
FEATURES

- Halogen-free According to IEC 61249-2-2 Definition
- TrenchFET® Power MOSFET
- AEC-Q101 Qualified^d
- 100 % R_g Tested
- Typical ESD Protection: 800 V
- Compliant to RoHS Directive 2002/95/EC

PRODUCT SUMMARY

V_{DS} (V)	20
$R_{DS(on)}$ (Ω) at $V_{GS} = 4.5$ V	0.280
$R_{DS(on)}$ (Ω) at $V_{GS} = 2.5$ V	0.360
$R_{DS(on)}$ (Ω) at $V_{GS} = 1.8$ V	0.450
I_D (A)	0.8
Configuration	Dual

ORDERING INFORMATION

Package	SC-70
Lead (Pb)-free and Halogen-free	SQ1912EEH-T1-GE3

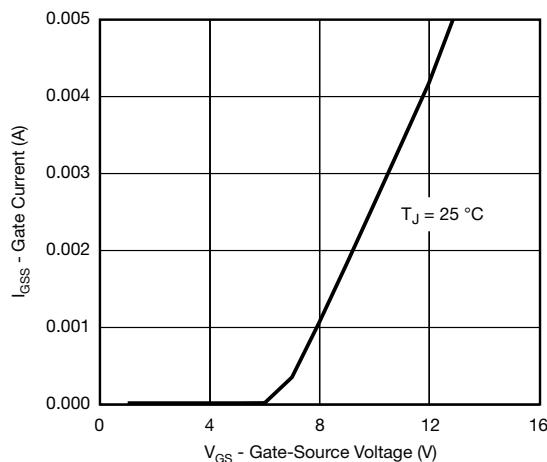
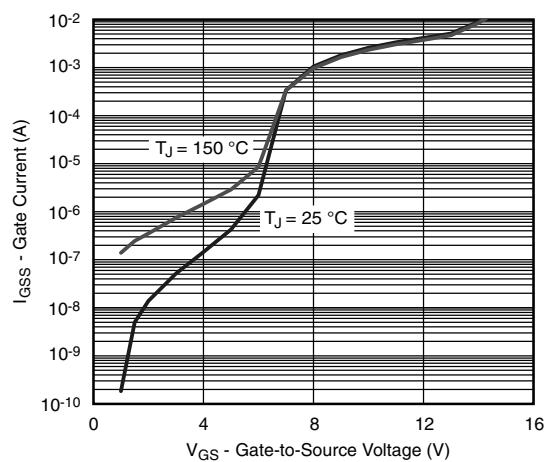
ABSOLUTE MAXIMUM RATINGS ($T_C = 25^\circ\text{C}$, unless otherwise noted)

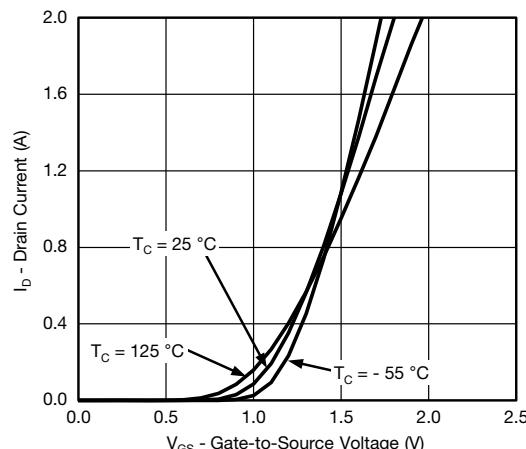
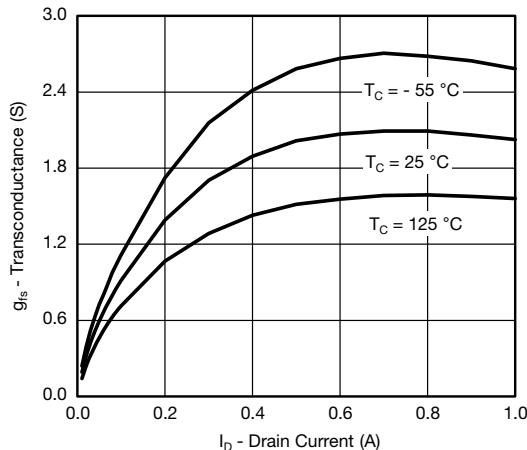
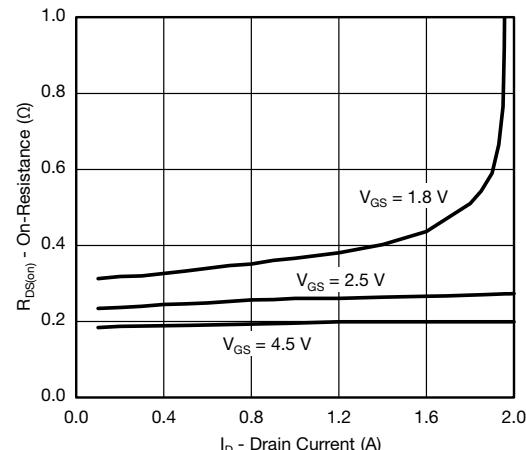
PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	V_{DS}	20	V
Gate-Source Voltage	V_{GS}	± 12	
Continuous Drain Current ^a	$T_C = 25\text{ }^\circ\text{C}$	I_D	A
	$T_C = 125\text{ }^\circ\text{C}$		
Continuous Source Current (Diode Conduction) ^a	I_S	0.8	A
Pulsed Drain Current ^b	I_{DM}	0.8	
Maximum Power Dissipation ^b	$T_C = 25\text{ }^\circ\text{C}$	P_D	W
	$T_C = 125\text{ }^\circ\text{C}$		
Operating Junction and Storage Temperature Range	T_J, T_{stg}	- 55 to + 175	°C

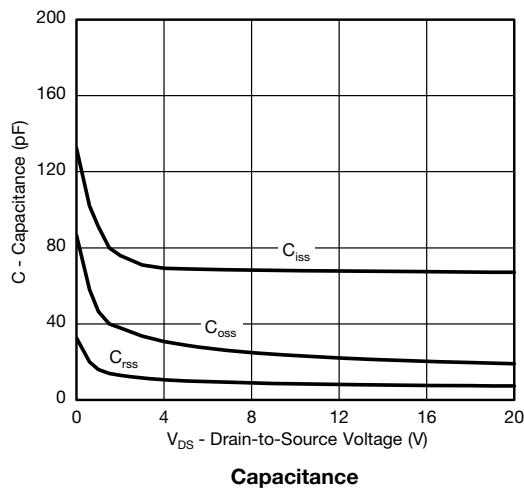
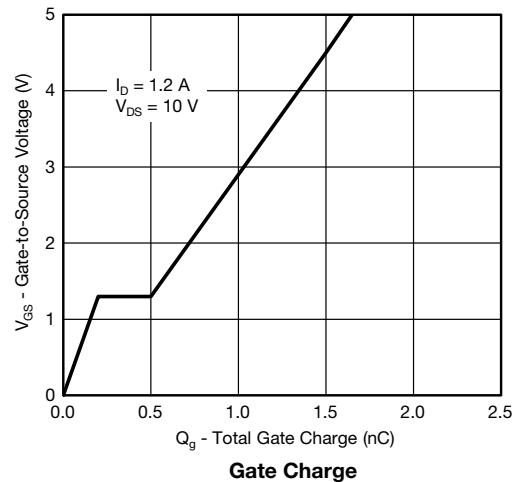
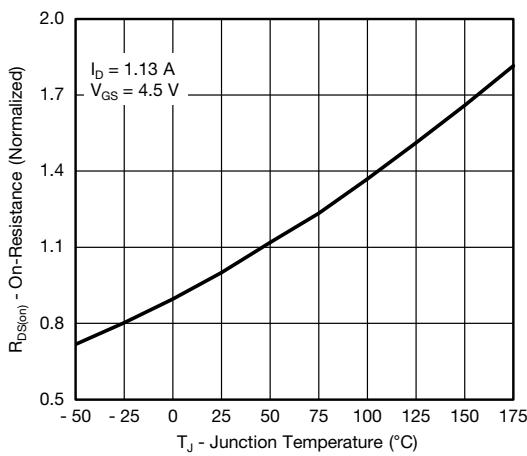
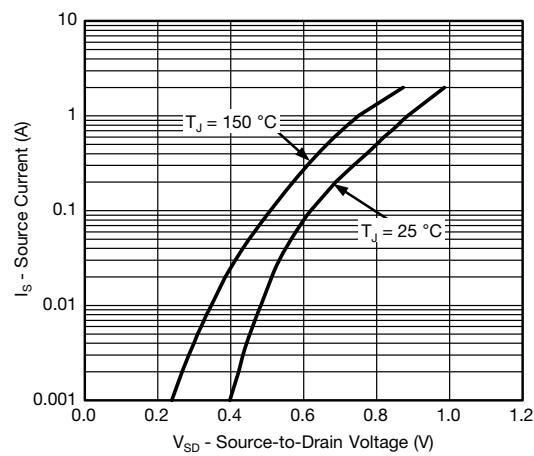
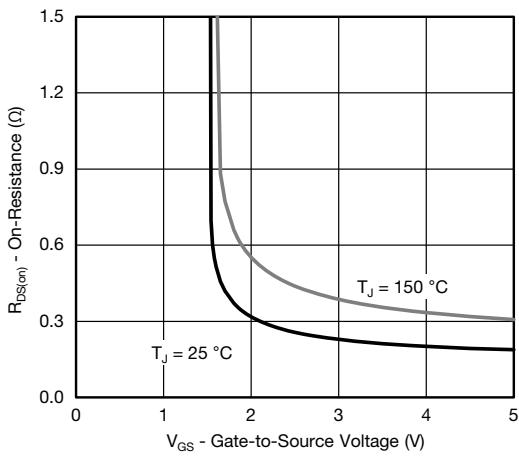
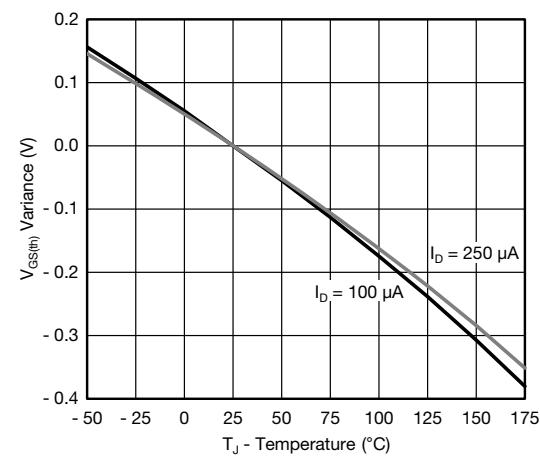
THERMAL RESISTANCE RATINGS

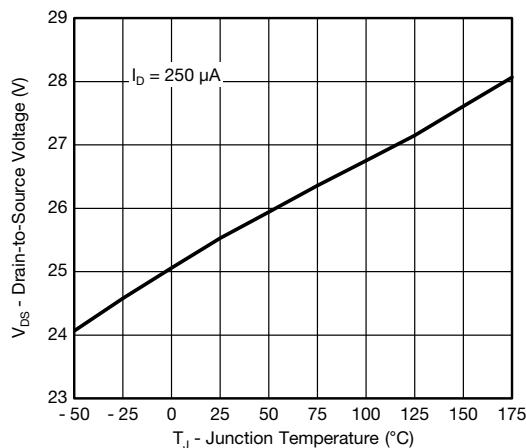
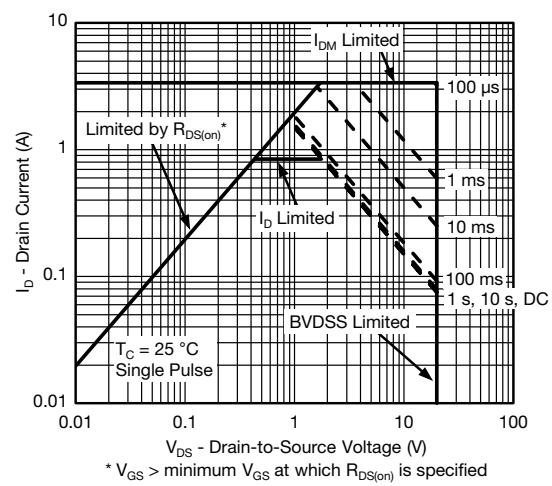
PARAMETER	SYMBOL	LIMIT	UNIT
Junction-to-Ambient	R_{thJA}	220	°C/W
Junction-to-Foot (Drain)	R_{thJF}	100	

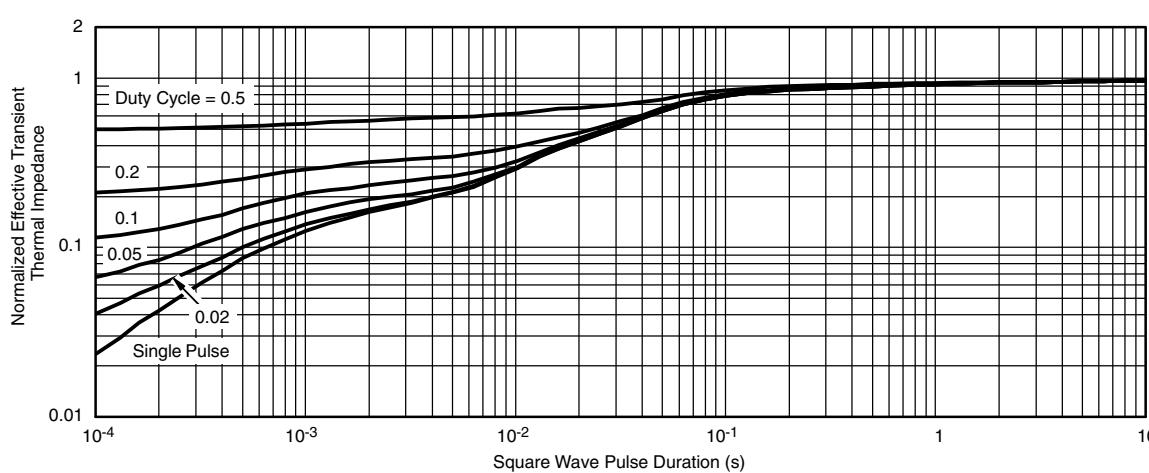
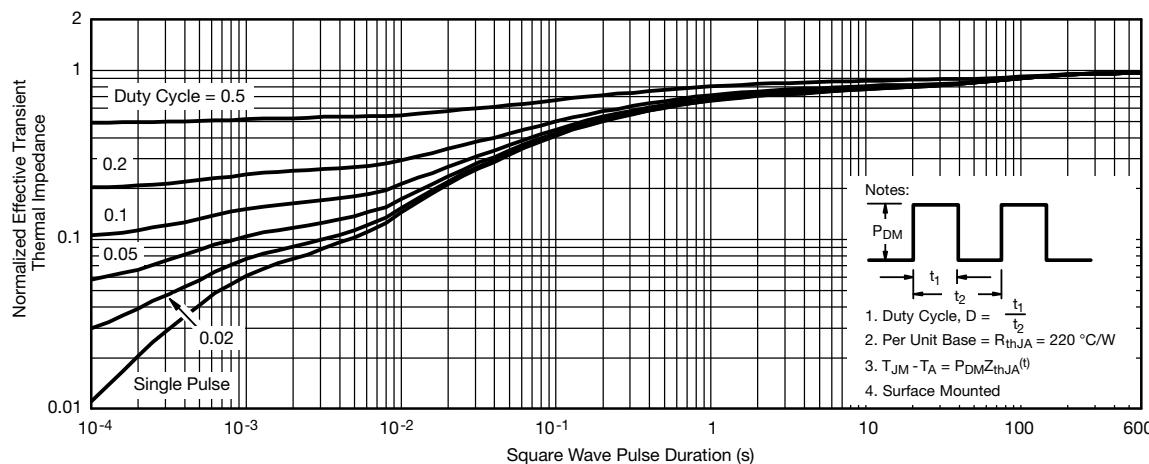
Notes



- a. Package limited.
- b. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
- c. When mounted on 1" square PCB (FR-4 material).
- d. Parametric verification ongoing.




SPECIFICATIONS ($T_C = 25^\circ\text{C}$, unless otherwise noted)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static								
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0$, $I_D = 250 \mu\text{A}$		20	-	-	V	
Gate-Source Threshold Voltage	$V_{GS(\text{th})}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$		0.45	0.6	1.5		
Gate-Source Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 4.5 \text{ V}$		-	-	± 1	μA	
		$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 12 \text{ V}$		-	-	± 10	mA	
Zero Gate Voltage Drain Current	I_{DSS}	$V_{GS} = 0 \text{ V}$	$V_{DS} = 20 \text{ V}$	-	-	1	μA	
		$V_{GS} = 0 \text{ V}$	$V_{DS} = 20 \text{ V}$, $T_J = 125^\circ\text{C}$	-	-	50		
		$V_{GS} = 0 \text{ V}$	$V_{DS} = 20 \text{ V}$, $T_J = 175^\circ\text{C}$	-	-	150		
On-State Drain Current ^a	$I_{D(\text{on})}$	$V_{GS} = 4.5 \text{ V}$	$V_{DS} \geq 5 \text{ V}$	1.5	-	-	A	
Drain-Source On-State Resistance ^a	$R_{DS(\text{on})}$	$V_{GS} = 4.5 \text{ V}$	$I_D = 1.2 \text{ A}$	-	0.200	0.280	Ω	
		$V_{GS} = 4.5 \text{ V}$	$I_D = 1.2 \text{ A}$, $T_J = 125^\circ\text{C}$	-	-	0.423		
		$V_{GS} = 4.5 \text{ V}$	$I_D = 1.2 \text{ A}$, $T_J = 175^\circ\text{C}$	-	-	0.510		
		$V_{GS} = 2.5 \text{ V}$	$I_D = 1 \text{ A}$	-	0.261	0.360		
		$V_{GS} = 1.8 \text{ V}$	$I_D = 0.2 \text{ A}$	-	0.320	0.45		
Forward Transconductance ^b	g_{fs}	$V_{DS} = 10 \text{ V}$, $I_D = 1.2 \text{ A}$		-	2.6	-	S	
Dynamic^b								
Input Capacitance	C_{iss}	$V_{GS} = 0 \text{ V}$	$V_{DS} = 10 \text{ V}$, $f = 1 \text{ MHz}$	-	68	85	pF	
Output Capacitance	C_{oss}			-	23	29		
Reverse Transfer Capacitance	C_{rss}			-	9	12		
Total Gate Charge ^c	Q_g	$V_{GS} = 4.5 \text{ V}$	$V_{DS} = 10 \text{ V}$, $I_D = 1.2 \text{ A}$	-	1.5	2.3	nC	
Gate-Source Charge ^c	Q_{gs}			-	0.2	-		
Gate-Drain Charge ^c	Q_{gd}			-	0.3	-		
Gate Resistance	R_g	$f = 1 \text{ MHz}$		0.6	1.1	1.6	Ω	
Turn-On Delay Time ^c	$t_{d(\text{on})}$	$V_{DD} = 10 \text{ V}$, $R_L = 20 \Omega$ $I_D \approx 0.5 \text{ A}$, $V_{GEN} = 4.5 \text{ V}$, $R_g = 1 \Omega$		-	34	50	ns	
Rise Time ^c	t_r			-	51	75		
Turn-Off Delay Time ^c	$t_{d(\text{off})}$			-	431	650		
Fall Time ^c	t_f			-	142	215		
Source-Drain Diode Ratings and Characteristics^b								
Pulsed Current ^a	I_{SM}			-	-	3	A	
Forward Voltage	V_{SD}	$I_F = 0.5 \text{ A}$, $V_{GS} = 0$		-	0.8	1.2	V	







Notes



- a. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2 \%$.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.



Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Gate Current vs. Gate-Source Voltage

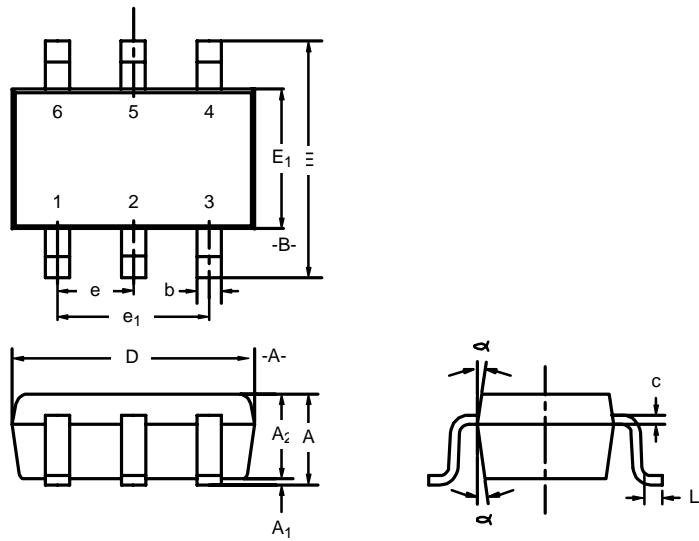
Gate Current vs. Gate-Source Voltage

Output Characteristics

Transfer Characteristics

Transconductance

On-Resistance vs. Drain Current


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Capacitance

Gate Charge

On-Resistance vs. Junction Temperature

Source Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

TYPICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$, unless otherwise noted)

Drain Source Breakdown vs. Junction Temperature

Safe Operating Area

THERMAL RATINGS ($T_A = 25^\circ\text{C}$, unless otherwise noted)

Note

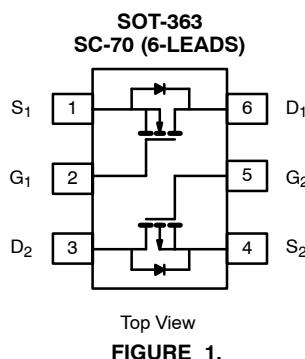
- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25°C)
 - Normalized Transient Thermal Impedance Junction-to-Foot (25°C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

SC-70: 6-LEADS

Dim	MILLIMETERS			INCHES		
	Min	Nom	Max	Min	Nom	Max
A	0.90	—	1.10	0.035	—	0.043
A₁	—	—	0.10	—	—	0.004
A₂	0.80	—	1.00	0.031	—	0.039
b	0.15	—	0.30	0.006	—	0.012
c	0.10	—	0.25	0.004	—	0.010
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E₁	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65BSC			0.026BSC		
e₁	1.20	1.30	1.40	0.047	0.051	0.055
L	0.10	0.20	0.30	0.004	0.008	0.012
alpha	7°Nom			7°Nom		

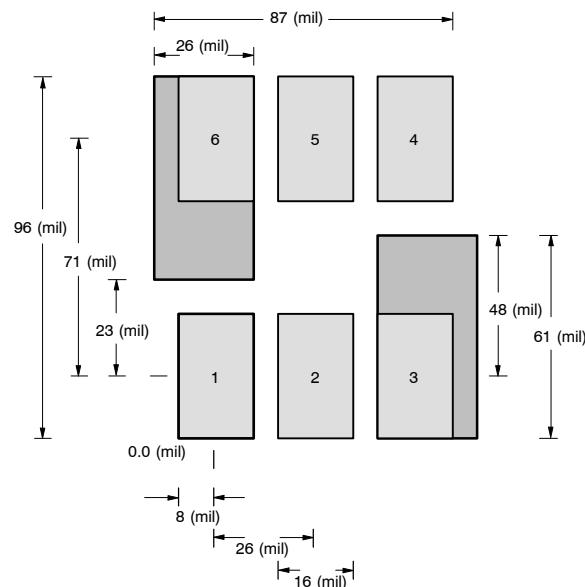
ECN: S-03946—Rev. B, 09-Jul-01
 DWG: 5550


Dual-Channel LITTLE FOOT® 6-Pin SC-70 MOSFET Copper Leadframe Version Recommended Pad Pattern and Thermal Performance

INTRODUCTION

The new dual 6-pin SC-70 package with a copper leadframe enables improved on-resistance values and enhanced thermal performance as compared to the existing 3-pin and 6-pin packages with Alloy 42 leadframes. These devices are intended for small to medium load applications where a miniaturized package is required. Devices in this package come in a range of on-resistance values, in n-channel and p-channel versions. This technical note discusses pin-outs, package outlines, pad patterns, evaluation board layout, and thermal performance for the dual-channel version.

PIN-OUT


Figure 1 shows the pin-out description and Pin 1 identification for the dual-channel SC-70 device in the 6-pin configuration. Both n-and p-channel devices are available in this package – the drawing example below illustrates the p-channel device.

For package dimensions see outline drawing SC-70 (6-Leads) (<http://www.vishay.com/doc?71154>)

BASIC PAD PATTERNS

See Application Note 826, *Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs*, (<http://www.vishay.com/doc?72286>) for the SC-70 6-pin basic pad layout and dimensions. This pad pattern is sufficient for the low-power applications for which this package is intended. Increasing the drain pad pattern (Figure 2) yields a reduction in thermal resistance and is a preferred footprint.

FIGURE 2. SC-70 (6 leads) Dual

EVALUATION BOARD FOR THE DUAL-CHANNEL SC70-6

The 6-pin SC-70 evaluation board (EVB) shown in Figure 3 measures 0.6 in. by 0.5 in. The copper pad traces are the same as described in the previous section, *Basic Pad Patterns*. The board allows for examination from the outer pins to the 6-pin DIP connections, permitting test sockets to be used in evaluation testing.

The thermal performance of the dual 6-pin SC-70 has been measured on the EVB, comparing both the copper and Alloy 42 leadframes. This test was then repeated using the 1-inch² PCB with dual-side copper coating.

A helpful way of displaying the thermal performance of the 6-pin SC-70 dual copper leadframe is to compare it to the traditional Alloy 42 version.

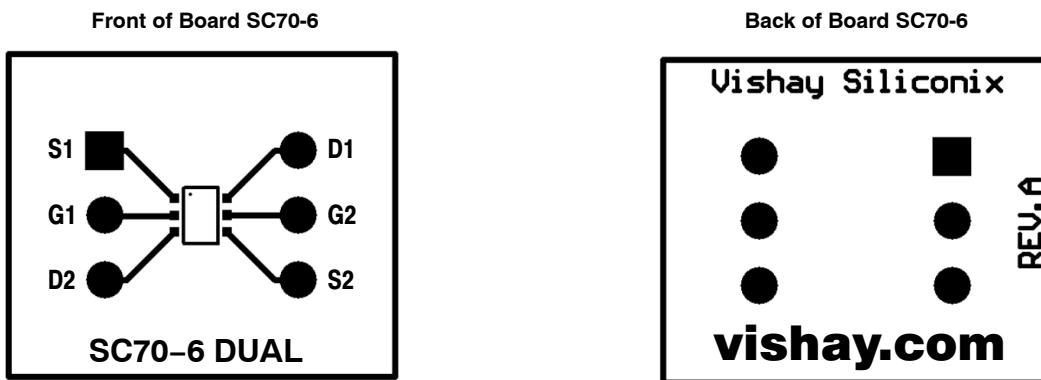


FIGURE 3.

Thermal Performance

Junction-to-Foot Thermal Resistance (the Package Performance)

Thermal performance for the dual SC-70 6-pin package is measured as junction-to-foot thermal resistance, in which the "foot" is the drain lead of the device as it connects with the body. The junction-to-foot thermal resistance for this device is typically 80°C/W, with a maximum thermal resistance of approximately 100°C/W. This data compares favorably with another compact, dual-channel package – the dual TSOP-6 – which features a typical thermal resistance of 75°C/W and a maximum of 90°C/W.

Power Dissipation

The typical $R_{\theta JA}$ for the dual-channel 6-pin SC-70 with a copper leadframe is 224°C/W steady-state, compared to 413°C/W for the Alloy 42 version. All figures are based on the 1-inch² FR4 test board. The following example shows how the thermal resistance impacts power dissipation for the dual 6-pin SC-70 package at varying ambient temperatures.

Alloy 42 Leadframe

ALLOY 42 LEADFRAME	
Room Ambient 25 °C	Elevated Ambient 60 °C
$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$	$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$
$P_D = \frac{150^\circ\text{C} - 25^\circ\text{C}}{413^\circ\text{C}/\text{W}}$	$P_D = \frac{150^\circ\text{C} - 60^\circ\text{C}}{413^\circ\text{C}/\text{W}}$
$P_D = 303 \text{ mW}$	$P_D = 218 \text{ mW}$

COOPER LEADFRAME

Room Ambient 25 °C	Elevated Ambient 60 °C
$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$	$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$
$P_D = \frac{150^\circ\text{C} - 25^\circ\text{C}}{224^\circ\text{C}/\text{W}}$	$P_D = \frac{150^\circ\text{C} - 60^\circ\text{C}}{224^\circ\text{C}/\text{W}}$
$P_D = 558 \text{ mW}$	$P_D = 402 \text{ mW}$

Although they are intended for low-power applications, devices in the 6-pin SC-70 dual-channel configuration will handle power dissipation in excess of 0.5 W.

TESTING

To further aid the comparison of copper and Alloy 42 leadframes, Figures 4 and 5 illustrate the dual-channel 6-pin SC-70 thermal performance on two different board sizes and pad patterns. The measured steady-state values of $R_{\theta JA}$ for the dual 6-pin SC-70 with varying leadframes are as follows:

LITTLE FOOT 6-PIN SC-70		
	Alloy 42	Copper
1) Minimum recommended pad pattern on the EVB board (see Figure 3).	518°C/W	344°C/W
2) Industry standard 1-inch ² PCB with maximum copper both sides.	413°C/W	224°C/W

The results indicate that designers can reduce thermal resistance (θ_{JA}) by 34% simply by using the copper leadframe device as opposed to the Alloy 42 version. In this example, a 174°C/W reduction was achieved without an increase in board area. If an increase in board size is feasible, a further 120°C/W reduction can be obtained by utilizing a 1-inch² PCB area.

The Dual copper leadframe versions have the following suffix:

Dual: Si19xxEDH
 Compl.: Si15xxEDH

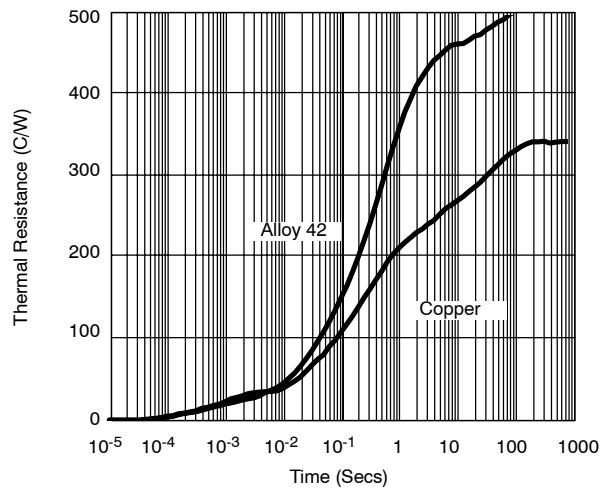


FIGURE 4. Dual SC70-6 Thermal Performance on EVB

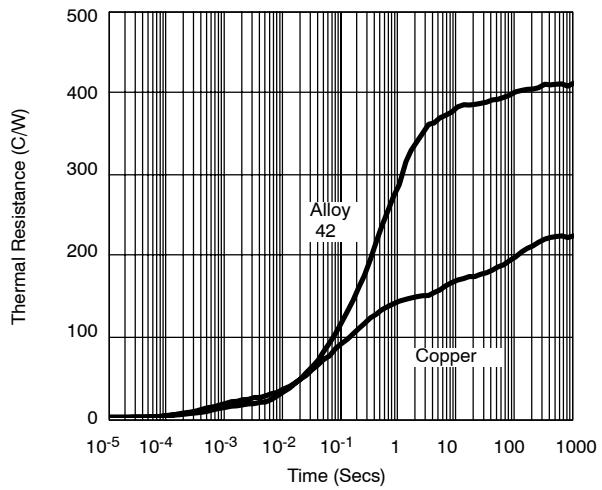
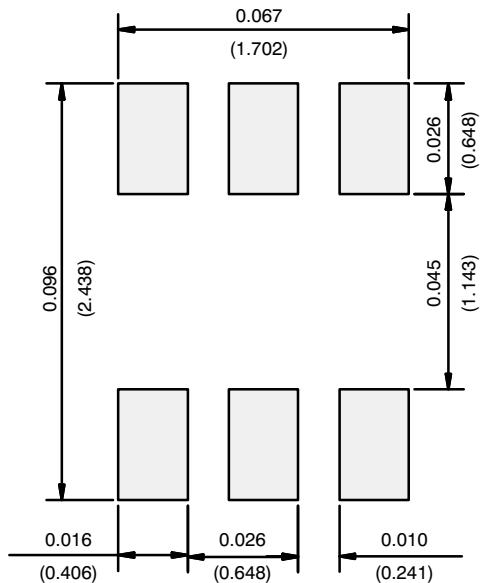



FIGURE 5. Dual SC70-6 Comparison on 1-inch² PCB

RECOMMENDED MINIMUM PADS FOR SC-70: 6-Lead

Recommended Minimum Pads
Dimensions in Inches/(mm)

[Return to Index](#)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

freestyle Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "freestyle"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

freestyle makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vis hay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on freestyle's knowledge of typical requirements that are often placed on freestyle products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify freestyle's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, freestyle products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the freestyle product could result in personal injury or death. Customers using or selling freestyle products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold freestyle and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vis hay

Material Category Policy

freestyle Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some freestyle documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.