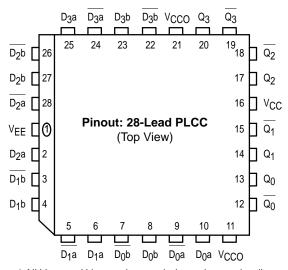
Quad Differential AND/NAND


The MC10E404/100E404 is a 4-bit differential AND/NAND device. The differential operation of the device makes it ideal for pulse shaping applications where duty cycle skew is critical. Special design techniques were incorporated to minimize the skew between the upper and lower level gate inputs.

Because a negative 2-input NAND function is equivalent to a 2-input OR function, the differential inputs and outputs of the device also allow for its use as a fully differential 2 input OR/NOR function.

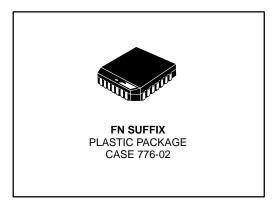
The output RISE/FALL times of this device are significantly faster than most other standard ECLinPS devices resulting in an increased bandwidth.

The differential inputs have clamp structures which will force the Q output of a gate in an open input condition to go to a LOW state. Thus, inputs of unused gates can be left open and will not affect the operation of the rest of the device. Note that the input clamp will take affect only if both inputs fall 2.5V below V_{CC} .

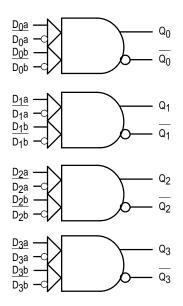
- Differential D and Q
- 700ps Max. Propagation Delay
- High Frequency Outputs
- Extended 100E VFF Range of 4.2V to 5.46V
- Internal 75kΩ Input Pulldown Resistors

 * All VCC and VCCO pins are tied together on the die.

PIN NAMES


Pin	Function
D[0:4], D[0:4]	Differential Data Inputs
Q[0:4], Q[0:4]	Differential Data Outputs

FUNCTION TABLE


Da	Db	Q	Da	Db	Q
L	L	L	L	L	L
L	Н	L	L	Н	Н
Н	L	L	Н	L	Н
Н	Н	Н	Н	Н	Н

MC10E404 MC100E404

QUAD DIFFERENTIAL AND/NAND

LOGIC DIAGRAM

12/93

© Motorola, Inc. 1996 REV 2

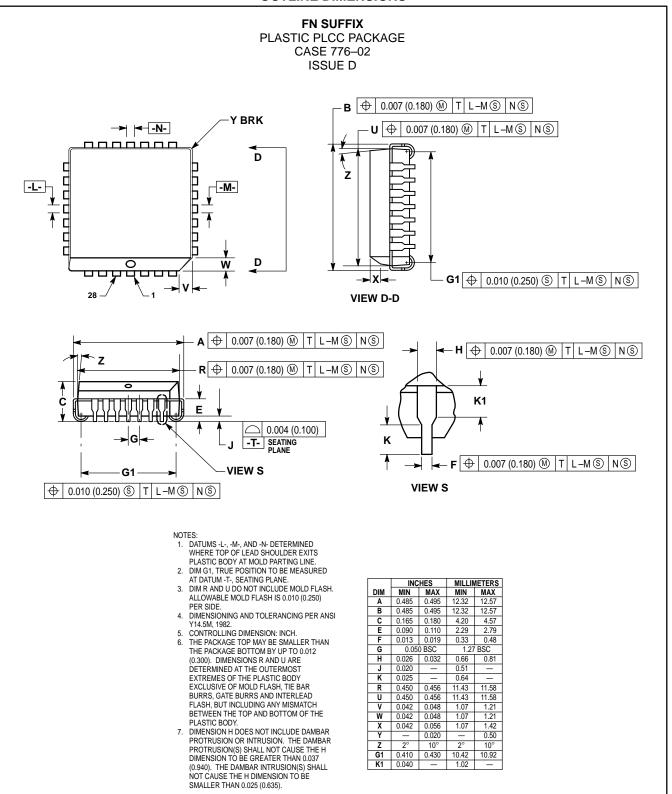
MC10E404 MC100E404

DC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = V_{CCO} = GND$)

			0°C			25°C			85°C			
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
lН	Input HIGH Current			150			150			150	μΑ	
IEE	Power Supply Current 10E 100E		106 106	127 127		106 106	127 127		106 122	127 146	mA	
V _{PP} (DC)	Input Sensitivity	50			50			50			mV	1
VCMR	Common Mode Range	-1.5		0	-1.5		0	-1.5		0	V	2

AC CHARACTERISTICS (VEE= VEE(min) to VEE(max); VCC = VCCO = GND)

			0°C			25°C			85°C			
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
tPLH	Propagation Delay to Output										ps	
tPHL	Da (Diff)	350	475	650	350	475	650	350	475	650		
	Da (SE)	300	475	700	300	475	700	300	475	700		
	Db (Diff)	375	500	675	375	500	675	375	500	675		
	Db (SE)	325	500	725	325	500	725	325	500	725		
tSKEW	Within-Device Skew		50			50			50		ps	1
V _{PP} (AC)	Minimum Input Swing	150			150			150			mV	2
t _r	Rise/Fall Time											
t _f	20 - 80%	150		400	150		400	150		400	ps	


^{1.} Within-device skew is defined as identical transitions on similar paths through a device.

MOTOROLA 2-2

Differential input voltage required to obtain a full ECL swing on the outputs.
V_{CMR} is referenced to the most positive side of the differential input signal. Normal operation is obtained when the input signals are within the V_{CMR} range and the input swing is greater than V_{PP MIN} and < 1.0V.

^{2.} Minimum input swing for which AC parameters are guaranteed.

OUTLINE DIMENSIONS

MC10E404 MC100E404

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com