

4LVTH16500 Low Voltage 18-Bit Universal Bus Transceivers

Revised May 2000

May 2000

74LVTH16500 Low Voltage 18-Bit Universal Bus Transceivers with 3-STATE Outputs (Preliminary)

General Description

The LVTH16500 is an 18-bit universal bus transceiver combining D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in <u>each</u> direction is controlled by output-enable (OEAB and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs.

The LVTH16500 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The transceiver is designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16500 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external
- pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16500
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVTH16500MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16500MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in	n Tape and Reel. Specify I	by appending the suffix "X" to the ordering code.

Connection D	iagram	
Connection D OEAB - LEAB - dq - GND - A2 - A3 - Vcc - A4 - A5 - CGN - A5 - A	Jiagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	56 GND 55 CLKAB 54 B ₁ 53 GND 52 B ₂ 51 B ₃ 50 Vcc 49 B ₄ 48 B ₅ 47 B ₆ 48 B ₅ 44 B ₈ 43 B ₉ 44 B ₁₀ 41 B ₁₁ 39 GND 38 B ₁₄ 36 B ₁₅ 37 B ₁₆ 33 B ₁₇ 32 GND 33 B ₁₇ 30 CLKBA
LEBA —	28	29 — GND

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the HIGH-to-LOW transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the

Logic Diagram

Pin Descriptions

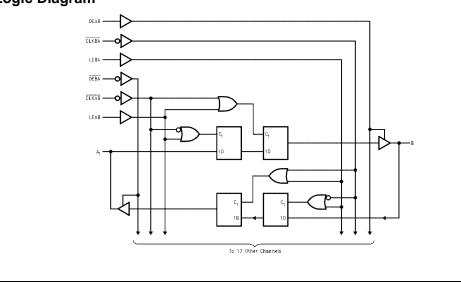
Pin Names	Description					
A ₁ -A ₁₈	Data Register A Inputs/3-STATE Outputs					
B ₁ –B ₁₈	Data Register B Inputs/3-STATE Outputs					
CLKAB, CLKBA	Clock Pulse Inputs					
LEAB, LEBA	Latch Enable Inputs					
OEAB, OEBA	Output Enable Inputs					

Function Table (Note 1)

	Inp		Output	
OEAB	OEAB LEAB C		Α	В
L	Х	Х	Х	Z
н	н	Х	L	L
н	н	Х	н	н
н	L	\downarrow	L	L
н	L	\downarrow	н	н
н	L	н	х	B ₀ (Note 2)
н	L	L	Х	B ₀ (Note 3)
H = HIGH Volt	age Level	L = LOW V	oltage Leve	el

X = ImmaterialZ = High Impedance

 \downarrow = HIGH-to-LOW Clock Transition


Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}},$ LEBA, and $\overline{\text{OLKBA}}.$

Note 2: Output level before the indicated steady-state input conditions were established.

Note 3: Output level before the indicated steady-state input conditions were established, provided that $\overline{\text{CLKAB}}$ was LOW before LEAB went LOW.

outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.

Data flow for B-to-A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and OEBA is active-LOW).

74LVTH16500

Symbol	Parameter	Value		Conditions		Units
сс	Supply Voltage	-0.5 to +4.6				V
′ı	DC Input Voltage	-0.5 to +7.0				V
'o	DC Output Voltage	-0.5 to +7.0	Output in 3-ST	ATE		V
		-0.5 to +7.0	Output in HIGH	I or LOW Sta	te (Note 5)	V
к	DC Input Diode Current	-50	V _I < GND			mA
ОК	DC Output Diode Current	-50	V _O < GND			mA
)	DC Output Current	64	$V_{O} > V_{CC}$ Ou	tput at HIGH	State	mA
		128	$V_{O} > V_{CC}$ Ou	tput at LOW S	State	
СС	DC Supply Current per Supply Pin	±64				mA
GND	DC Ground Current per Ground Pin	±128				mA
STG	Storage Temperature	-65 to +150				°C
Recom	mended Operating Cond			Min	Max	Units
Symbol				2.7	3.6	V
V _{CC}	Supply Voltage			2.1	5.0	v
/ _{cc}	Supply Voltage Input Voltage			0	5.5	V
/ _{cc} / _l						
	Input Voltage				5.5	V

 $\frac{1}{\Delta t/\Delta V} \frac{1}{10} \text{ Input Edge Rate, } V_{\text{IN}} = 0.8V - 2.0V, V_{\text{CC}} = 3.0V \frac{1}{0} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}$ Note 4: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 5: I_O Absolute Maximum Rating must be observed.

www.fairchildsemi.com

74LVTH16500

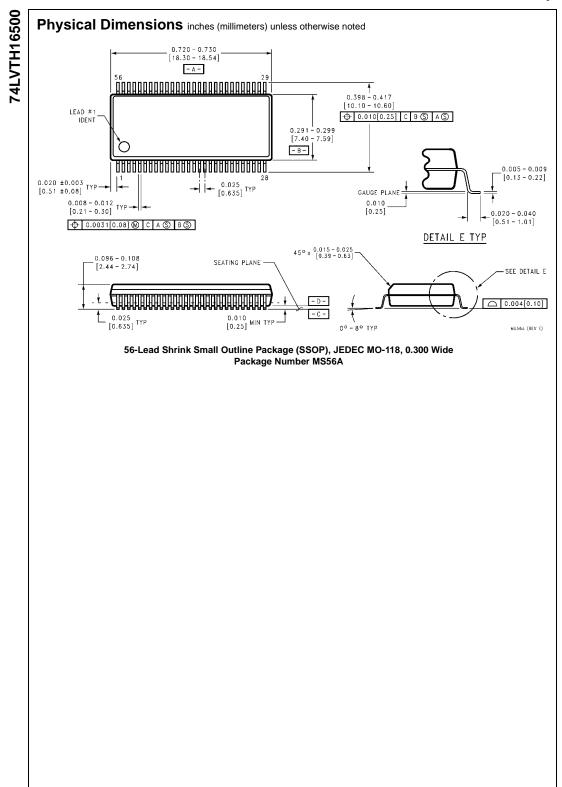
0	Devementer		Vcc	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7–3.6		0.8	v	$V_O \ge V_{CC} - 0.1V$
V _{ОН}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	$I_{OH} = -100 \ \mu A$
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
		ľ	3.0		0.4	V	I _{OL} = 16 mA
		ľ	3.0		0.5	V	I _{OL} = 32 mA
		ľ	3.0		0.55	V	I _{OL} = 64 mA
I(HOLD)	DLD) Bushold Input Minimum Driv	э	3.0	75		μΑ	$V_{I} = 0.8V$
				-75		μA	V ₁ = 2.0V
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 6)
	Current to Change State			-500		μΑ	(Note 7)
l	Input Current		3.6		10	μΑ	$V_{I} = 5.5V$
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
					1	μΑ	$V_I = V_{CC}$
OFF	Power Off Leakage Current	•	0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
PU/PD	Power Up/Down 3-STATE	wer Up/Down 3-STATE 0–1.5V ±100	±100		$V_0 = 0.5V$ to 3.0V		
	Output Current		0-1.50		±100	μΑ	$V_I = GND \text{ or } V_{CC}$
OZL	3-STATE Output Leakage Cu	urrent	3.6		-5	μA	$V_{0} = 0.0V$
lоzн	3-STATE Output Leakage Cu	urrent	3.6		5	μΑ	V _O = 3.6V
lоzн+	3-STATE Output Leakage Cu	urrent	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$
ссн	Power Supply Current		3.6		0.19	mA	Outputs HIGH
CCL	Power Supply Current		3.6		5	mA	Outputs LOW
ccz	Power Supply Current		3.6		0.19	mA	Outputs Disabled
ccz+	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled
ΔI _{CC}	Increase in Power Supply Cu (Note 8)	ırrent	3.6		0.2	mA	One Input at $V_{CC} - 0.6$ Other Inputs at V_{CC} or

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

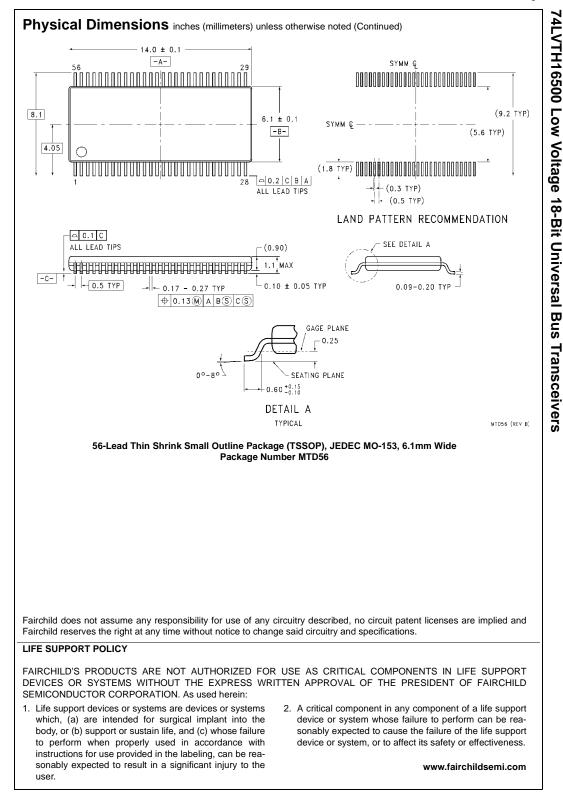
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)


Symbol	Parameter	v _{cc}		$T_A = 25^{\circ}C$		Units	Conditions
Cymbol	i alanetei	(V)	Min	Тур	Max	Onits	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.


Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

Parame elay ts elay 3 to B or A elay CAB to B or A Time	A before CLKAB	V _{CC} = 3. Min 150 1.3 1.5 1.5 1.5 1.3 1.3 1.3 1.3 1.7 1.7	C to +85°C, C 3 ± 0.3V Max 3.7 3.7 5.1 5.1 5.1 5.0 5.0 4.8 4.8 4.8 5.8	V _{cc} = <u>Min</u> 150 1.3 1.3 1.5 1.5 1.3 1.3 1.3 1.3 1.3		Units MHz ns ns
ts elay 8 to B or A elay CAB to B or A Time		150 1.3 1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	3.7 3.7 5.1 5.0 5.0 4.8 4.8	150 1.3 1.3 1.5 1.5 1.3 1.3 1.3	4.0 4.0 5.7 5.7 5.9 5.9 5.5	ns ns ns
ts elay 8 to B or A elay CAB to B or A Time		1.3 1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.7	3.7 5.1 5.0 5.0 4.8 4.8	1.3 1.5 1.5 1.3 1.3 1.3 1.3	4.0 5.7 5.7 5.9 5.9 5.5	ns ns ns
ts elay 8 to B or A elay CAB to B or A Time		1.3 1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.7	3.7 5.1 5.0 5.0 4.8 4.8	1.3 1.5 1.5 1.3 1.3 1.3	4.0 5.7 5.7 5.9 5.9 5.5	ns
elay 8 to B or A elay CAB to B or A Time		1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.7	5.1 5.1 5.0 5.0 4.8 4.8	1.5 1.5 1.3 1.3 1.3	5.7 5.7 5.9 5.9 5.5	ns
8 to B or A elay TAB to B or A Time		1.5 1.3 1.3 1.3 1.3 1.3 1.7	5.1 5.0 5.0 4.8 4.8	1.5 1.3 1.3 1.3	5.7 5.9 5.9 5.5	ns
elay KAB to B or A Time	A bofore CLIVAD	1.3 1.3 1.3 1.3 1.7	5.0 5.0 4.8 4.8	1.3 1.3 1.3	5.9 5.9 5.5	ns
KAB to B or A	A bofore CLIVAD	1.3 1.3 1.3 1.7	5.0 4.8 4.8	1.3 1.3	5.9 5.5	
Time	A bofore CLIVAD	1.3 1.3 1.7	4.8 4.8	1.3	5.5	
	A bofore CLIZAD	1.3 1.7	4.8			
e Time		1.7	-	1.3		ns
e lime	A before CLIZAD		5.8			
			5.0	1.7	6.3	ns
-	A hoforo CLIZAD		5.8	1.7	6.3	
	A DEIDIE CLKAB	2.9		2.9		
	B before CLKBA	2.9		2.9		ns
	A or B before LE, CLK HIGH	1.4		0.5		115
	A or B before LE, CLK LOW	2.9		2.3		
	A or B after CLK	0.4		0.4		ns
-	A or B after LE	1.6		1.6		
1	LE HIGH			3.3		
	CLK HIGH or LOW	3.3		3.3		ns
out Skew (Note 11)		0.0	1.0	0.0	1.0	
· · · ·			1.0		1.0	ns
	Conditior	15		Typical		Jnits
apacitance	$V_{CC} = 3.0V, V_{O} = 0V \text{ or } V_{C}$	/ _{CC} 8				pF
	utputs switching in the sam Note 12) Parameter nce apacitance	LE HIGH CLK HIGH or LOW out Skew (Note 11) he absolute value of the difference between the actual propagati utputs switching in the same direction, either HIGH-to-LOW (t _{OSF}) Note 12) Parameter Condition N _{CC} = 0V, V ₁ = 0V or V _{CC}	A or B after LE 1.6 LE HIGH 3.3 CLK HIGH or LOW 3.3 but Skew (Note 11)	A or B after LE 1.6 Image: LE HIGH 3.3 CLK HIGH or LOW 3.3 Dut Skew (Note 11) 1.0 but Skew (Note 11) 1.0 Image: Ltput Switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}) Note 12) Parameter Conditions Ince V _{CC} = 0V, V ₁ = 0V or V _{CC} apacitance V _{CC} = 3.0V, V ₀ = 0V or V _{CC}	A or B after LE 1.6 1.6 n LE HIGH 3.3 3.3 CLK HIGH or LOW 3.3 3.3 but Skew (Note 11) 1.0 1.0 1.0 he absolute value of the difference between the actual propagation delay for any two separate outputs of utputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Note 12) Parameter Conditions Typical apacitance NCC = 3.0V, V ₀ = 0V or V _{CC} 4	A or B after LE 1.6 1.6 n LE HIGH 3.3 3.3 Out Skew (Note 11) I.0 1.0 1.0 but Skew (Note 11) 1.0 1.0 1.0 h I.0 I.0 1.0 h I.0 I.0 I.0 h I.0 I.0 I.0 h IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

74LVTH16500

