Quad Line Receiver

The MC10H115 is a quad differential amplifier designed for use in sensing differential signals over long lines. This 10 H part is a functional/ pinout duplication of the standard MECL 10K family part, with 100% improvement in counting frequency and no increase in power-supply current.

The base bias supply (V_{BB}) is made available at Pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the MC10H115 with excellent common mode rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (Pin 9) to prevent upsetting the current source bias network.

- Propagation Delay, 1.0 ns Typical
- Power Dissipation 110 mW Typ/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{I}	0 to V_{EE}	Vdc
Output Current — Continuous — Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range — Plastic			
—Ceramic	$\mathrm{T}_{\text {stg }}$	-55 to +150 -55 to +165	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

ELECTRICAL CHARACTERISTICS (VEE $=-5.2 \mathrm{~V} \pm 5 \%$) (2)

Characteristic	Symbol	$0{ }^{\circ}$		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\text {I }}$ E	-	29	-	26	-	29	mA
Input Current High	$\mathrm{l}_{\mathrm{inH}}$	-	150	-	95	-	95	$\mu \mathrm{A}$
Input Leakage Current	ICBO	-	1.5	-	1.0	-	1.0	$\mu \mathrm{A}$
Reference Voltage	V_{BB}	-1.38	-1.27	-1.35	-1.25	-1.31	-1.19	Vdc
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage (1)	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage (1)	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
Common Mode Range (3)	$\mathrm{V}_{\mathrm{CMR}}$	-	-	-2.85 to -0.8		-	-	Vdc
Input Sensitivity (4)	V_{PP}	-	-	150 typ		-	-	mV ${ }_{\text {PP }}$

AC PARAMETERS

Propagation Delay	t_{pd}	0.4	1.3	0.4	1.3	0.45	1.45	ns
Rise Time	t_{r}	0.5	1.4	0.5	1.5	0.5	1.6	ns
Fall Time	t_{f}	0.5	1.4	0.5	1.5	0.5	1.6	ns

NOTES:

1. When V_{BB} is used as the reference voltage
2. Each MECL 10 H series circuit has been designed to meet the specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a $50-$ ohm resistor to -2.0 volts.
3. Differential input not to exceed 1.0 Vdc .
4. $150 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ differential input required to obtain full logic swing on output.

MC10H115

$\mathrm{V}_{\mathrm{CC} 1}=\operatorname{Pin} 1$
$V_{C C 2}=\operatorname{Pin} 16$
$\mathrm{V}_{\mathrm{EE}}=\mathrm{Pin} 8$

LOGIC DIAGRAM

When input pin with
 bubble goes positive its respective output pin with bubble goes positive.

* $V_{B B}$ to be used to supply bias to the MC10H115 only and bypassed (when used) with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor to ground (0 V). V_{BB} can source $<1.0 \mathrm{~mA}$.
The MC10H115 is designed to be used in sensing differential signals over long lines. The bias supply (V_{BB}) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.
Active current sources provide these receivers with excellent common-mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} to prevent unbalancing the current-source bias network.
The MC10H115 does not have internal-input pulldown resistors. This provides high impedance to the amplifier input and facilitates differential connections.
Applications:
- Low Level Receiver
- Schmitt Trigger
- Voltage Level Interface

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11 of the Motorola MECL Data Book (DL122/D).

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{(4)}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.

Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

