $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} -2$ $V_{CC} = 4.5 V$, $I_{OL} = 20 \text{ mA}$ 0.35 0.5 0.35 $V_{CC} = 5.5 V$, $V_I = 7 V$ 0.1 0.1 $V_{CC} = 5.5 V$, $V_I = 2.7 V$ 20 20 $V_{CC} = 5.5 V$, $V_I = 0.4 V$ -0.5 -0.5 $V_{CC} = 5.5 V$, $V_I = 0.4 V$ -30 -112 $V_{CC} = 5.5 V$, $V_I = 0$ 2 3.2 2

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL RL TA	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX¶			
			SN54AS00 SN74AS00		AS00		
			MIN	MAX	MIN	MAX	
^t PLH	A or B	V	1	5	1	4.5	200
^t PHL	A UI B	Y	1	5	1	4	ns

 \P For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54ALS00A, SN54AS00, SN74ALS00A, SN74AS00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SDAS187A - APRIL 1982 - REVISED DECEMBER 1994

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_f = t_f = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated