Data sheet acquired from Harris Semiconductor SCHS195C

High－Speed CMOS Logic
 4x4 Register File

Features

－Simultaneous and Independent Read and Write Operations
－Expandable to 512 Words of \mathbf{n}－Bits
－Three－State Outputs
－Organized as 4 Words x 4 Bits Wide
－Buffered Inputs
－Typical Read Time $=16 \mathrm{~ns}$ for＇ $\mathrm{HC} 670 \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=$ $15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Fanout（Over Temperature Range）
－Standard Outputs．．．．．．．．．．．．．．． 10 LSTTL Loads
－Bus Driver Outputs ．．．．．．．．．．．．．． 15 LSTTL Loads
－Wide Operating Temperature Range ．．．$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
－Balanced Propagation Delay and Transition Times
－Significant Power Reduction Compared to LSTTL Logic ICs
－HC Types
－2V to 6V Operation
－High Noise Immunity： $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
－HCT Types
－4．5V to 5．5V Operation
－Direct LSTTL Input Logic Compatibility， $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$（Max）， $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$（Min）
－CMOS Input Compatibility， $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$

Description

The＇HC670 and CD74HCT670 are 16－bit register files organized as 4 words $\times 4$ bits each．Read and write address and enable inputs allow simultaneous writing into one location while reading another．Four data inputs are provided to store the 4 －bit word．The write address inputs（WA0 and WA1） determine the location of the stored word in the register． When write enable（ $\overline{\mathrm{WE}}$ ）is low the word is entered into the address location and it remains transparent to the data．The outputs will reflect the true form of the input data．When（WE） is high data and address inputs are inhibited．Data acquisition from the four registers is made possible by the read address inputs（RA1 and RA0）．The addressed word appears at the output when the read enable（ $\overline{\mathrm{RE}}$ ）is low．The output is in the high impedance state when the（ RE ）is high．Outputs can be tied together to increase the word capacity to 512×4 bits．

Ordering Information

PART NUMBER	TEMP．RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE
CD54HC670F3A	-55 to 125	16 Ld CERDIP
CD74HC670E	-55 to 125	16 Ld PDIP
CD74HC670M	-55 to 125	16 Ld SOIC
CD74HC670MT	-55 to 125	16 Ld SOIC
CD74HC670M96	-55 to 125	16 Ld SOIC
CD74HCT670E	-55 to 125	16 Ld PDIP
CD74HCT670M	-55 to 125	16 Ld SOIC
CD74HCT670MT	-55 to 125	16 Ld SOIC
CD74HCT670M96	-55 to 125	16 Ld SOIC

NOTE：When ordering，use the entire part number．The suffix 96 denotes tape and reel．The suffix T denotes a small－quantity reel of 250.

Pinout

CD54HC670 （CERDIP）	
CD74HC670，CD74HCT670 （PDIP，SOIC）	
TOP VIEW	
D1 1	16 V cc
D2 2	15 DO
D3 3	14 WAO
RA1 4	13 WA1
RAO 5	12 WE
Q3 6	11 RE
Q2 7	10 Q0
GND 8	9 Q1

Functional Diagram

WRITE MODE SELECT TABLE

OPERATING MODE	INPUTS		INTERNAL LATCHES (NOTE 1)
	$\overline{\mathrm{WE}}$	$\mathrm{D}_{\mathbf{N}}$	
Write Data	L	L	H
	L	H	No Change
	H	X	

NOTE:

1. The Write Address (WAO and WA1) to the "internal latches" must be stable while WE is LOW for conventional operation.

READ MODE SELECT TABLE

OPERATING MODE	INPUTS		
	$\overline{\text { RE }}$	INTERNAL LATCHES OUTPUT (NOTE 2)	
	L	L	
	L	H	H
Disabled	H	X	(Z)

NOTE:
2. The selection of the "internal latches" by Read Address (RAO and RA1) are not constrained by WE or RE operation.
H = High Voltage Level
L = Low Voltage Level
X= Don't Care
Z = High Impedance "Off" State

CD54HC670, CD74HC670, CD74HCT670

Absolute Maximum Ratings

DC Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$. DC Input Diode Current, I_{IK}	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Drain Current, per Output, I_{0}	
For $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 35 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, IO	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
DC V_{CC} or Ground Current, ICC	$\pm 50 \mathrm{~mA}$

Thermal Information

Maximum Junction Temperature . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

Operating Conditions

Temperature Range, T_{A}. $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Supply Voltage Range, V_{CC}	
HC Types	. 2 V to 6 V
HCT Types	.4.5V to 5.5V
2 V	1000ns (Max)
4.5 V .	500ns (Max)
6 V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
3. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{gathered}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or $\mathrm{V}_{\text {IL }}$	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-6	4.5	3.98	-	-	3.84	-	3.7	-	V
			-7.8	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	V_{IH} or V_{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			6	4.5	-	-	0.26	-	0.33	-	0.4	V
			7.8	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$

DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		V_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Quiescent Device Current	Icc	V_{CC} or GND	0	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$
Three- State Leakage Current		V_{IL} or $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{O}}=$ V_{CC} or GND	6	-	-	± 0.5	-	± 5.0	-	± 10	$\mu \mathrm{A}$
HCT TYPES												
High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-6	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V_{OL}	V_{IH} or V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			6	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}} \text { and } \\ \mathrm{GND} \end{array}$	0	5.5	-		± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	0	5.5	-	-	8	-	80	-	160	$\mu \mathrm{A}$
Three- State Leakage Current		$\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{O}}=$ V_{CC} or GND	5.5	-	-	± 0.5	-	± 5.0	-	± 10	$\mu \mathrm{A}$
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	${ }^{\Delta} \mathrm{I}_{\mathrm{CC}}$ (Note 4)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \end{aligned}$	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	100	360	-	450	-	490	$\mu \mathrm{A}$

NOTE:
4. For dual-supply systems theoretical worst case $\left(\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)$ specification is 1.8 mA .

HCT Input Loading Table

INPUT	UNIT LOADS
$\overline{W E}$	0.3
WA0	0.2
WA1	0.4
$\overline{R E}$	1.5
DATA	0.15
RA0	0.4
RA1	0.7

NOTE: Unit Load is $\Delta \mathrm{I}_{\mathrm{CC}}$ limit specific in DC Electrical Specifications Table, e.g., $360 \mu \mathrm{~A}$ max. at $25^{\circ} \mathrm{C}$.

CD54HC670, CD74HC670, CD74HCT670

Prerequisite for Switching Specifications

PARAMETER	SYMBOL	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			$-55{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
HC TYPES												
Setup Time Data to $\overline{\mathrm{WE}}$ Write to $\overline{\mathrm{WE}}$	$t_{\text {t }}$, $t_{\text {h }}$	2	60	-	-	75	-	-	90	-	-	ns
		4.5	12	-	-	15	-	-	18	-	-	ns
		6	10	-	-	13	-	-	15	-	-	ns
Hold Time Data to WE Write to $\overline{W E}$	t_{H}, t_{W}	2	5	-	-	5	-	-	5	-	-	ns
		4.5	5	-	-	5	-	-	5	-	-	ns
		6	5	-	-	5	-	-	5	-	-	ns
Pulse Width WE	${ }_{\text {tw }}$	2	80	-	-	100	-	-	120	-	-	ns
		4.5	16	-	-	20	-	-	24	-	-	ns
		6	14	-	-	17	-	-	20	-	-	ns
Latch Time $\overline{\mathrm{WE}}$ to RAO, RA1	$t_{\text {LATCH }}$	2	100	-	-	125	-	-	150	-	-	ns
		4.5	20	-	-	25	-	-	30	-	-	ns
		6	17	-	-	21	-	-	26	-	-	ns

HCT TYPES

Setup Time Data to $\overline{\mathrm{WE}}$	$\mathrm{t}_{\mathrm{SU}, \mathrm{th}_{\mathrm{h}}}$	4.5	12	-	-	15	-	-	18	-	-	ns
Hold Time Data to $\overline{\mathrm{WE}}$ Write to $\overline{\mathrm{WE}}$	$\mathrm{t}_{\mathrm{H}, \mathrm{t}_{\mathrm{W}}}$	4.5	5	-	-	5	-	-	5	-	-	ns
Setup Time Write to $\overline{\mathrm{WE}}$	t_{SU}	4.5	18	-	-	23	-	-	27	-	-	ns
Pulse Width $\overline{\mathrm{WE}}$	t_{W}	4.5	20	-	-	25	-	-	30	-	-	ns
Latch Time $\overline{W E}$ to RAO, RA1	tLATCH	4.5	25	-	-	31	-	-	38	-	-	ns

Switching Specifications $C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay Reading Any Word	$\mathrm{tPLH}, \mathrm{tPHL}$	$C_{L}=50 \mathrm{pF}$	2	-	-	195	-	245	-	295	ns
			4.5	-	-	39	-	49	-	59	ns
		$C_{L}=15 p F$	5	-	16	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	33	-	42	-	50	ns
Write Enable to Output	$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		$C_{L}=15 \mathrm{pF}$	5	-	21	-	-	-	-	-	ns
		$C_{L}=50 \mathrm{pF}$	6	-	-	43	-	54	-	64	ns

CD54HC670, CD74HC670, CD74HCT670

Switching Specifications $C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} \quad$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	V_{cc} (V)	$25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Data to Output	${ }_{\text {tPLH, }}$ tPHL	$C_{L}=50 \mathrm{pF}$	2	-	-	256	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	21	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	43	-	54	-	64	ns
Output Disable Time	${ }_{\text {tPLZ }}$, tPHZ	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	150	-	190	-	225	ns
			4.5	-	-	30	-	38	-	45	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	12	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	26	-	33	-	38	ns
Output Enable Time	${ }_{\text {t }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	150	-	190	-	225	ns
			4.5	-	-	30	-	38	-	45	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	12	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	26	-	33	-	38	ns
Output Transition Time	${ }_{\text {t }}{ }_{\text {THL }}$, $\mathrm{T}_{\text {TLH }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	10	-	19	ns
Input Capacitance	C_{1}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	10	-	10	-	10	-	10	pF
Three-State Output Capacitance	C_{O}	-	-	20	-	20	-	20	-	20	pF
Power Dissipation Capacitance (Notes 5, 6)	CPD	$C_{L}=15 \mathrm{pF}$	5	-	59	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay Reading Any Word		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	40	-	50	-	53	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
Write Enable to Output	${ }^{\text {tPHL, }}$ tPLH	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	50	-	63	-	75	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	21	-	-	-	-	-	ns
Data to Output	${ }_{\text {t PHL, }}$ tPLH	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	50	-	63	-	75	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	21	-	-	-	-	-	ns
Output Disable Time	${ }_{\text {tPLZ }}$, tPHZ	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	35	-	44	-	53	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	14	-	-	-	-	-	ns
Output Enable Time	${ }_{\text {tPZL, }}$ tPZH	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	38	-	48	-	57	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	16	-	-	-	-	-	ns
Output Transition Time	${ }_{\text {TLLH }}{ }^{\text {t }}$ THL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	Cl_{1}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	10	-	10	-	10	-	10	pF
Three-State Output Capacitance	C_{O}	-	-	20	-	20	-	20	-	20	pF
Power Dissipation Capacitance (Notes 5, 6)	CPD	$C_{L}=15 \mathrm{pF}$	5	-	66	-	-	-	-	-	pF

NOTES:

5. C_{PD} is used to determine the dynamic power consumption, per output.
6. $P_{D}=C_{P D} V_{C C}{ }^{2} f_{i}+\sum C_{L} V_{C C}{ }^{2} f_{O}$ where $f_{i}=$ Input Frequency, $f_{\mathrm{O}}=$ Output Frequency, $C_{L}=$ Output Load Capacitance, $V_{C C}=$ Supply Voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from $10 \% \mathrm{~V}_{\mathrm{CC}}$ to $90 \% \mathrm{~V}_{\mathrm{CC}}$ in accordance with device truth table. For $f_{M A X}$, input duty cycle $=50 \%$.
FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

NOTE: Outputs should be switching from $10 \% \mathrm{~V}_{\mathrm{CC}}$ to $90 \% \mathrm{~V}_{\mathrm{CC}}$ in accordance with device truth table. For $\mathrm{f}_{\text {MAX }}$, input duty cycle $=50 \%$.
FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

Test Circuits and Waveforms (Continued)

FIGURE 7. HC THREE-STATE PROPAGATION DELAY WAVEFORM

FIGURE 8. HCT THREE-STATE PROPAGATION DELAY WAVEFORM

NOTE: Open drain waveforms tpLZ and tpZL are the same as those for three-state shown on the left. The test circuit is Output $R_{L}=1 \mathrm{k} \Omega$ to $V_{C C}, C_{L}=50 \mathrm{pF}$.

FIGURE 9. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
CD54HC670F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD74HC670E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC670EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC670M	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC670M96	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC670M96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC670ME4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC670MT	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC670MTE4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT670EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT670M	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670M96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670M96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670ME4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670MT	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT670MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

Abstract

${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb -Free/Green conversion plan has not been defined. Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes. Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder

PACKAGE OPTION ADDENDUM

temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ($\operatorname{Dim} A$).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

