

Connection Diagrams

Absolute Maximum Ratings(Note 4)
Storage Temperature ($T_{\text {STG }}$)
Maximum Junction Temperature
V $_{\text {EE }}$ Pin Potential to Ground Pin
V $_{\text {TTL }}$ Pin Potential to Ground Pin
ECL Input Voltage (DC)
ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 6)
TTL Input Current (Note 6)
Voltage Applied to Output
in HIGH State
3-STATE Output
Current Applied to TTL
Output in LOW State (Max)
ESD (Note 5)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
-0.5 V to +6.0 V
V_{EE} to +0.5 V
-0.5 V to +6.0 V
-30 mA to +5.0 mA
-0.5 V to +5.5 V
$-50 \mathrm{~mA}$

Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$ Note 5: ESD testing conforms to MIL-STD-883, Method 3015.
$\geq 2000 \mathrm{~V}$ Note 6 : Either voltage limit or current limit is sufficient to protect inputs.

TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 7)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	Loading with 50Ω to -2 V
	Cutoff Voltage		-2000	-1950	mV	OE or DIR LOW, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point HIGH	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max})$ Loading with 50Ω to -2 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage Corner Point LOW			-1610	mV	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		5.0	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
IIH	Input HIGH Current			70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
	Breakdown Test			1.0	mA	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$
IIL	Input LOW Current	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$
$\mathrm{V}_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
l_{EE}	$\mathrm{V}_{\text {EE }}$ Supply Current	$\begin{aligned} & -189 \\ & -199 \end{aligned}$		$\begin{aligned} & -94 \\ & -94 \end{aligned}$	mA	LE LOW, OE and DIR HIGH Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP ECL-to-TTL AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency	125		125		125		MHz	
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	CP to T_{n}	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3, 4
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & \hline 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} \hline 8.45 \\ 9.2 \end{gathered}$	$\begin{aligned} & \hline 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.95 \\ 9.2 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} \hline 9.7 \\ 9.95 \end{gathered}$	ns	Figures 3, 5
$\begin{aligned} & t_{\text {tPHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.95 \\ 7.7 \end{gathered}$	$\begin{aligned} & \hline 3.3 \\ & 3.4 \end{aligned}$	$\begin{gathered} 8.95 \\ 8.7 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.1 \end{aligned}$	$\begin{gathered} \hline 9.2 \\ 9.95 \end{gathered}$	ns	Figures 3, 5
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & \hline 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} \hline 8.2 \\ 7.45 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} \hline 8.7 \\ 7.95 \end{gathered}$	$\begin{aligned} & \hline 3.1 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.95 \\ 9.2 \end{gathered}$	ns	Figures 3, 6
$\mathrm{t}_{\text {SET }}$	E_{n} to CP	1.1		1.1		1.1		ns	Figures 3, 4
$\mathrm{t}_{\text {HoLD }}$	E_{n} to CP	2.1		2.1		2.6		ns	Figures 3, 4
${ }_{\text {tpw }}(\mathrm{H})$	Pulse Width CP	4.1		4.1		4.1		ns	Figures 3, 4
PLCC and TTL-to-ECL AC Electrical Characteristics									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {f MAX }}$	Max Toggle Frequency	350		350		350		MHz	
tPLH $\mathrm{t}_{\mathrm{PHL}}$	CP to E_{n}	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1, 2
$t_{\text {Pz }}$	$\begin{aligned} & \text { OE to } \mathrm{E}_{\mathrm{n}} \\ & \text { (Cutoff to HIGH) } \end{aligned}$	1.3	4.0	1.5	4.2	1.7	4.6	ns	Figures 1, 2
$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & \text { OE to } E_{n} \\ & \text { (HIGH to Cutoff) } \end{aligned}$	1.5	4.3	1.6	4.3	1.6	4.4	ns	Figures 1, 2
$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & \text { DIR to } E_{n} \\ & \text { (HIGH to Cutoff) } \end{aligned}$	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1, 2
$\mathrm{t}_{\text {SET }}$	T_{n} to CP	1.0		1.0		1.0		ns	Figures 1, 2
${ }_{\text {thold }}$	T_{n} to CP	1.7		1.7		1.9		ns	Figures 1, 2
${ }_{\text {tpw }}(\mathrm{H})$	Pulse Width CP	2.0		2.0		2.0		ns	Figures 1, 2
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1, 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PLCC Only (Note 9)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PLCC Only (Note 9)
$\mathrm{t}_{\text {OSt }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		650		650		650	ps	PLCC Only (Note 9)
$\overline{t_{P S}}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		650		650		650	ps	PLCC Only (Note 9)
Note 9: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toSHL), or LOW-to-HIGH (tosLh), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OSt}}$ and t_{PS} guaranteed by design.									

100329

PLCC and ECL-to-TTL AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency	125		125		125		MHz	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	CP to T_{n}	3.1	7.0	3.1	7.0	3.3	7.5	ns	Figures 3, 4
$\begin{aligned} & \hline t_{\text {pzH }} \\ & t_{\text {pzLL }} \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & \hline 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} \hline 8.25 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.75 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 9.75 \end{gathered}$	ns	Figures 3, 5
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline 3.3 \\ & 3.4 \end{aligned}$	$\begin{gathered} 8.75 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.1 \end{aligned}$	$\begin{gathered} 9.0 \\ 9.75 \end{gathered}$	ns	Figures 3, 5
$\begin{aligned} & t_{\text {tPHZ }} \\ & t_{\text {PLL }} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & \hline 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 7.25 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} 8.5 \\ 7.75 \end{gathered}$	$\begin{aligned} & \hline 3.1 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \end{gathered}$	ns	Figures 3, 6
${ }_{\text {t }}{ }_{\text {EET }}$	E_{n} to CP	1.0		1.0		1.0		ns	Figures 3, 4
$\mathrm{t}_{\text {HOLD }}$	E_{n} to CP	2.0		2.0		2.5		ns	Figures 3, 4
$\mathrm{t}_{\text {PW }}(\mathrm{H})$	Pulse Width CP	4.0		4.0		4.0		ns	Figures 3, 4
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		600		600		600	ps	PLCC Only (Note 10)
tosLh	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		850		850		850	ps	PLCC Only (Note 10)
$\mathrm{t}_{\text {OST }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		1350		1350		1350	ps	PLCC Only (Note 10)
$\mathrm{t}_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		950		950		950	ps	PLCC Only (Note 10)

Note 10: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW ($t_{\text {OSHL }}$), or LOW-to-HIGH (tosLH), or in oppo site directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OST}}$ and t_{PS} guaranteed by design.

Test Circuitry (TTL-to-ECL)

Note 11: $R_{T}=50 \Omega$ termination resistive load. When an input or output is being monitored by a scope, R_{T} is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_{T}.
Note 12: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 13: $\mathrm{V}_{\mathrm{TTL}}$ is decoupled to ground with $0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{EE}}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and V_{CC} is connected to ground.
FIGURE 1. TTL-to-ECL AC Test Circuit
Switching Waveforms (TTL-to-ECL)

FIGURE 2. TTL to ECL Transition-Propagation Delay and Transition Times

Note: DIR is LOW, OE is HIGH
FIGURE 4. ECL-to-TTL Transition—Propagation Delay and Transition Times

Note: DIR is LOW
FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

Note: OE is HIGH
FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
