Order Number	Package Number	Package Description
100310QC	V28A	28－Lead Plastic Lead Chip Carrier（PLCC），JEDEC MO－047，0．450 Square
100310QI	V28A	28－Lead Plastic Lead Chip Carrier $($ PLCC $)$, JEDEC MO－047， 0.450 Square Industrial Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Logic Symbol

Pin Descriptions

Pin Names	Description
CLKIN $_{n}, \overline{\mathrm{CLKIN}}_{\mathrm{n}}$	Differential Clock Inputs
SEL	Select
CLK $_{0-7}, \overline{\mathrm{CLK}}_{0-8}$	Differential Clock Outputs
$\mathrm{V}_{\text {BB }}$	$\mathrm{V}_{\text {BB Output }}$
NC	No Connect

Connection Diagram

28－Pin PLCC

$\mathrm{CLK}_{6} \overline{\overline{C L K}_{8}} \mathrm{CLK}_{7} \mathrm{~V}_{\mathrm{CCA}} \overline{\overline{\mathrm{CK}}_{7}}$ NC $\overline{\mathrm{CLK}} \mathrm{KIN}$

Truth Table

CLKINA	$\overline{\text { CLKINA }}$	CLKINB	$\overline{\text { CLKINB }}$	SEL	CLK $_{\mathbf{n}}$	$\overline{\text { CLK }}_{\mathbf{n}}$
H	L	X	X	L	H	L
L	H	X	X	L	L	H
X	X	H	L	H	H	L
X	X	L	H	H	L	H

Absolute Maximum Ratings(Note 1)

Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrica haracteristics tables are not guaranteed at the absolute maximum rating he "Recommended Operating Conditions" table will define the conditions or actual device operation
Note 2: ESD testing conforms to MIL-STD-883, Method 3015

Commercial Version

DC Electrical Characteristics (Note 3)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max})$	Loading with
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V_{IL} (Min)	50Ω to -2.0 V
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or V_{IL} (Max)	50Ω to -2.0 V
V_{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for F	Swing
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$		$\mathrm{V}_{\mathrm{CC}}-0.5$	V		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIG	nal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW	al for All Inputs
$I_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
I_{H}	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)	
ICBO	Input Leakage Current	-10			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$	
l_{EE}	Power Supply Current	-100		-40	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are cho sen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) AC Electrical Characteristics												
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency CLKIN A/B to Q_{n} SEL to Q_{n}	$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay, CLKIN n to CLK $_{n}$ Differential Single-Ended	$\begin{aligned} & 0.80 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.29 \end{aligned}$	ns	Figure 3
$\begin{aligned} & t_{\text {tpL }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, SEL to Output	0.75	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
tps tosth toshl tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		10 20 20 30	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 60 \end{aligned}$		10 20 20 30	$\begin{aligned} & \hline 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		10 20 20 30	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	(Note 4)(Note 7 (Note 5)(Note 7) (Note 5)(Note 7 (Note 6)(Note 7
t_{s}	Setup Time SEL to CLKIN $_{n}$	300			300			300			ps	
t_{H}	Setup Time SEL to CLKIN $_{n}$	0			0			0			ps	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4
Note 4: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's LOW-to-HIGH and HIGH-to-LOW propagation delays. With differential signal pairs, a LOW-to-HIGH or HIGH-to-LOW transition is defined as the transition of the true output or input pin. Note 5: tosLH describes in-phase gate-to-gate differential propagation skews with all differential outputs going LOW-to-HIGH; toshl describes the same conditions except with the outputs going HIGH-to-LOW. Note 6: tost describes the maximum worst case difference in any of the tps, tosth or tost delay paths combined. Note 7: The skew specifications pertain to differential I/O paths.												

Industrial Version DC Electrical Characteristics (Note 8)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
$\overline{\mathrm{V} \text { OH }}$	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$	$\begin{aligned} & \text { Loading with } \\ & 50 \Omega \text { to }-2.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		50Ω to -2.0 V
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing	
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$	$\mathrm{V}_{\mathrm{CC}}-0.5$	$\mathrm{V}_{\mathrm{CC}}-2.0$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\overline{\mathrm{V}} \mathrm{IL}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
ILI	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
I_{IH}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EE }}$	
I_{EE}	Power Supply Current	-100	-40	-100	-40	mA	Inputs Open	

Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional
noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency CLKIN A/B to Q_{n} SEL to Q_{n}	$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			MHz MHz	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay, } \\ & \text { CLKIN }_{n} \text {, to } \text { CLK }_{n} \text { (} \\ & \\ & \\ & \text { Single-Ended } \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.29 \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SEL to Output	0.70	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
$t_{\text {PS }}$ $t_{\text {OSLH }}$ $\mathrm{t}_{\mathrm{OSHL}}$ tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	(Note 9)(Note 12) (Note 10)(Note 12) (Note 10)(Note 12) (Note 11)(Note 12)
t_{S}	Setup Time SEL to CLKIN $_{n}$	300			300			300			ps	
t_{H}	Setup Time SEL to CLKIN $_{n}$	0			0			0			ps	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4

Note 9: $t_{\text {PS }}$ describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's LOW-to-HIGH and HIGH-to-LI
agation delays. With differential signal pairs, a LOW-to-HIGH or HIGH-to-LOW transition is defined as the transition of the true output or input pin.
Note 10: $\mathrm{t}_{\mathrm{OSLH}}$ describes in-phase gate-to-gate differential propagation skews with all differential outputs going LOW-to-HIGH; $\mathrm{t}_{\mathrm{OSH}}$ describes the same conditions except with the outputs going HIGH-to-LOW
Note 11: $t_{\text {OST }}$ describes the maximum worst case difference in any of the $t_{P S}, t_{\text {OSLH }}$ or $t_{\text {OST }}$ delay paths combined
Note 12: The skew specifications pertain to differential I/O paths.

Test Circuit

Note:
Shown for testing CLKIN to CLK1 in the differential mode.
$L 1, L 2, L 3$ and $L 4=$ equal length 50Ω impedance lines.
All unused inputs and outputs are loaded with 50Ω in parallel with $\leq 3 \mathrm{pF}$ to GND.
Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay, SEL to Outputs

FIGURE 3. Propagation Delay, CLKIN/ $\overline{\text { CLKIN }}$ to Outputs

Physical Dimensions inches (millimeters) unless otherwise noted

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
