

National Semiconductor

February 2000

LM4120

Precision Micropower Low Dropout Voltage Reference

General Description

The LM4120 is a precision low power low dropout bandgap voltage reference with up to 5 mA output current source and sink capability.

This series reference operates with input voltages as low as 2V and up to 12V consuming 160 μ A (Typ.) supply current. In power down mode, device current drops to less than 2 μ A.

The LM4120 comes in two grades (A and Standard) and seven voltage options for greater flexibility. The best grade devices (A) have an initial accuracy of 0.2%, while the standard have an initial accuracy of 0.5%, both with a tempco of 50ppm/°C guaranteed from -40°C to +125°C.

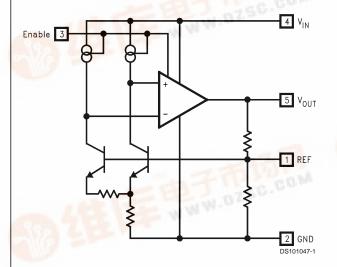
The very low dropout voltage, low supply current and power-down capability of the LM4120 makes this product an ideal choice for battery powered and portable applications.

The device performance is guaranteed over the industrial temperature range (-40°C to +85°C), while certain specs are guaranteed over the extended temperature range (-40°C to +125°C). Please contact National for full specifications over the extended temperature range. The LM4120 is available in a standard 5-pin SOT-23 package.

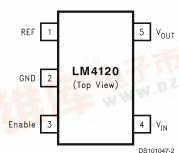
Features

- Small SOT23-5 package
- Low dropout voltage:
- 120 mV Typ @ 1 mA
- High output voltage accuracy:
- 0.2%
- Source and Sink current output:
- ±5 mA

Supply current:


- 160 μA Typ.
- Low Temperature Coefficient:
- 50 ppm/°C

- Enable pin
- Fixed output voltages: and 5.0V
- 1.8, 2.048, 2.5, 3.0, 3.3, 4.096
- Industrial temperature Range:
- -40°C to +85°C
- (For extended temperature range, -40°C to 125°C, contact National Semiconductor)


Applications

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive & Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment

Functional Block Diagram

Connection Diagram

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

Ordering Information

Industrial Temperature Range (-40°C to + 85°C)

Initial Output Voltage Accuracy at 25°C And Temperature Coefficient	LM4120 Supplied as 1000 Units, Tape and Reel	LM4120 Supplied as 3000 Units, Tape and Reel	Top Marking
	LM4120AIM5-1.8	LM4120AIM5X-1.8	R21A
	LM4120AIM5-2.0	LM4120AIM5X-2.0	R14A
	LM4120AIM5-2.5	LM4120AIM5X-2.5	R08A
0.2%, 50 ppm/°C max (A grade)	LM4120AIM5-3.0	LM4120AIM5X-3.0	R15A
	LM4120AIM5-3.3	LM4120AIM5X-3.3	R16A
	LM4120AIM5-4.1	LM4120AIM5X-4.1	R17A
	LM4120AIM5-5.0	LM4120AIM5X-5.0	R18A
	LM4120IM5-1.8	LM4120IM5X-1.8	R21B
	LM4120IM5-2.0	LM4120IM5X-2.0	R14B
	LM4120IM5-2.5	LM4120IM5X-2.5	R08B
0.5%, 50 ppm/°C max	LM4120IM5-3.0	LM4120IM5X-3.0	R15B
	LM4120IM5-3.3	LM4120IM5X-3.3	R16B
	LM4120IM5-4.1	LM4120IM5X-4.1	R17B
	LM4120IM5-5.0	LM4120IM5X-5.0	R18B

SOT-23 Package Marking Information

Only four fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the four fields.

		_
Field	Infor	matior

First Field:

R = Reference

Second and third Field:

21 = 1.800V Voltage Option

14 = 2.048V Voltage Option

08 = 2.500V Voltage Option

15 = 3.000V Voltage Option

16 = 3.300V Voltage Option

17 = 4.096V Voltage Option

18 = 5.000V Voltage Option

Fourth Field:

A-B = Initial Reference Voltage Tolerance

 $A = \pm 0.2\%$

 $B = \pm 0.5\%$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Voltage on input or

enable pins -0.3V to 14V

Output Short-Circuit Duration Indefinite

Power Dissipation ($T_A = 25^{\circ}C$) (Note 2):

MA05B package $-\theta_{JA}$ 280°C/W Power Dissipation 350 mW

ESD Susceptibility (Note 3)

Human Body Model 2 kV Machine Model 200V Lead Temperature:

 Soldering, (10 sec.)
 +260°C

 Vapor Phase (60 sec.)
 +215°C

 Infrared (15 sec.)
 +220°C

Operating Range (Note 1)

Storage Temperature Range -65° C to $+150^{\circ}$ C Ambient Temperature Range -40° C to $+85^{\circ}$ C Junction Temperature Range -40° C to $+125^{\circ}$ C

Electrical Characteristics

LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified V_{IN} = 3.3V, I_{LOAD} = 0, C_{OUT} = 0.01 μ F, T_A = T_j = 25°C. Limits with standard typeface are for T_j = 25°C, and limits in **boldface type** apply over the -40°C $\leq T_A \leq$ +85°C temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V_{OUT}	Output Voltage Initial Accuracy LM4120A-1.800 LM4120A-2.048 LM4120A-2.500				±0.2	%
	LM4120-1.800 LM4120-2.048 LM4120-2.500				±0.5	%
TCV _{OUT} /°C	Temperature Coefficient	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		14	50	ppm/°c
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	$3.3V \le V_{IN} \le 12V$		0.0007	0.008 0.01	%/V
		0 mA ≤ I _{LOAD} ≤ 1 mA		0.03	0.08 0.17	
$\Delta V_{OUT}/\Delta I_{LOAD}$	Load Regulation	$1 \text{ mA} \le I_{LOAD} \le 5 \text{ mA}$		0.01	0.04 0.1	%/mA
		$-1 \text{ mA} \le I_{LOAD} \le 0 \text{ mA}$		0.04	0.12	
		$-5 \text{ mA} \le I_{LOAD} \le -1 \text{ mA}$		0.01		
	Dropout Voltage (Note 6)	$I_{LOAD} = 0 \text{ mA}$		45	65 80	mV
V_{IN} – V_{OUT}		I _{LOAD} = +1 mA		120	150 180	
		I _{LOAD} = +5 mA		180	210 250	
V _N	Output Noise Voltage (Note 8)	0.1 Hz to 10 Hz		20		μV_{PP}
		10 Hz to 10 kHz		36		μV_{PP}
I _S	Supply Current			160	250 275	μA
I _{ss}	Power-down Supply Current	Enable = $0.4V$ - $40^{\circ}C \le T_{J} \le +85^{\circ}C$ Enable = $0.2V$			1 2	μA
V _H	Logic High Input Voltage		2.4	2.4		V
V_L	Logic Low Input Voltage			0.4	0.2	V
I _H	Logic High Input Current			7	15	μA

Electrical Characteristics I M4120-1 8V 2 048V and 2

LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified V_{IN} = 3.3V, I_{LOAD} = 0, C_{OUT} = 0.01µF, T_A = T_j = 25°C. Limits with standard typeface are for T_j = 25°C, and limits in **boldface type** apply over the -40°C $\leq T_A \leq$ +85°C temperature range. (Continued)

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
IL	Logic Low Input Current			0.1		μA
I _{sc}	Short Circuit Current	$V_{IN} = 3.3V, V_{OUT} = 0$		15		
			6		30	mA
		$V_{IN} = 12V, V_{OUT} = 0$		17		IIIA
			6		30	
Hyst	Thermal Hysteresis	-40°C ≤ T _A ≤ 125°C		0.5		mV/V
	(Note 7)					
ΔV_{OUT}	Long Term Stability	1000 hrs. @ 25°C		100		ppm
	(Note 9)					

Electrical Characteristics

LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified $V_{IN} = V_{OUT}$ + 1V, $I_{LOAD} = 0$, $C_{OUT} = 0.01 \mu F$, $T_A = T_j = 25^{\circ} C$. Limits with standard typeface are for $T_j = 25^{\circ} C$, and limits in **boldface type** apply over the $-40^{\circ} C \le T_A \le +85^{\circ} C$ temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{out}	Output Voltage Initial Accuracy LM4120A-3.000 LM4120A-3.300 LM4120A-4.096 LM4120A-5.000				±0.2	%
	LM4120-3.000 LM4120-3.300 LM4120-4.096 LM4120-5.000				±0.5	%
TCV _{OUT} /°C	Temperature Coefficient	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		14	50	ppm/°c
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	$(V_{OUT} + 1V) \le V_{IN} \le 12V$		0.0007	0.008 0.01	%/V
$\Delta V_{OUT}/\Delta I_{LOAD}$	Load Regulation	$0 \text{ mA} \le I_{LOAD} \le 1 \text{ mA}$		0.03	0.08 0.17	%/mA
		$1 \text{ mA} \le I_{LOAD} \le 5 \text{ mA}$		0.01	0.04 0.1	
		$-1 \text{ mA} \le I_{LOAD} \le 0 \text{ mA}$		0.04	0.12	
		$-5 \text{ mA} \le I_{LOAD} \le -1 \text{ mA}$		0.01		
V_{IN} – V_{OUT}		$I_{LOAD} = 0 \text{ mA}$		45	65 80	
	Dropout Voltage (Note 6)	$I_{LOAD} = +1 \text{ mA}$		120	150 180	mV
		I _{LOAD} = +5 mA		180	210 250	
V _N	Output Noise Voltage (Note 8)	0.1 Hz to 10 Hz		20		μV_{PP}
		10 Hz to 10 kHz		36		μV_{PP}
I _S	Supply Current			160	250 275	μA
I _{ss}	Power-down Supply Current	Enable = $0.4V$ - $40^{\circ}C \le T_{J} \le +85^{\circ}C$ Enable = $0.2V$			1 2	μA

Electrical Characteristics

LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified $V_{IN} = V_{OUT} + 1V$, $I_{LOAD} = 0$, $C_{OUT} = 0.01 \mu F$, $T_A = T_j = 25^{\circ}C$. Limits with standard typeface are for $T_j = 25^{\circ}C$, and limits in **boldface type** apply over the $-40^{\circ}C \le T_A \le +85^{\circ}C$ temperature range. (Continued)

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _H	Logic High Input Voltage			2.4		V
			2.4			
V _L	Logic Low Input Voltage			0.4		V
					0.2	
I _H	Logic High Input Current			7	15	μA
I _L	Logic Low Input Current			0.1		μA
		$V_{OUT} = 0$		15		
	Short Circuit Current		6		30	mA
I _{SC}	Short Circuit Current	$V_{IN} = 12V, V_{OUT} = 0$		17		IIIA
			6		30	
Hyst	Thermal Hysteresis (Note 7)	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$		0.5		mV/V
ΔV_{OUT}	Long Term Stability (Note 9)	1000 hrs. @ 25°C		100		ppm

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

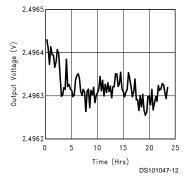
Note 2: Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by T_{JMAX} (maximum junction temperature), θ_{J-A} (junction to ambient thermal resistance) and T_A (ambient temperature). The maximum power dissipation at any temperature is: PDiss_{MAX} = $(T_{JMAX} - T_A)/\theta_{J-A}$ up to the value listed in the Absolute Maximum Ratings.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

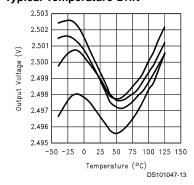
Note 4: Typical numbers are at 25°C and represent the most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Quality Level (AOQL).

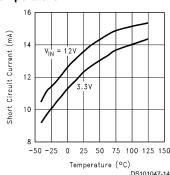
Note 6: Dropout voltage is the differential voltage between V_{OUT} and V_{IN} at which V_{OUT} changes \leq 1% from V_{OUT} at $V_{IN} = 3.3V$ for 1.8V, 2.0V, 2.5V and $V_{OUT} + 1V$ for others. For 1.8V option, dropout voltage is not guaranteed over temperature. A parasitic diode exists between input and output pins; it will conduct if V_{OUT} is pulled to a higher voltage than V_{IN} .


Note 7: Thermal hysteresis is defined as the change in +25°C output voltage before and after exposing the device to temperature extremes.

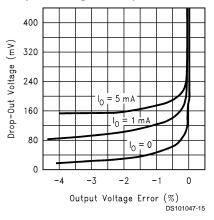
Note 8: Output noise voltage is proportional to V_{OUT} . V_N for other voltage option is calculated using $(V_{N(1.8V)}/1.8) * V_{OUT}$. V_N (2.5V) = $(36\mu V_{PP}/1.8) * 2.5 = 46\mu V_{PP}$.


Note 9: Long term stability is change in V_{REF} at 25°C measured continuously during 1000 hrs.

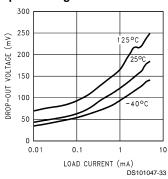
LM4120 Typical Operating Characteristics Unless otherwise specified, V_{IN} = 3.3V, V_{OUT} = 2.5V, I_{LOAD} = 0, C_{OUT} = 0.022 μ F, T_A = 25°C and V_{EN} = V_{IN} .


Long Term Drift

Typical Temperature Drift

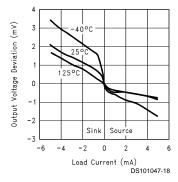


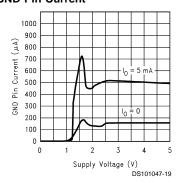
Short Circuit Current vs Temperature

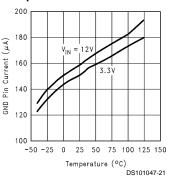


LM4120 Typical Operating Characteristics Unless otherwise specified, V_{IN} = 3.3V, V_{OUT} = 2.5V, I_{LOAD} = 0, C_{OUT} = 0.022 μ F, T_A = 25°C and V_{EN} = V_{IN} . (Continued)

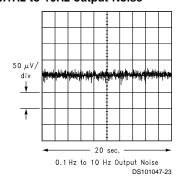
Dropout Voltage vs Output Error

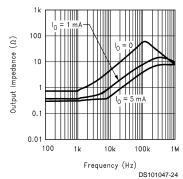

Dropout Voltage vs Load Current


Line Regulation

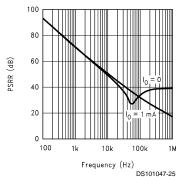

Load Regulation

GND Pin Current

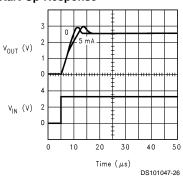

GND Pin Current at No Load vs Temperature


GND Pin Current vs Load

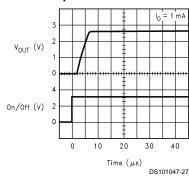
0.1Hz to 10Hz output Noise

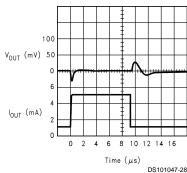


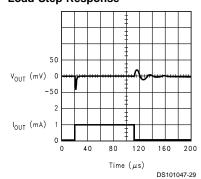
Output Impedance vs Frequency

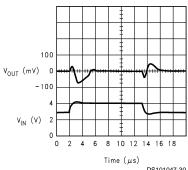


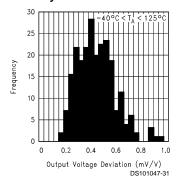
LM4120 Typical Operating Characteristics Unless otherwise specified, V_{IN} = 3.3V, V_{OUT} = 2.5V, I_{LOAD} = 0, C_{OUT} = 0.022 μ F, T_A = 25°C and V_{EN} = V_{IN} . (Continued)

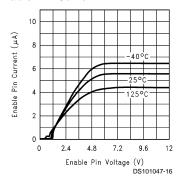

PSRR vs Frequency


Start-Up Response


Enable Response


Load Step Response


Load Step Response


Line Step Response

Thermal Hysteresis

Enable Pin Current

Pin Functions

Output (Pin 5): Reference Output.

Input (Pin 4): Positive Supply.

Ground (Pin 2): Negative Supply or Ground Connection.

Enable (Pin 3):Pulled to input for normal operation. Forcing this pin to ground will turn-off the output.

REF (Pin 1): REF Pin. This pin should be left unconnected.

Application Hints

The standard application circuit for the LM4120 is shown in Figure 1. It is designed to be stable with ceramic output capacitors in the range of $0.022\mu F$ to $0.047\mu F$. Note that $0.022\mu F$ is the minimum required output capacitor. These capacitors typically have an ESR of about 0.1 to 0.5Ω . Smaller ESR can be tolerated, however larger ESR can not. The output capacitor can be increased to improve load transient response, up to about $1\mu F$. However, values above $0.047\mu F$ must be tantalum. With tantalum capacitors, in the $1\mu F$ range, a small capacitor between the output and the reference pin is required. This capacitor will typically be in the 50pF range. Care must be taken when using output capacitors of $1\mu F$ or larger. These application must be thoroughly tested over temperature, line and load.

An input capacitor is typically not required. However, a $0.1\mu F$ ceramic can be used to help prevent line transients from entering the LM4120. Larger input capacitors should be tantalum or aluminium.

The reference pin is sensitive to noise, and capacitive loading. Therefore, the PCB layout should isolate this pin as much as possible.

The enable pin is an analog input with very little hysteresis. About $6\mu A$ into this pin is required to turn the part on, and it must be taken close to GND to turn the part off (see spec. table for thresholds). There is a *minimum* slew rate on this pin of about $0.003V/\mu S$ to prevent glitches on the output. All of these conditions can easily be met with ordinary CMOS or TTL logic. If the shutdown feature is not required, then this pin can safely be connected directly to the input supply. Floating this pin is not recommended.

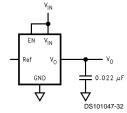
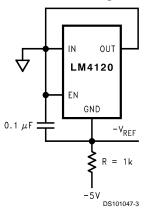


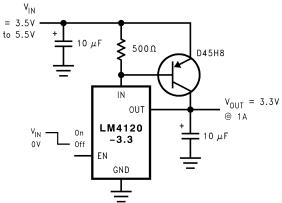
FIGURE 1.

Input Capacitor

Noise on the power-supply input can effect the output noise, but can be reduced by using an optional bypass capacitor between the input pin and the ground.

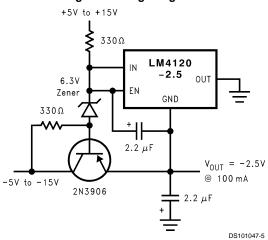

Printed Circuit Board Layout Consideration

The mechanical stress due to PC board mounting can cause the output voltage to shift from its initial value. References in SOT packages are generally less prone to assembly stress than devices in Small Outline (SOIC) package.

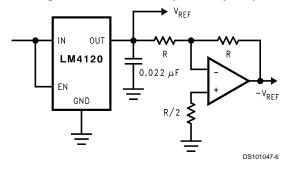

To reduce the stress-related output voltage shifts, mount the reference on the low flex areas of the PC board such as near to the edge or the corner of the PC board.

Typical Application Circuits

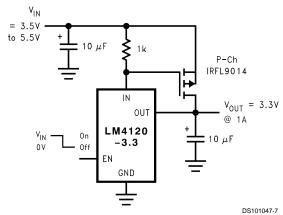
Voltage Reference with Negative Output

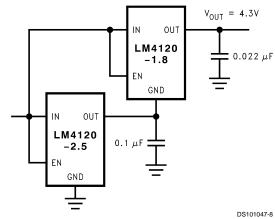


Precision High Current Low Dropout Regulator



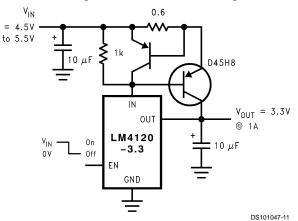
DS101047-4


Precision High Current Negative Voltage Regulator

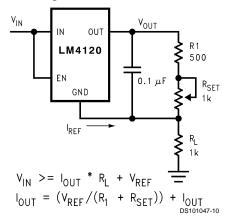

Voltage Reference with Complimentary Output

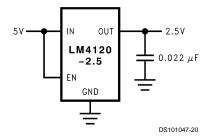
Precision High Current Low Droput Regulator

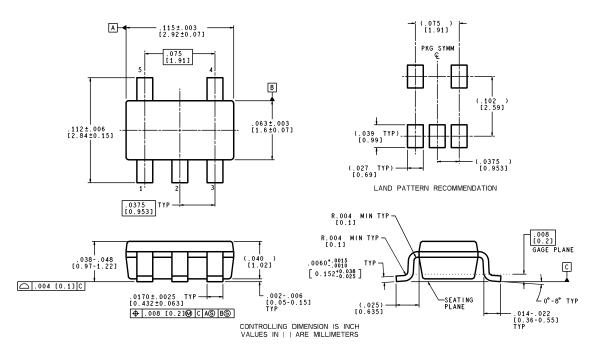

Stacking Voltage References


9

Typical Application Circuits (Continued)


Precision Voltage Reference with Force and Sense Output


Precision Regulator with Current Limiting Circuit


Programmable Current Source

Power Supply Splitter

Physical Dimensions inches (millimeters) unless otherwise noted

MF05A (Rev A)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560

Fax: 81-3-5639-7507