

August 1985

Revised February 2000

SEMICONDUCTOR

DM74ALS640A Inverting Octal Bus Transceiver

General Description

This inverting octal bus transceiver is designed for asynchronous two-way communication between data busses. This device transmits data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (G) can be used to disable the device so the busses are effectively isolated.

VCC G B1 B2 B3 B4 B5 B6 B7 B8 120 119 118 117 116 115 114 113 112 11

Features

Advanced Oxide-isolated Ion-implanted Schottky TTL process

M74ALS640A Inverting Octal Bus

Transceive

- Switching performance is guaranteed over full temperature and V_{CC} supply range
- Switching performance specified at 50 pF
- PNP input design reduces input loading

Ordering Code:

Order Number	Package Number	Package Description						
DM74ALS640AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide						
DM74ALS640AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide						
Devices also available in	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

-111

18

١g 110

A8 GND

17

Connection Diagram

Logic Diagram

Function Table

12 T₃ 14 15

> A2 A3 A4 A5 A6 Α7

DIR A1

Cor Inp	Operation		
G	DIR		
L	L	B Data to A Bus	
L	н	A Data to B Bus	
Н	X	Isolation	

L = LOW Logic Level H = HIGH Logic Level

WWW.DZSC.COM X = Either LOW or HIGH Logic Level

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	
Control Inputs	7V
I/O ports	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Typical θ _{JA}	
N Package	53.0°C/W
M Package	72.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	rmbol Parameter		Тур	Max	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	V	
V _{IH}	HIGH Level Input Voltage	2			V	
V _{IL}	LOW Level Input Voltage			0.8	V	
I _{OH}	HIGH Level Output Current			-15	mA	
I _{OL}	LOW Level Output Current			24	mA	
T _A	Operating Free Air Temperature Range	0		70	°C	

Electrical Characteristics

Symbol	Parameter	Tes	Test Conditions			Max	Units
VIC	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 m$	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level	$V_{CC} = 4.5 \text{ to } 5.5 \text{V}$	I _{OH} = -0.4 mA	$V_{CC} - 2$			
	Output Voltage	$V_{CC} = Min$	I _{OH} = - 3 mA	2.4	2.9		V
			I _{OH} = Max	2			
V _{OL}	LOW Level	V _{CC} = Min	I _{OL} = 12 mA		0.25	0.4	V
	Output Voltage		I _{OL} = 24 mA		0.35	0.5	v
l _l	Input Current at Maximum	V _{CC} = Max.	I/O Ports, V _I = 5.5V			100	
	Input Voltage		Control Inputs, $V_I = 7V$			100	μΑ
IIH	HIGH Level Input Current	V _{CC} = Max, V _I = 2.7V	V _{CC} = Max, V _I = 2.7V (Note 2)			20	μΑ
IIL	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$	V _{CC} = Max, V _I = 0.4V (Note 2)			-100	μΑ
I _O	Output Drive Current	$V_{CC} = Max, V_{O} = 2.25$	$V_{CC} = Max, V_O = 2.25V$			-112	mA
I _{CC}	Supply Current	V _{CC} = Max	Outputs HIGH		19	45	
			Outputs LOW		23	55	mA
			Outputs Disabled		17	50	1

Note 2: For I/O ports, I_{IH} and I_{IL}parameters include the 3-STATE output current (I_{OZL} and I_{OZH}).

Switching Characteristics

Symbol	Parameter	From (Input)	To (Output)	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A or B	B or A	$V_{CC} = 4.5 \text{ to } 5.5\text{V},$ $C_{L} = 50 \text{ pF},$ $R1 = R2 = 500\Omega$	1	11	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A or B	B or A		1	10	ns
t _{PZH}	Output Enable Time to HIGH Level Output	G	A or B		4	21	ns
t _{PZL}	Output Enable Time to LOW Level Output	G	A or B		5	24	ns
t _{PHZ}	Output Disable Time from HIGH Level Output	G	A or B		1	10	ns
t _{PLZ}	Output Disable Time from LOW Level Output	G	A or B		3	15	ns

