

μPD7810/11 8-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH A/D CONVERTER

Description

The μ PD7810 and μ PD7811 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The device's internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the μ PD7810/11 appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-ROM, 256-byte RAM with an 8-channel A/D converter, a multifunction 16-bit timer/ event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing.

The μ PD7811 is the mask-ROM high volume production device embedded with custom customer program. The μ PD7810 is a ROM-less version for prototyping and small volume production. The μ PD78PG11E is a piggy-back EPROM version for design development.

Features

- NMOS silicon gate technology requiring +5 V power supply
- Complete single-chip microcomputer
 - 16-bit ALU
 - 4K x 8 ROM
 - 256-byte RAM
- 44 I/O lines
- Two zero-cross detect inputs
- Two 8-bit timers
- □ Expansion capabilities
 - 8085A bus-compatible
 - 60K-byte external memory address range
- 8-channel, 8-bit A/D converter
 - Autoscan mode
 - Channel select mode
- Full duplex USART
- Synchronous and asynchronous
- 153 instructions
 - 16-bit arithmetic, multiply and divide
- \Box 1 μ s instruction cycle time (12 MHz operation)
- Prioritized interrupt structure
 3 external
 - 8 internal
- □ Standby function
- □ On-chip clock generator
- □ 64-pin plastic QUIP or shrink DIP

Pin Configuration

PA _o [1	\sim	64 🛛 V _{cc}	
PA, [63 🗖 V _{DD}	
PA ₂	3		62 🖸 PD,	
PA3 [4		61 🗖 PD ₆	
PA. [5		60] PD₅	
PA _s	6		59 D PD₄	
PA ₆	7		58 🖸 PD3	
PA, [8		57 🗍 PD2	
РВ, С	9		56 D PD1	
РВ, 🗖			55 D PD。	
PB ₂	11		54 🗇 PF7	
PB ₃	12		53 🗋 PF6	
PB4 C	13		52 PFs	
PB₅ □	14		51 🔁 PF4	
PB ₆		11	50 🗗 PF3	
PB, [нРD7810/11	49 🗖 PF2	
PC, [PD7	48 PF,	
		a	47 D PFo	
PC ₂			46 🗋 ALE	
PC ₃			45 🖸 WR	
PC ₄			44 🗋 RD	
PC _s _			43 AV _{cc}	
PC ₆ _			42 VAREF	
PC ₇	t i		41 AN7	
NMI C			40 🛛 AN ₆	
			39 🗋 AN ₅	
MODE1			38 🗋 AN4	
RESET			37 AN3	
	1		36 AN ₂	
X ₂	1		35 AN1	
,×,□			34 AN	
V _{ss} [32		33 🗍 AV _{SS}	
				 49-000601A

Ordering Information

Part Number	Package Type	Max Frequency of Operation		
μPD7810G-36 μPD7811G-36	64-pin plastic QUIP	12 MHz		
μPD7810CW μPD7811CW	64-pin plastic shrink DIP	12 MHz		

Pin Identification

No.	Symbol	Function
1-8	PA0-PA7	Port A I/O
9-16	PB0-PB7	Port B I/O
17	PC ₀ /TxD	Port C I/O line O/Transmit data output
18	PC ₁ /RxD	Port C I/O line 1/Receive data input
19	PC ₂ /SCK	Port C I/O line 2/Serial clock I/O
20	PC3/TI/ INT2	Port C I/O line 3/Timer input/Interrupt request 2 input
21	PC ₄ /TO	Port C I/O line 4/Timer output
22	PC5/CI	Port C I/O line 5/Counter input
23, 24	PC ₆ , PC ₇ / CO ₀ , CO ₁	Port C I/O lines 6, 7/Counter outputs 0, 1
25	NMI	Nonmaskable interrupt input
26	INT1	Interrupt request 1 input
27	MODE1/M1	Mode 1 input/Memory cycle 1 output
28	RESET	Reset input
29	MODEO/ IO/M	Mode 0 input/I/O/Memory output
30, 31	X2, X1	Crystal connections 1, 2
32	V _{SS}	Ground
33	AVSS	Port T threshold voltage input
34-41	AN0-AN7	A/D converter analog inputs 0-7
42	VAREF	A/D converter reference voltage
43	AVCC	A/D converter power supply
44	RD	Read strobe output
45	WR	Write strobe output
46	ALE	Address latch enable output
47-54	PF ₀ -PF ₇	Port F I/O/Expansiom memory address bu (bits 8-15)
55-62	PD ₀ -PD ₇	Port D I/O/Expansion memory address/ data bus
63	V _{DD}	RAM backup power supply
64	V _{CC}	5 V power supply

Pin Functions

PA0-PA7 [Port A]

Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs.

PB0-PB7 [Port B]

Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs.

PC0-PC7 [Port C]

Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input.

TxD [Transmit Data]. Serial data output terminal.

RxD [Receive Data]. Serial data input terminal.

SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.

TI [Timer Input]. Timer input terminal.

INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zero-cross detection terminal.

TO [**Timer Output**]. The output of TO is a square wave with a frequency determined by the timer/counter.

CI [Counter Input]. External pulse input to timer/event counter.

 CO_0 , CO_1 [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter.

PD₀-PD₇ [Port D]

Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.

PF0-PF7 [Port F]

Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits.

AN0-AN7

These are the eight analog inputs to the A/D converter. AN_4 - AN_7 can also be used as a digital input for falling edge detection.

AV_{SS} [A/D Converter Power Ground]

 $\mathrm{AV}_{\mathrm{SS}}$ is the ground potential for the A/D converter power supply.

NMI [Nonmaskable Interrupt]

Falling-edge-triggered nonmaskable interrupt input.

INT1 [Interrupt Request 1]

INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal.

RESET [Reset]

When the $\overrightarrow{\text{RESET}}$ input is brought low, it initializes the μ PD7810/11.

MODE1, MODE0 [Mode 1, 0]

The MODE1 and MODE0 inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODE0 outputs the IO/M signal.

VAREF [A/D Converter Reference]

 $V_{\mbox{\scriptsize AREF}}$ set the upper limit for the A/D converter's conversion range.

AV_{CC} [A/D Converter Power]

This is the power supply voltage for the A/D converter.

RD [Read Strobe]

The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset.

WR [Write Strobe]

The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset.

ALE [Address Latch Enable]

The ALE output latches the address signal to the output of PD₀-PD₇.

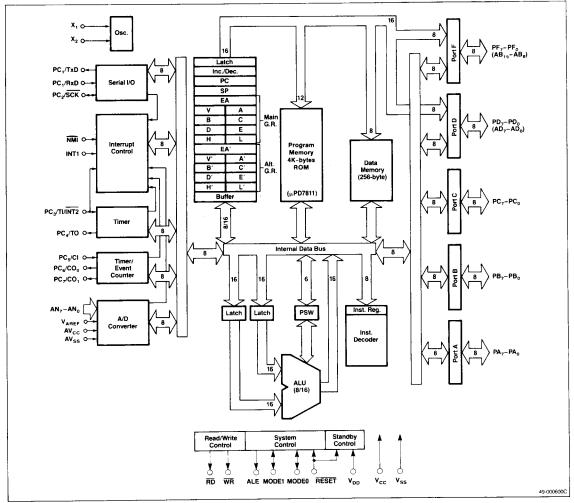
X1, X2 [Crystal Connections 1, 2]

X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock.

V_{SS} [Ground]

Ground potential.

V_{DD} [Backup Power]


Backup power for on-chip RAM.

V_{CC} [Power Supply]

+5 V power supply.

Block Diagram

Ň

Functional Description

Memory Map

The μ PD7811 can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4095) and RAM (65280-65535), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the μ PD7811.

Input/Output

The μ PD7810/11 has 8 analog input lines (AN₀-AN₇), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN₄-AN₇).

Analog Input Lines. AN_0-AN_7 are configured as analog input lines for on-chip A/D converter.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs.

Port D. Port D can be programmed as a byte input or a byte output.

 AN_4 - AN_7 . The high order analog input lines, AN_4 - AN_7 , can be used as digital input lines for falling edge detection.

Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter.

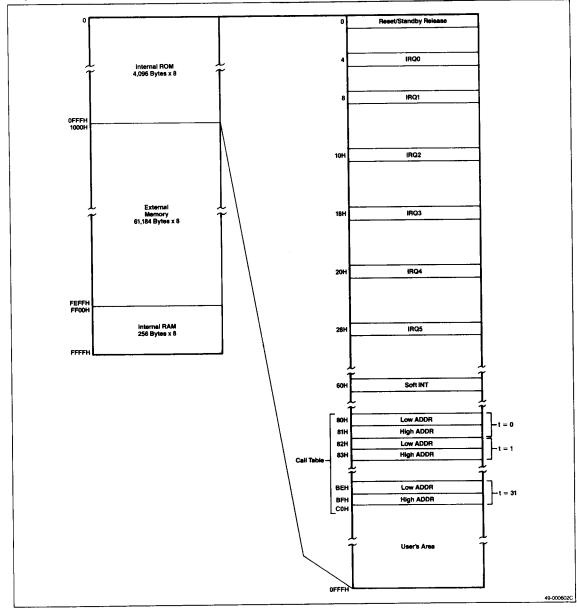
Memory Expansion. In addition to the single-chip operation mode, the μ PD7811 has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion		Port Configuration
None	Port D	I/O port
	Port F	I/O port
256 Bytes	Port D	Multiplexed address/data bus
	Port F	I/O port
4K Bytes	Port D	Multiplexed address/data bus
	Port F ₀ -F ₃	Address bus
	Port F ₄ -F ₇	I/O port
16K Bytes	Port D	Multiplexed address/data bus
	Port F ₀ -F ₅	Address bus
	Port F ₆ -F ₇	I/O port
60K Bytes	Port D	Multiplexed address/data bus
-	Port F	Address bus

Timers

There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as an 8-bit timer with 8-bit prescaler. The timer can be software set to increment at intervals of four machine cycles (1 μ s at 12 MHz operation) or 128 machine cycles (32 μ s at 12 MHz), or to increment on receipt of a pulse at TI. Figure 2 shows the block diagram for the timer.


Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure

- 3) can be used for the following operations:
- Interval timer
- External event counter
- Frequency measurement
- Pulse width measurement
- Programmable square-wave output

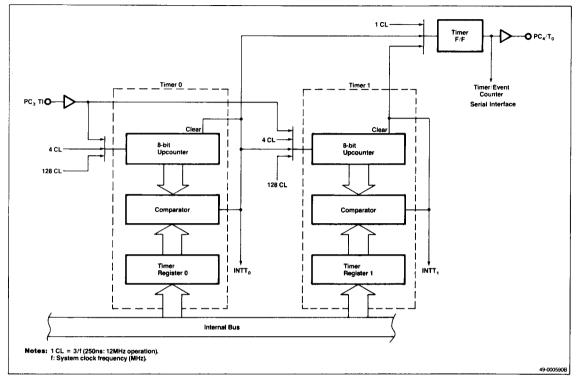


Figure 1. Memory Map

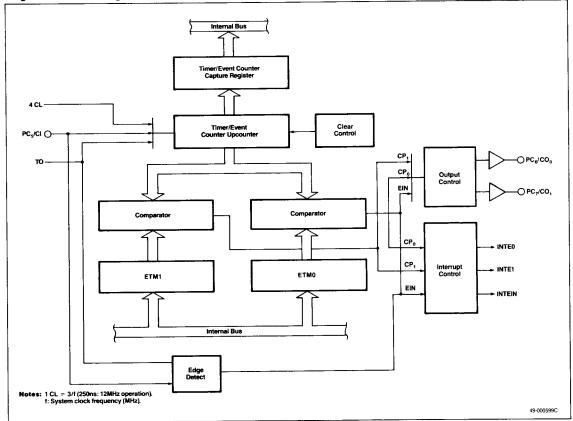


Figure 2. Timer Block Diagram

8-Bit A/D Converter

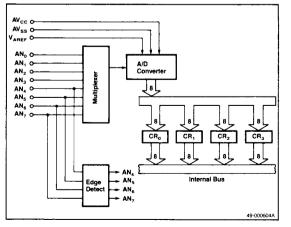
- 8 input channels
- 4 conversion result registers
- 2 powerful operation modes
 - Autoscan mode
 - Channel select mode
- Successive approximation technique
- Absolute accuracy: ±1.5 LSB (±0.6%)
- Conversion range: 0 to 5 V
- Conversion time: 48 µs
- Interrupt generation

Analog/Digital Converter

The μ PD7810/11 features an 8-bit, high speed, high accuracy A/D converter. The A/D converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CR₀-CR₃). The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CR₀-CR₃. In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion result stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the A/D converter.

Interrupt Structure

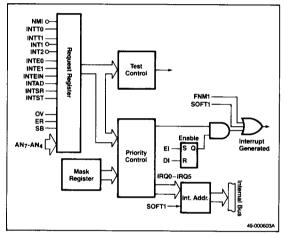
There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 5.

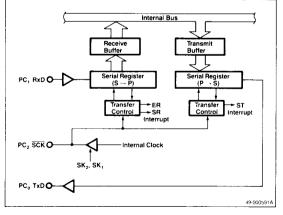

Standby Function

The standby function saves the top 32 bytes of RAM with backup power (V_{DD}) if the main power (V_{CC}) fails. On power-up, you can check the standby flag (SB) to determine whether recovery was made from standby mode or from a cold start.

Interrupt Request	Interrupt Address	Type of Interrupt	internal/ External
IRQO 4		NMI (Nonmaskable interrupt)	Ext
IRQ1	8	INTTO (Coincidence signal from timer 0)	Int
		INTT1 (Coincidence signal from timer 1)	
IRQ2	16	INT1 (Maskable interrupt)	Ext
		INT2 (Maskable interrupt)	
IRQ3	24	INTEO (Coincidence signal from timer/event counter)	Int
		INTE1 (Coincidence signal from timer/event counter)	
IRQ4	32	INTEIN (Falling signal of CI and TO counter)	int/Ext
		INTAD (A/D converter interrupt)	
IRQ5	40	INTSR (Serial receive interrupt)	Int
		INST (Serial send interrupt)	

Table 2. Interrupt Sources

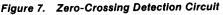


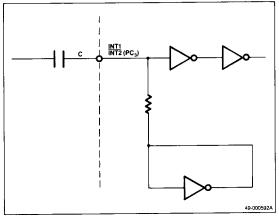

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Figure 6. Universal Signal Interface Block Diagram

Zero-Crossing Detector


The INT1 and $\overline{\text{INT2}}$ terminals (used common to TI and PC₃) can detect the zero-crossing point of low-frequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.


The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of approximately 1-3 VAC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins.

For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated.

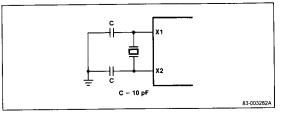
For the $\overline{INT2}$ pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and $\overline{INT2}$ interrupt is generated.

Absolute Maximum Ratings

Power supply volta	iges, V _{CC}	-0.5 V to +7.0 V
V _{DD}		-0.5 V to +7.0 V
	AV _{CC}	-0.5 V to +7.0 V
	AV _{SS}	-0.5 V to +0.5 V
Input voltage, V _I		-0.5 V to +7.0 V
Output voltage, V ₀		-0.5 V to +7.0 V
Reference input voltage, V _{AREF}		-0.5 V to V _{CC}
Operating temperature, T_{OPR} 10 MHz $\leq f_{XTAL} \leq$ 12 MHz		-10°C to +70°C
$f_{XTAL} \le 10 \text{ MHz}$	<u></u>	_40 °C to _85 °C
Storage temperatu	re, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum, rating conditions for extended periods may affect device reliability.

Operating Conditions


Oscillating Frequency	TA	V _{CC} , AV _{CC}	
$f_{XTAL} \le 10 \text{ MHz}$	-40 °C to +85 °C	+5.0 V ±10%	
$10 \text{ MHz} \le f_{\text{XTAL}} \le 12 \text{ MHz}$	-10°C to +70°C	$+5.0$ V $\pm 5\%$	

Capacitance

-		v _	v -	$V_{SS} = 0 V$
1.	=25 °C:	$V \cap C =$		V C C - U V

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Capacitance	CI			10	pF	$Af_{c} = 1 MHz.$
Output capacitance	C _O			20	pF	Unmeasured pins returned to 0 V.
I/O capacitance	CIO			20	pF	

Recommended XTAL Oscillation Circuit

DC Characteristics

 $T_{A} = -10^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5.0 \text{ V} \pm 5\%; V_{SS} = 0 \text{ V}; V_{DD} = V_{CC}$ - 0.8 V to V_{CC}

		L	imits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	VIL	0		0.8	۷	
Input high voltage	V _{IH1}	2.0		V _{CC}	۷	All except SCK, RESET, X1 and X2
	V _{IH2}	0.8 V _{CC}		V _{CC}	۷	SCK, X1, X2
	V _{IH3}	0.8 V _{DD}		V _{CC}	۷	RESET
Output low voltage	V _{OL}			0.45	۷	$I_{OL} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	2.4			۷	$I_{0H} = -200 \mu A$
Data retention voltage	V _{DDDR}	3.2			۷	$V_{CC} = 0 V;$ RESET = V_{1L}
Input current	l _i			±200	μA	$\begin{array}{l} \text{INT1, TI(PC_3); +} \\ \text{0.45 V} \leq \text{V}_{\text{I}} < \\ \text{V}_{\text{CC}} \end{array}$
Input leakage current	ILI			±10	μA	$\begin{array}{l} \text{All except} \\ \text{INT, TI(PC_3)} \\ \text{0 } \text{V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}} \end{array}$
Output leakage current	ILO			±10	μA	$\begin{array}{l} +0.45 \text{ V} \leq \text{V}_0 \\ \leq \text{V}_{CC} \end{array}$
AV _{CC} supply current	AI _{CC}		6	12	mΑ	
V _{DD} supply current	IDD		1.5	3.5	mΑ	T _A = −40 to +85°C
				3.2	mA	$V_{CC} = V_{DD} =$ 5 V T _A = -10 to +70 °C
V _{CC} supply current	lcc		150	220	mA	$T_A = -40 \text{ to} +85 \text{ °C}; V_{CC} = V_{DD} = 5 \text{ V}$

Serial Operation

		Lin	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
SCK cycle time	t _{CYK}	1		μS	SCK input (1)
		500		ns	(2)
		2		μS	SCK output
SCK width low	t _{KKL}	750		ns	SCK input(1)
		200		ns	SCK input (2)
		900		ns	SCK output
SCK width high	^t ккн	750		ns	SCK input (1)
		200		ns	SCK input (2)
		900		пs	SCK output
RxD set-up time to SCK 1	t _{RXK}	80		ns	(1)
RxD hold time after	t _{KRX}		80	ns	(1)
SCK↓TxD delay time	t _{KTX}		210	ns	(1)

Note:

(1) 1x baud rate in asynchronous, synchronous, or I/O interface mode.

(2) 16x baud rate or 64x baud rate in asynchronous mode.

Zero-Cross Characteristics

		Limits			Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Zero-cross detection input	V _{ZX}	1	3	V ac, p-p	Ac coupled	
Zero-cross accuracy	A _{ZX}		±135	mV	60-Hz sine wave	
Zero-cross detection input frequency	fzx	0.05	1	kHz		

AC Characteristics

Read/Write Operation $V_{SS} = 0 V, V_{CC} - 0.8 V \le V_{DD} \le V_{CC}$

			Lim				
		fxtal =	10 MHz	fxtal =	12 MHz		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions (1)
RESET pulse width	t _{RP}	6.0		5.0		μS	
Interrupt pulse width	t _{IP}	3.6		3.0		μS	
Counter input pulse width	t _{CI}	600		500		ns	Event counter mode
	t _{Ci}	4.8		4.0		μS	Pulse width measurement mode
Timer input pulse width	t _{TI}	600		500		ns	
X1 Input cycle time	tCYC	100	250	83	250	ns	
Address set-up to ALE ↓	t _{AL}	100		65		ns	
Address hold after ALE	tLA	70		50		ns	
Address to RD ↓ delay time	t _{AR}	200		150		ns	
RD ↓ to address floating	tAFR		20		20	ns	
Address to data input	t _{AD}		480		360	ns	
ALE↓ to data input	tLDR		300		215	ns	
RD ↓ to data input	t _{RD}		250		180	ns	
ALE 1 to RD 1 delay time	t _{LR}	50		35		ns	
Data hold time to RD 1	t _{RDH}	0		0		ns	
RD 1 to ALE 1 delay time	t _{RL}	150		115		ns	
RD width low	t _{RR}	350		280		ns	Data read
		650		530		ns	Opcode fetch
ALE width high	tLL	160		125	_	ns	
M1 setup time to ALE	t _{ML}	100		65		ns	
M1 hold time after ALE	tLM	70		50		ns	
IO/M setup time to ALE	tıL	100		65		ns	
IO/M hold time after ALE	tLI	70		50		ns	
Address to ₩R ↓ delay	t _{AW}	200		150		ns	
ALE I to data output	tLDW		210		195	ns	
WR↓ to data output	twp		100		100	ns	
ALE I to WR I delay	tLW	50		35		ns	
Data set-up time to WR 1	t _{DW}	300		230		ns	
Data hold time to WR 1	twDH	130		95		ns	
WR 1 to ALE 1 delay time	twi	150		115		ns	
WR width low	tww	350		280		ns	

Note:

(1) Load capacitance: $C_L = 150 \text{ pF}.$

A/D Converter Characteristics

 $T_A = -10$ °C to +70 °C; $V_{CC} = AV_{CC} = 5.0 V \pm 5\%$; $V_{SS} = AV_{SS} = 0 V$; $V_{AREF} = AV_{CC} - 0.5 V \text{ to } AV_{CC}$

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Resolution		8			Bits	
Absolute accuracy				0.4% ± 1/2	LSB	T _A = −10 °C to +50 °C
				0.6% ±1/2	LSB	$T_{A} = -10 \text{ °C to} +70 \text{ °C (Note 1)}$
Conversion time	tCONV	576			tcyc	$\begin{array}{l} \textbf{83 ns} \leq \textbf{t}_{\text{CYC}} \leq \\ \textbf{110 ns} \end{array}$
		432			tcyc	$\begin{array}{l} \text{110 ns} \leq t_{\text{CYC}} \leq \\ \text{170 ns} \end{array}$
Sampling time	tsamp	96			tcyc	$\begin{array}{l} \text{83 ns} \leq t_{\text{CYC}} \leq \\ \text{110 ns} \end{array}$
		72			tcyc	$\begin{array}{l} 110 \text{ ns} \leq t_{\text{CYC}} \leq \\ 170 \text{ ns} \end{array}$
Analog input voltage	VIA	0		VAREF	۷	
Analog resistance	R _{AN}		1000		MΩ	
Analog reference current	AREF	0.2	0.5	1.5	mA	

Note:

(1) In case of $f_{XTAL} \le 10$ MHz, $T_A = -40$ °C to +85 °C.

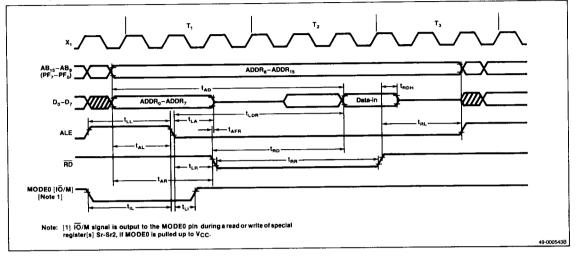
Bus Timing Depending on t_{CYC}

Symbol	Calculating Expression	Min/Max
t _{RP}	60T	Min
t _{TI}	6T	Min
t _{CI} (2)	6T	Min
t _{CI} (3)	48T	Min
t _{IP}	36T	Min
t _{AL}	2T — 100	Min
t _{LA}	T — 30	Min
t _{AR}	3T — 100	Min
t _{ad}	7T — 220	Мах
tldr	5T — 200	Max
t _{RD}	4T - 150	Max
tLR	T — 50	Min
t _{RL}	2T 50	Min
t _{RR}	4T – 50 (Data Read)	Min
	7T – 50 (Opcode Fetch)	
t _{LL}	2T - 40	Min
t _{AW}	3T -100	Min
tldw	T + 110	Мах
tLW	T — 50	Min
tow	4T — 100	Min
twoh	2T — 70	Min
twL	2T - 50	Min
tww	4T — 50	Min
tсүк	20T (SCK input)(1)	Min
	24T (SCK output)	
t _{KKL}	10T - 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	*
t _{KKH}	10T - 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	

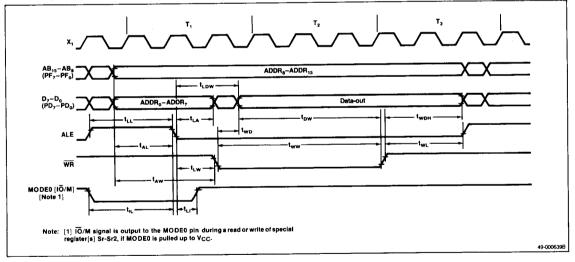
Note:

(1) 1x Baud rate in asynchronous, synchronous, or I/O interface mode.

 $T = t_{CYC} = 1/f_{XTAL}.$ The items not included in this list are independent of oscillator frequency (f_{XTAL}).

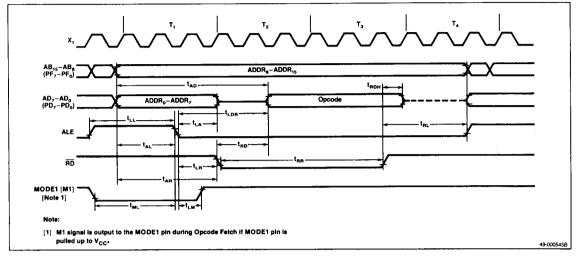

(2) Event counter mode.

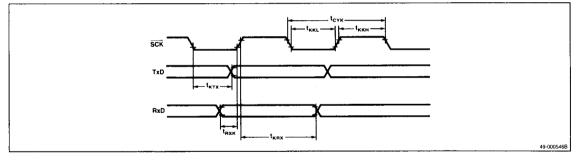
(3) Pulse width measurement mode.



Timing Waveforms

Read Operation


Write Operation


1.1

Timing Waveforms (cont)

Opcode Fetch Operation

Serial Operation Transmit/Receive Timing

Operand Format/Description

Format	Description
r r1 r2	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C
sr1	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TM ₀ , TM ₁ PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB,
sr2 sr3 sr4	CR0, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM ETM ₀ , ETM ₁ ECNT, ECPT
rp rp1 rp2 rp3	SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H
rpa rpa1 rpa2 rpa3	B, D, H, D+ , H + , D -, H - B, D, H B, D, H B, D, H, D +, H + , D -, H -, D + byte, H + A, H + B, H + EA, H + byte D, H, D + +, H + +, D + byte, H + A, H + B, H + EA, H + byte
wa	8-Bit immediate data
word byte bit	16-Bit immediate data 8-Bit immediate data 3-Bit immediate data
f	CY, HC, Z
irf	FNMI, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB

Instruction Set Symbol Definitions

Symbol	Description
-	Transfer direction, result
٨	Logical product (logical AND)
V	Logical sum (logical OR)
+	Exclusive OR
	Complement
•	Concatenation

Remarks

1. sr-sr4 (special register)	
PA = Port A	ECNT = Timer/Event
PB = Port B	Counter Upcounter
PC = Port C	ECPT = Timer/Event
PD = Port D	Counter Capture
PF = Port F	obulitor ouplairo
MA = Mode A	ETMM = Timer/Event
MB = Mode B	Counter Mode
MC = Mode C	EOM = Timer/Event
MCC = Mode Control C	Counter Output Mode
MF = Mode F	oblitter output mode
	TxB = TX Buffer
MM = Memory Mapping	$R_{XB} = RX Buffer$
	SMH = Serial Mode High
$TM_0 = Timer Register 0$	SML = Serial Mode Low
TM ₁ = Timer Register 1	MKH = Mask High
TMM = Timer Mode	
$ETM_0 = Timer/Event$	MKL = Mask Low
Counter Register 0	ANM = A/D Channel Mode
ETM ₁ = Timer/Event Counter	$CR_0 = A/D$ Conversion Result 0-3
Register 1	to CR ₃
2. rp-rp3 (register pair)	
SP = Stack Pointer	H = HL
B = BC	V = VA
D=DE	EA = Extended Accumulator
3. rpa-rpa3 (rp addressing)	
B = (BC)	D + + = (DE) + +
$\mathbf{D} = (\mathbf{D}\mathbf{E})$	H + + = (HL) + +
H = (HL)	D + byte = (DE) + byte
D + = (DE) +	H + A = (HL) + (A)
H - = (HL) +	H + B = (HL) + (B)
D - = (DE) -	H + EA = (HL) + (EA)
H - = (HL) -	H + byte = (HL) + byte
4. f (flag)	
	lalf Carry Z = Zero
5. irf (interrupt flag)	
NMI = NMi* Input	FEIN = INTFEIN
nam – nam mpar	FAD = INTFAD
FT0 = INTFT0	FSR = INTFSR
	FST = INTFST
FT1 = INTFT1	FST = INTFST ER = Error
F1 = INTF1	
F2 = INTF2	OV = Overflow
FE0 = INTFE0	AN_4 to $AN_7 = Analog Input 4-7$
FE1 = INTFE1	SB = Standby

Set	
ction	
istru	
-	

			18	83			
Mnemonic	Mnemonic Operand	Operation	83 76543210	B4 76543210	State(1)	Bytes	Skip Condition
8-Bit Data Transfer	ansfer				- -		
MOV	r1,A	(r1) ← (A)	0 0 0 1 1 1 ₂ 1 ₁ 1 ₀		4	-	
	A, r1	(A) ← (r1)	0 0 0 0 1 T ₂ T ₁ T ₀		4	-	
	*sr,A	$(sr) \leftarrow (A)$	0 1 0 0 1 1 0 1	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	₽	2	
	*A,Sr1	(A) ← (sr1)	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	₽	2	
	r,word	(r) (word)	0 1 1 1 0 0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	17	4	
			Low addr	High addr			
	word,r	word,r (word) 🗝 (r)	0 1 1 1 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	17	4	
			Low addr	High addr			
MVI	*r,byte	(r) ← byte	0 1 1 0 1 R ₂ R ₁ R ₀	Data	7	2	
		set L1 if r = A set L0 if r = L					L1 = 1 and $r = AL0 = 1$ and $r = L$
	sr2,byte	sr2,byte (sr2) ← byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	14	e	
			Data				
MVIW	*wa, byte	*wa, byte ((V)•(wa)) ← byte	0 1 1 1 0 0 0 1	Offset	t	e	
			Data				
MVIX	*rpa1,byte	*rpa1,byte (rpa1) byte	0 1 0 0 1 0 A ₁ A ₀	Data	10	2	
STAW	*wa	((V)•(wa)) → A	0 1 1 0 0 0 1 1	Offset	10	2	
LDAW	*wa	(A) ← ((V)•(wa))	0 0 0 0 0 0 1	Offset	9	2	
STAX	*rpa2	(rpa2) \leftarrow (A)	A ₃ 0 1 1 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
LDAX	*rpa2	(A) ← ((rpa2))	A ₃ 0 1 0 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
EXX		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 0 0 0 1		4	-	
EXA		$(V) \leftrightarrow (V'), (A) \leftrightarrow (A'), (EA) \leftrightarrow (EA')$	0 0 0 1 0 0 0 0		4	-	
EXH		$(H) \leftrightarrow (H), (L) \leftrightarrow (L)$	0 1 0 1 0 0 0 0		4	-	
16-Bit Data Transfer	fransfer						
BLOCK	Q	((DE) \leftarrow ((HL)),(DE) \leftarrow (DE + 1), (HL) \leftarrow (HL) + 1, (C) \leftarrow (C) - 1 End if borrow	0 0 1 1 0 0 0 1		13 × (C + 1)	F	
DMOV	rp3, EA	$(rp3_{L}) \leftarrow (EAL), (rp3_{H}) \leftarrow (EAH)$	1 0 1 1 0 1 P ₁ P ₀		4	-	
	EA ro3	/EAL) + //m3-//EAU) + //m3-/				Ŧ	

4

			= 1	2 1			Skin
Mnemonic	Mnemonic Operand	Operation	7 6 5 4 3 2 1 0	76543210	State(1)	Bytes	Condition
16-Bit Data 1	16-Bit Data Transfer (cont)						
DMOV	sr3, EA	(sr3) (EA)	0 1 0 0 1 0 0 0	1 1 0 1 0 0 1 U ₀	14	2	
		(EA) +- (Sr4)	0 1 0 0 1 0 0 0	1 1 0 0 0 0 V ₁ V ₀	14	2	
SBCD			0 1 1 1 0 0 0 0	0 0 0 1 1 1 1 0	20	4	
			Low addr	addr			
SDED	word	$(word) \leftarrow (E), (word + 1) \leftarrow (D)$	0 1 1 1 0 0 0 0 0	0 0 1 0 1 1 1 0 Hinh addr	20	4	
SHLD	word	(word) \leftarrow (L), (word + 1) \leftarrow (H)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 0	20	4	
			Low addr	High addr			
SSPD	word	$(word) \leftarrow (SP_L).(word + 1) \leftarrow (SP_H)$	0 1 1 1 0 0 0 0	0 0 0 0 1 1 1 0	20	4	
			Low addr	High addr			
STEAX	гра3	((rpa3)) ← (EAL),((rpa3) + 1 ← (EAH)		1 0 0 1 C ₃ C ₂ C ₁ C ₀	14/20(3)	e,	
	word	$(C) \leftarrow (mord) (R) \leftarrow (mord + 1)$	0 1 1 1 0 0 0 0	0 0 0 1 1 1 1 1	20	4	
			Low addr				
LDED	word	$(E) \leftarrow (word), (D) \leftarrow (word + 1)$	0 1 1 1 0 0 0 0	0 0 1 0 1 1 1 1	20	4	
			Low addr	High addr			
LHLD	word	$(L) \leftarrow (word), (H) \leftarrow (word + 1)$	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 1 1	20	4	
			Low addr	High addr			
LSPD	word	$(SP_L) \leftarrow (word), (SP_H) \leftarrow ((word) + 1)$	0 1 1 1 0 0 0 0	0 0 0 0 1 1 1 1	20	4	
			Low addr	High addr			
LDEAX	rpa3	(EAL)	0 1 0 0 1 0 0 0	1 0 0 0 C ₃ C ₂ C ₁ C ₀	14/20(3)	ო	
			Data(4)		Ş	,	
PUSH	rp1	$((SP) - 1) \leftarrow (rp1_H) ((SP) - 2) \leftarrow (rp1_L)$ $(SP) \leftarrow (SP) - 2$	$1 0 1 1 0 0_2 0_1 0_0$		<u>5</u>	-	
POP	rp1		1 0 1 0 0 0 ₂ 0 ₁ 0 ₀		9	-	1
LXI	*rp2,worc	*rp2,word (rp2) \leftarrow (word) set ±0 if rp2 = H	0 P ₂ P ₁ P ₀ 0 1 0 0 High byte	Low byte	10	e	L0 = 1 and rp2 = H
TABLE		$(C) \leftarrow ((PC)+3+(A)), B \leftarrow ((PC)+3+(A)+1)$	0 1 0 0 1 0 0 0	10101000	17	2	
8-Bit Arithn	8-Bit Arithmetic [Register]]					
ADD	A,r	$(A) \leftarrow (A) + (r)$	0 1 1 0 0 0 0 0		8	2	
	L'A	$(r) \leftarrow (r) + (A)$	0 1 1 0 0 0 0 0	0 0 R ₂ R ₁	8	2	
ADC	A,r	$(A) \leftarrow (A) + (r) + (CY)$	0 1 1 0 0 0 0 0	æ	8	5	

-
~
•
•
-
-
- 63
-
~
-
-
0
_
12
-
-
2
~
-
3
<u> </u>
_
-
•

-

																Ì			
						8							8						
Mnemonic	Mnemonic Operand	Operation	7	ø	ß	4 1	יי ה פי	-	•	2	ø	D		3	-	•	State[1]	Bytes	Skip Condition
8-Bit Arithmetic [Register] (cont)	netic [Registe	er] (cont)					ł												
ADDNC	A,r	$(A) \leftarrow (A) + (r)$	0	-		6	0	0	0	-	6	-		0 R2	2 B1	æ	œ	2	No carry
	r,A	$(r) \leftarrow (r) + (A)$	0	-	-	0	0	0	0	0	0	-	0	0 R ₂	2 R1	&	œ	2	No carry
SUB	A,r	$(A) \leftarrow (A) - (r)$	0	-	-	0	0	0	0	-	-	-	0	0 R ₂	2 13	æ	œ	2	
	Γ,Α	$(r) \leftarrow (r) - (A)$	0	-	-	0	0	0	0	0	-	-	0	0 R2	2 12	2	8	2	
SBB	A,r	$(A) \leftarrow (A) - (r) - (CY)$	0	-		0	0	0	0	-	-	-	-	0 R ₂	2 R1	æ	æ	2	
	r,A	$(r) \leftarrow (r) - (A) - (CY)$	0	-		6	0	0	0	0		-		0 R2	2 - B-	æ	80	2	
SUBNB	A,r	$(A) \leftarrow (A) - (r)$	0	-	-	0	0 0	0	0	-	0	-	-	0 R ₂	2 B1	в0	80	2	No borrow
	r,A	$(r) \leftarrow (r) - (A)$	0	-	-	0	0	0	0	0	0	-	+	0 R ₂	2 R1	B ₀	8	2	No borrow
ANA	A,r	$(A) \leftarrow (A) \land (r)$	0	-	-	0	0	0	0	-	0	0	0	R2	2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	e 6	œ	2	
	r,A	$(r) \leftarrow (r) \land (A)$	0	-		0	0	0	0	0	0	0	0	-B2	2 B1	æ	œ	2	
ORA	A,r	(A) ← (A) V (r)	0	-	-	0	0	0	0	-	0	0	-	1 R ₂	2 R1	R ₀	œ	2	
	r,A	(r) ← (r) V (A)	0	-		0	0	0	0	0	0	0	-	82 -		в0	œ	2	
XRA	A,r	(A) ← (A) V (r)	0	-		0	0	0	0	-	0	0	-	0 R2	2 B1	æ	80	2	
	r,A	(r) → (r) ¥ (A)	0	-	-	0	0	0	0	0	0	0	-	0 R ₂	2 R1	æ	œ	2	
GTA	A,r	(A) - (r) - 1	0	-		0	0	0	0	-	0	-	0	- -	R ₂ B ₁	æ	60	2	No borrow
	r,A	(r) - (A) - 1	0			0	0	0	0	0	0	-	0	Ъ2	2 B1	æ	œ	5	No borrow
LTA	A,r	(A) - (r)	0	-	-	0	00	0	0	٢	0	۰		1 R ₂	2 R1	В0	80	2	Borrow
	r,A	(r) - (A)	0	1	۲	0	0 0	0	0	0	0	Ŧ	+	1 R ₂	2 R1	R ₀	8	2	Borrow
NEA	A,r	(A) – (r)	0	1	۲	0	0 0	0	0	-	-	-	0	1 R ₂	2 R1	R0	8	2	No zero '
	r,A	$(\mathbf{r}) - (\mathbf{A})$	0	-		0	0 0	0	0	0	-	-	0	1 R ₂	2 R1	R0	8	2	No zero
EQA	A,r	(A) - (r)	0	-	-	0	0	0	0	-	-	-	_	-	R ₂ R ₁	R ₀	80	2	Zero
	r,A	(r) - (A)	0			0	0	0	0	-	-	-	<u> </u>		R ₂ R ₁	æ	æ	2	Zero
ONA	A,r	(A) ∧ (r)	0	٢	1	0	0 0	0	0	-	-	0	0	-	R ₂ R ₁	Po Bo	80	2	No zero
OFFA	A,r	(A) ∧ (r)	0	-		0	0 0	0	0	-	+	0	-	1 R2	2 R1	Ro	8	2	Zero
8-Bit Arithmetic (Memory)	netic (Memor	y]																	
ADDX	rpa	(A) (A) + ((rpa))	0	-	1	1 (00	0	0	۲	-	0	0	0 8	A2 A1	A0	4	2	
ADCX	rpa	$(A) \leftarrow (A) + ((rpa)) + (CY)$	0		-	-	0 0	0	0	-	-	0	-	0 V	A2 A1	A ₀	₽	2	
ADDNCX	rpa	(A) ← (A) + ((rpa))	0		-	-	0	0	0	-	0	-	0	A 0	A ₂ A ₁	A ₀	=	2	No carry
SUBX	rpa	(A) ← (A) – ((rpa))	0	-	-	-	0	0	0	-	-	-	0	A 0	A2 A1	Å0	ŧ	2	
SBBX	rpa	$(A) \leftarrow (A) - ((rpa)) - (CY)$	0	-	Ŧ	-	0 0	0	0	-	-	-	-	A 0	A ₂ A ₁	Å0	₽	5	
SUBNBX	rpa	(A) + (A) ((rpa))	0	-	-	-	0 0	0	0	-	0	-	-	0 A	A2 A1	A ₀	11	2	No borrow
ANAX	rpa	(A) ← (A) ∧ ((rpa))	0	-	1	1	0 0	0	0	+	0	0	0	▼	A2 A1	A0	11	2	
ORAX	rba	$(A) \leftarrow (A) V ((rpa))$	0	-	+	ţ	د د	c	4			<		•	•		:	•	

4-93

μ**PD7810/11**

4

		1	82			
Mnemonic Operand	cand Operation	B3 76543210	B4 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
8-Bit Arithmetic (Memory) (cont)						
XRAX rp	rpa (A) + (A) V ((rpa))	0 1 1 1 0 0 0 0	1 0 0 1 0 A ₂ A ₁ A ₀	=	2	
	rpa (A) – ((rpa)) – 1	0 1 1 1 0 0 0 0	1 0 1 0 1 A ₂ A ₁ A ₀	Ŧ	2	No borrow
	(A) - ((I	0 1 1 1 0 0 0 0	1 0 1 1 1 A ₂ A ₁ A ₀	ŧ	2	Borrow
	(A) - (I)	0 1 1 1 0 0 0 0	1 1 1 0 1 A ₂ A ₁ A ₀	=	2	No zero
	(A) – (I)	0 1 1 1 0 0 0 0	1 1 1 1 1 A ₂ A ₁ A ₀	Ħ	2	Zero
		0 1 1 1 0 0 0 0	1 1 0 0 1 A ₂ A ₁ A ₀	Ħ	2	No zero
	(A) A ((I	0 1 1 1 0 0 0 0	1 1 0 1 1 A ₂ A ₁ A ₀	÷	2	Zero
Immediate Data						
	*A,byte (A) \leftarrow (A) + byte	0 1 0 0 0 1 1 0		2	2	
12	r,byte (r) ← (r) + byte	0 1 1 1 0 1 0 0 Data	0 1 0 0 0 R ₂ R ₁ R ₀	F	e	
sr2,	sr2, byte (sr2) (sr2) + byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	50	ε	
V* 1.0V	*A hute $(\Delta) \leftarrow (\Delta) + hute + (\Gamma V)$	0 1 0 1 0 1 0 1 0	Data	7	2	
1		0 1 1 1 0 1 0 0	0 1 0 1 0 R ₂ R ₁ R ₀	Ħ	e	
		Data				
sr2	sr2,byte (sr2) +- (sr2) + byte + (CY)	0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	8	en en	
	* A histo (A) (A) + histo	0 0 1 0 0 1 0	Data	1	2	No carry
I		1 1 1 0 1 0	0 0 1 0 0 R ₂ R ₁ R ₀	Ħ	ę	No carry
sr?	sr2 hvte (sr2) ↔ (sr2) + hvte	0 1 1 0 0 1 0 0	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	50	e	No carry
		Data				
SUI *A	*A,byte (A) (A) byte	0 1 1 0 0 1 1 0	Data	2	2	
I	E E	0 1 1 1 0 1 0 0 Data	0 1 1 0 0 R ₂ R ₁ R ₀	÷	e	
Sr2	sr2,byte (sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	20	ε	
SBI *A	*A.bvte (A) +- (A) - bvte - (CY)	0 1 1 1 0 1 1 0	Data	7	2	
I		0 1 1 1 0 1 0 0 Data	0 1 1 1 0 R ₂ R ₁ R ₀	Ŧ	3	
Sr ²	sr2,byte (sr2) (sr2) - byte - (CY)		S ₃ 1 1 1 0 S ₂ S ₁ S ₀	20	e	

<u>_</u>
71
21
0
\sim
*
Ψ
S I
Ξ.
0
12
51
4 1
2 1
6
č.
S L

			Operati	Operation Code			
			=	82			
Mnemonic	Mnemonic Operand	Operation	83 76543210	84 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
Immediate Data (cont)	Data (cont)						
SUINB	*A,byte	(A) → (A) – byte	0 0 1 1 0 1 1 0	Data	7	2	No borrow
	r,byte	$(r) \leftarrow (r) - byte$	0 1 1 1 0 1 0 0 Data	0 0 1 1 0 R ₂ R ₁ R ₀	Ŧ	с,	No borrow
	sr2,byte (sr2)	(sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	20	ę	No borrow
ANI	*A,byte (A) +-	(A) (A) ∧ byte	0 0 0 0 0 1 1 1	Data	7	2	
	r,byte	$(r) \leftarrow (r) \land byte$	0 1 1 1 0 1 0 0 Data	0 0 0 0 1 R ₂ R ₁ R ₀	Ŧ	e	
	sr2,byte (sr2)	(sr2) ↔ (sr2) ∧ byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	50	3	
ORI	*A.byte (A)	(A) (A) V byte	0 0 0 1 0 1 1 1	Data	1	2	
	r,byte	$(r) \leftarrow (r) V byte$	0 1 1 1 0 1 0 0 Data	0 0 0 1 1 R ₂ R ₁ R ₀	ا	3	
	sr2,byte	sr2,byte (sr2) (sr2) V byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 0 1 1 S ₂ S ₁ S ₀	50	3	
XRI	*A,byte	(A) (A) + byte	0 0 0 1 0 1 1 0	Data	2	2	
	r,byte	$(r) \leftarrow (r) + byte$	0 1 1 1 0 1 0 0 Data	0 0 0 1 0 R ₂ R ₁ R ₀	=	33	
	sr2,byte	sr2,byte (sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀	20	e	
			Data				
1	A, byte r, byte	(x) - yte - 1 $(r) - byte - 1$	0 1 1 1 0 1 0 0 1 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	=	n e	No borrow
			Data				
	sr2,byte	sr2,byte (sr2) - byte - 1	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	14	ę	No borrow
[]]	*A,byte	(A) - byte	0 0 1 1 0 1 1 1	Data	1	2	Borrow
	r,byte	(r) – byte	0 1 1 1 0 1 0 0 Data	0 0 1 1 1 R ₂ R ₁ R ₀	Ŧ	с	Borrow
	sr2,byte (sr2)	(sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 1 1 S ₂ S ₁ S ₀	4	3	Borrow
NEI	*A,byte (A) -	(A) - byte	0 1 1 0 0 1 1 1	Data	7	2	No zero
	r,byte	(r) – byte	0 1 1 1 0 1 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	=	e	No zero
			Data				

4

4-95

			Operation Code				
			81	8			6 tin
Mnemonic	Operand	Operation	83 7 6 5 4 3 2 1 0	84 76543210	State(1)	Bytes	Condition
mmediate Dat	ta (cont)						
NEI sr2,by	sr2,byte	(sr2) — byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 0 1 S ₂ S ₁ S ₀	14	ε	No zero
FOI	*A byte	(A) - bvte	0 1 1 1 0 1 1 1	Data	7	2	Zero
	r,byte		0 1 1 1 0 1 0 0 Data	0 1 1 1 1 R ₂ R ₁ R ₀	ŧ	e	Zero
	sr2,byte (sr2) -	(sr2) — byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 1 1 S ₂ S ₁ S ₀	4	ę	Zero
IND	*A hvte	*A byte (A) A hyte	0 1 0 0 0 1 1 1	Data	1	2	No zero
Į	r,byte	(r) A byte	0 1 1 1 0 1 0 0 Data	0 1 0 0 1 R ₂ R ₁ R ₀	Ħ	ε	No zero
	sr2,byte	sr2.byte (sr2) ∧ byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 0 0 1 S ₂ S ₁ S ₀	14	£	No zero
OFFI	*A hvte	(A) A hyte	0 1 0 1 0 1 1 1	Data	2	2	Zero
	r,byte		0 1 1 1 0 1 0 0 Data	0 1 0 1 1 R ₂ R ₁ R ₀	Ŧ	ε	Zero
	sr2,byte	sr2,byte (sr2) A byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 0 1 1 S ₂ S ₁ S ₀	14	ε	Zero
Working Register	ister						
ADDW	wa	(A) ← (A) + ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 0 0 0 0 0	14	3	
ADCW	ма	$(A) \leftarrow (A) + ((V)\bullet(wa)) + (CY)$	0 1 1 1 0 1 0 0 Offset	1 1 0 1 0 0 0 0	14	ε	
ADDNCW	wa	(A) ← (A) + ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 0 1 0 0 0 0 0	14	ε	No carry
SUBW	ма	$(A) \leftarrow (A) - ((V) \bullet (Wa))$	0 1 1 1 0 1 0 0 Offset	1 1 1 0 0 0 0 0	4	e	
SBBW	wa	(A) ← (A) − ((V)•(wa)) − (CY)	0 1 1 1 0 1 0 0 Offset	1 1 1 1 0 0 0 0	14	ε	
SUBNBW	ма	(A) ← (A) – ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	0	4	3	No borrow
ANAW	wa	(A) ← (A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0	10001000	14	e	

-
Č.
0
Ŭ
\sim
÷
•
ŏ.
_
5
0
1
75
≚.
3
5
÷.
60
C

1

			Operation Code	Code			
			81	82			
Mnemonic	Mnemonic Operand	Operation	83 76543210	84 76543210	State(1)	Bytes	Skip Condition
Working Register (cont)	ister (cont)						
ORAW	ма	(A) ↔ (A) V ((V)•(wa))	0 1 1 1 0 1 0 0 04604	1 0 0 1 0 0 0 0	14	e	
XRAW	ма	(A) ← (A) V ((V)•(wa))	0 1 1 1 0 1 0 0	1 0 0 1 0 0 0	14	e	
GTAW	ма	$(A) - ((V) \bullet (Wa)) - 1$	0 1 1 1 0 1 0 0 Offset	1 0 1 0 1 0 0	4	ę	No borrow
LTAW	wa	(A) – ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 0 1 1 1 0 0 0	4	ę	Borrow
NEAW	wa	(A) - ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 1 0 0 0	4	m	No zero
EQAW	wa	(A) – ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 1 1 0 0 0	4	ო	Zero
ONAW	wa	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 0 1 0 0 0	4	m	No zero
OFFAW	ма	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 1 0 0 0 0	4	m	Zero
ANIW	*wa,byte	*wa.byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte	0 0 0 0 0 1 0 1 Data	Offset	6	m	
ORIW	*wa,byte	•wa.byte ((V)•(wa)) ← ((V)•(wa)) V byte	0 0 0 1 0 1 0 1 Data	Offset	6	т	
GTIW	*wa,byte	•wa.byte ((V)•(wa)) – byte – 1	0 0 1 0 0 1 0 1 Data	Offset	13	e	No borrow
LTIW	*wa,byte	*wa,byte ((V)•(wa)) – byte	0 0 1 1 0 1 0 1 Data	Offset	13	m	Borrow
NEIW	*wa,byte	•wa,byte ((V)•(wa)) - byte	0 1 1 0 0 1 0 1 Data	Offset	13	m	No zero
EQIW	*wa,byte	*wa.byte ((V)•(wa)) – byte	0 1 1 1 0 1 0 1 Data	Offset	13	ę	Zero
MINO	*wa,byte	*wa,byte ((V)•(wa)) ∧ byte	0 1 0 0 0 1 0 1 Data	Offset	13	m	No zero
OFFIW	*wa,byte	*wa.byte ((V)•(wa)) ∧ byte	0 1 0 1 0 1 0 1 Data	Offset	5	m	Zero

μ**PD7810/11**

4

			Operation Code	on Code			
			1 <u>8</u> 1	82			Skip
Mnemonic Operand	Operand	Operation	76543210	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
16-Bit Arithmetic	etic						
EADD	EA.r2	(EA) ← (EA) + (r2)	0 1 1 1 0 0 0 0	0 1 0 0 0 0 R ₁ R ₀	Ŧ	2	
DADD	FA ro3	I	0 1 1 1 0 1 0 0	1 1 0 0 0 1 P ₁ P ₀	11	2	
DADC		-	0 1 1 1 0 1 0 0	1 1 0 1 0 1 P ₁ P ₀	ŧ	2	
DADANC.		(EA) + (ro3)	0 1 1 1 0 1 0 0	1 0 1 0 0 1 P ₁ P ₀	÷	2	No carry
FSUR		1	0 1 1 1 0 0 0 0	0 1 1 0 0 0 R ₁ R ₀	Ŧ	2	
DSLIB	FA ro3	(EA)	0 1 1 1 0 1 0 0	1 1 1 0 0 1 P ₁ P ₀	#	2	
DSBB	EA.ro3	(EA) -	0 1 1 1 0 1 0 0	1 1 1 1 0 1 P ₁ P ₀	F	2	
DSLIBNB	FA ro3	(EA) – (rp3)	0 1 1 1 0 1 0 0	1 0 1 1 0 1 P ₁ P ₀	Ħ	2	No borrow
DAN	EA.ro3	(EA) A	0 1 1 1 0 1 0 0	1 0 0 0 1 1 P ₁ P ₀	=	2	
DOR	EA ro3	1	0 1 1 1 0 1 0 0	1 0 0 1 1 1 P ₁ P ₀	Ħ	2	
DXR	EA.rp3	-	0 1 1 1 0 1 0 0		ŧ	2	
DGT	EA.rp3	15	0 1 1 1 0 1 0 0	1010111P ₁ P ₀	=	2	No borrow
DUT	EA.rp3	(EA) - (rp3)	0 1 1 1 0 1 0 0		ŧ	2	Borrow
DNE	EA.rp3		0 1 1 1 0 1 0 0	1 1 1 0 1 1 P ₁ P ₀	=	2	No zero
DEQ	EA.rp3		0 1 1 1 0 1 0 0	1 1 1 1 1 1 1 P ₁ P ₀	=	2	Zero
DON	EA,rp3	(EA) A (rp3)	0 1 1 1 0 1 0 0	1 1 0 0 1 1 P ₁ P ₀	=	2	No zero
DOFF	EA.rp3	(EA) A (rp3)	0 1 1 1 0 1 0 0	1 1 0 1 1 1 P ₁ P ₀	=	2	Zero
Multiply/Divide	ride						
MUL	r2	(EA) ← (A) × (r2)	0 1 0 0 1 0 0 0		32	2	
DIV	57	$(EA) \leftarrow (EA) + (r2), (r2) \leftarrow Remainder$	0 1 0 0 1 0 0 0	0 0 1 1 1 1 R ₁ R ₀	29	2	
Increment/Decrement	lecrement						
INR	5	$(r2) \leftarrow (r2) + 1$	0 R ₁		4	-	Carry
INRW	*wa	((V)•(wa)) ← ((V)•(wa)) + 1	0 0 0 0	Offset	9	2	Carry
XNI	đ	(rp) + (rp) + 1	-		_		
	EA	$(EA) \leftarrow (EA) + 1$	1 0 1 0 1 0 0 0		-	-	
DCR	2	$(r2) \leftarrow (r2) - 1$	0 1 0 1 0 0 R ₁ R ₀		4	-	Borrow
DCRW	*wa	$((V)\bullet(wa)) \leftarrow ((V)\bullet(wa)) - 1$	0 0 1 1 0 0 0 0	Offset	16	2	Borrow
DCX	e	(rp) + (rp) 1	0 0 P ₁ P ₀ 0 0 1 1		2		
	EA	$(EA) \leftarrow (EA) - 1$	1010101001		2	-	
Others							
DAA		Decimal Adjust Accumulator	0 0 0		4	-	
STC		$(CY) \leftarrow 1$	0 1 0 0 1 0 0 0	0 1 0 1 0 1	8	2	
					c	c	

-
<u> </u>
E I

•••
- 11
U
\sim
-
6 1
ΨI
(n
_ 1
Z
01
77.1
01
ž.
E
600
<u> </u>
_
_

								240	uperation Gode										
						8						m 4	8						
Mnemonic	Operand	d Operation	7	9	5 4	3 6	2	1 0	7	9	ß	4	4 	~	-	0	State(1)	Bytes	Skip Condition
Others (cont)																			
NEGA		$(A) \leftarrow (\overline{A}) + 1$	0	-	0	-	0	0	0	0	-	-	-	0		0	8	2	
Rotate and Shift	hift																		
RLD		Rotate left digit	0	-	0	-	0	0	0	0	-	-	-	0	0	0	17	2	
RRD		Rotate right digit	0	-	0	-	0	0	0	0	-	-	-	0	0	-	17	2	
RLL	2	$(r_{CM}^{2m} + 1) \leftarrow (r_{CM}^{2m}), (r_{20}^{2}) \leftarrow (CY),$ (CY) $\leftarrow (r_{CY})$	0	-	0	-	0	0	0	0	-	-	0	-	æ	R ₀	æ	2	
RLR	5	$(r2_m - 1) \leftarrow (r2_m), (r2_7) \leftarrow (CY),$ (CY) $\leftarrow (r2_0)$	0	-	0	-	0	0	0	0	-	-	0	0	F.	R ₀	æ	2	
SLL	r2	$(r2_m + 1) \leftarrow (r2_m), (r2_0) \leftarrow 0, (CY) \leftarrow (r2_7)$	0	1	0	-	0	0	0	0	-	0	0		æ	e Pe	8	2	
SLR	12	$(r2_m - 1) \leftarrow (r2_m), (r2_7) \leftarrow 0, (CY) \leftarrow (r2_0)$	0	-	0	-	0	0 0	0	0	-	0	0	0	R.	Po Ba	80	2	
SLLC	r2	$(r2_m + 1) \leftarrow (r2_m).(r2_0) \leftarrow 0, (CY) \leftarrow (r2_7)$	0	10	0		0	0	0	0	0	0	0	-	æ	P P	8	2	Carry
SLRC	r2	$(r2_m - 1) \leftarrow (r2_m), (r2_7) \leftarrow 0, (CY) \leftarrow (r2_0)$	0	-	0	-	0	0 0	0	0	0	0	0	0	æ	Ro B	80	2	Carry
DRLL	EA	$\begin{array}{c} (EA_n + 1) \leftarrow (EA_n).(EA_0) \leftarrow (CY), \\ (CY) \leftarrow (EA_{15}) \end{array}$	0	-	0	-	0	0		0	-	-	0	-	0	0	æ	2	
DRLR	EA	$\begin{array}{c} (EA_{n}-1) \leftarrow (EA_{n}), (EA_{15}) \leftarrow (CY), \\ (CY) \leftarrow (EA_{0}) \end{array}$	0	-	0		0	0 0	-	0	-	-	0	0	0	0	æ	2	
DSLL	EA	$(EA_n + 1) \leftarrow (EA_n), (EA_0) \leftarrow 0, (CY) \leftarrow (EA_{15})$	0	-	0	-	0	0 0	-	0	-	0	0	-	0	0	8	2	
DSLR	EA	$\begin{array}{c} (EA_{n-1}) \longleftarrow (EA_{n}), (EA_{15}) \longleftarrow 0, \\ (CY) \longleftarrow (EA_{0}) \end{array}$	0	-	0	-	0	0	-	0	-	0	0	0	0	0	œ	2	
Jump																			
JMP	*word	(PC) word	0	-	0 ਸ	1 0 Hiah addr	- _*	0				Low	Low addr				ę	e	
EL.		(PC ₁₁) ← (B) (PC ₁) ← (C)	6	0	1	6	6			[P	-	
E.	word	(PC) + 1 + idi		+			idien1	1									, t	- -	
JRE	*word	(PC) ←	. 0	-	0		. -	+ -				idiso	0			t	₽₽	- 2	
JEA			0	1	0	-	0	0	0	0	-	. 0	-	0	0	0	8	2	
Call										1		1							
CALL	*word	$\begin{array}{l} ((SP)-1) \leftarrow ((PC)+3)_{H}, \\ ((SP)-2) \leftarrow ((PC)+3)_{L} \\ (PC) \leftarrow word, (SP) \leftarrow (SP)-2 \end{array}$	0	-		0 0 High addr	0 +	0				Low	Low addr				ð	e,	
CALB		$\begin{array}{c} (\text{(SP)} - 1) \leftarrow (\text{(PC)} + 2)_{\text{H}}, \\ (\text{(SP)} - 2) \leftarrow (\text{(PC)} + 2)_{\text{L}}, \\ \text{(PC,H)} \leftarrow (\text{B}), \text{(PC,L)} \leftarrow (\text{C}), \\ \text{(SP)} \leftarrow (\text{SP)} - 2 \end{array}$	0	1 0	0	-	0	0	0	0	-	0	-	Ģ	0	-	17	2	
CALF	*word		0		-	-	1					ta			1	t	£	2	

4

				Operation Code	n Code	1		
			5		82			Skin
Mnemonic	Mnemonic Operand	Operation	7 6 5 4 3 2	0	76543210	State(1)	Bytes	Condition
Call (cont)								
CALT	word	$\begin{array}{l} ((SP)-1) \leftarrow ((PC)+1)_{H}, \\ ((SP)-2) \leftarrow ((PC)+1)_{L}, \\ (PC_{L}) \leftarrow (128+2ta), (PC_{H}) \leftarrow \\ (729+2ta), (SP) \leftarrow (SP)-2 \end{array}$	1 0 0 ← ta	t		β	-	. (
SOFTI		$\begin{array}{l} ((SP) - 1) \leftarrow (PSW), ((SP) - 2) \leftarrow \\ ((PC) + 1)_{H}, ((SP) - 3) \leftarrow ((PC) + 1)_{L}, \\ (PC) \leftarrow 0060H, (SP) \leftarrow (SP) - 3 \end{array}$	0 1 1 1 0 0	1 0	-	9	-	
Return							.	
RET		$(PC_{L}) \leftarrow ((SP)), (PC_{H}) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	101110	0		₽	-	
RETS		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2, (PC) \leftarrow (PC) + n$	1 0 1 1 1 0	0		9	-	Unconditional Skip
RETI		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3$	0 1 1 0 0 0	-		13	-	
Skip								
Bit		bit, wa	0 1 0 1 1 B ₂ B	B ₁ B ₀	Offset	9	2	Bit lest
CPU Control	_						•	,
sk	-	Skip if $f = 1$	0 1 0 0 1 0	0	ш		2	
SKN	-	Skip if $f = 0$	0 1 0 0 1 0	0 0	1 1 F ₂ F ₁		~ 0	0=1
SKIT	Ĩ	Skip if $irf = 1$, then reset irf	0	1	1 0 4 13 12 11		2 0	
SKNIT	irf	Skip if irf = 0 Reset irf if irf = 1	0 0	1	0 1 1 14 13 12 11	• •	7	
NOP		No operation	0 0 0 0 0	0		4	- -	
E		Enable interrupt	101010			4	- -	
ō		Disable interrupt	1 0 1 1 1 0	1		4	- -	
нг		Halt	0 1 0 0 1 0	0	0 0 1 1 1 0 1	=	7	
Notes:				н С)	(2)	- bvte.		
(1) In th∉ 2-,	e case of ski -byte instruc -byte instruc	(1) In the case of skip condition, the idle states are as follows. 1-byte instruction: 4 states 3-byte instruction 2-byte instruction: 8 states	s are as ronows. 2-byte instruction (with *): 7 states 3-byte instruction (with *): 10 states	(3) E	 (2) Right side of slash (/) in states indicates case rpa2, roo3 = D + hyte H + A H + B H + EA. H + byte. 	indicates case r H + EA, H + bv	pa2, te.	
က်	-byte instruc		ion: 14 states		1983 - D + Dyle, H - C, H - C, H - C, H - E	- hute		

(4) B3 (Data): rpa3 = D + byte, H + byte

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com