

Automotive P-Channel 40 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	- 40			
$R_{DS(on)}(\Omega)$ at $V_{GS} = -10 \text{ V}$	0.013			
$R_{DS(on)}(\Omega)$ at $V_{GS} = -4.5 \text{ V}$	0.022			
I _D (A)	- 50			
Configuration	Single			

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- Package with Low Thermal Resistance
- \bullet 100 % $R_{\textrm{g}}$ and UIS Tested
- Compliant to RoHS Directive 2002/95/EC
- AEC-Q101 Qualifiedd

HALOGEN

FREE

ORDERING INFORMATION	
Package	TO-252
Lead (Pb)-free and Halogen-free	SQD50P04-13L-GE3

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V_{DS}	- 40	V	
Gate-Source Voltage		V_{GS}	± 20	V	
Continuous Drain Current	T _C = 25 °C ^a	1	- 50		
	T _C = 125 °C	l _D	- 35		
Continuous Source Current (Diode Conduction) ^a		I _S	- 50	А	
Pulsed Drain Current ^b		I _{DM}	- 200		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	- 39		
Single Pulse Avalanche Energy	L = U. I IIIII	E _{AS}	76	mJ	
Maximum Power Dissipation ^b	T _C = 25 °C	р	83	W	
	T _C = 125 °C	P _D	27	VV	
Operating Junction and Storage Temperatur	re Range	T _J , T _{stg}	- 55 to + 175	°C	

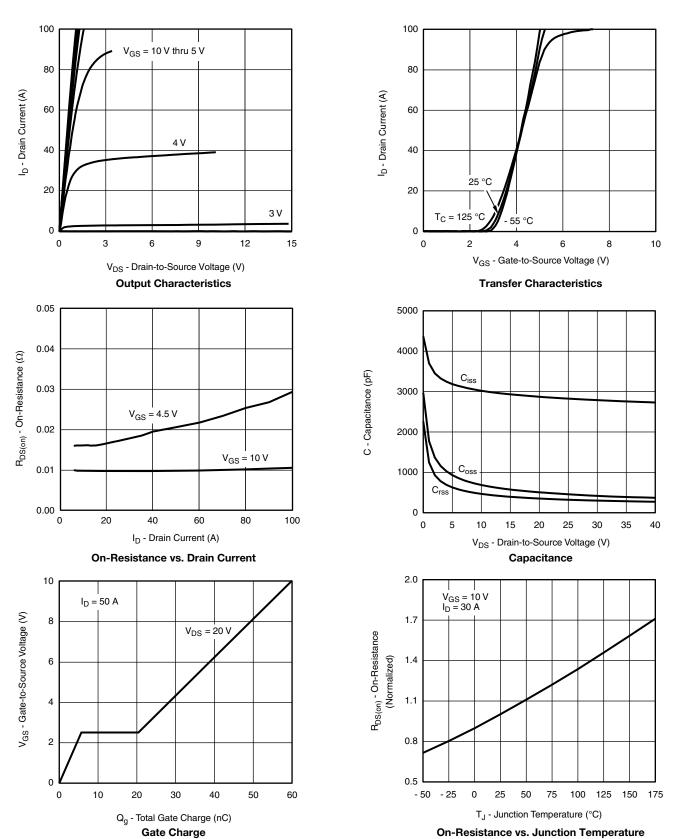
THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-Ambient	PCB Mount ^c	R_{thJA}	50	°C/W
Junction-to-Case (Drain)		R_{thJC}	1.8	C/ VV

Notes

- a. Package limited.
- b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$
- c. When mounted on 1" square PCB (FR-4 material).
- d. Parametric verification ongoing.

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static	•	•						
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		- 40	-	-	V	
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		-	- 2.5	, v	
Gate-Source Leakage	I _{GSS}	V _{DS} =	0 V, V _{GS} = ± 20 V	-	-	± 100	nA	
		V _{GS} = 0 V	V _{DS} = - 40 V	-	-	- 1		
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	V _{DS} = - 40 V, T _J = 125 °C	-	-	- 50	μΑ	
		V _{GS} = 0 V	V _{DS} = - 40 V, T _J = 175 °C	-	-	- 150		
On-State Drain Current ^a	I _{D(on)}	V _{GS} = - 10 V	V _{DS} ≤ - 5 V	- 50	-	-	Α	
		V _{GS} = - 10 V	I _D = - 17 A	-	0.010	0.013	Ω	
Drain Source On State Registence	В	V _{GS} = - 10 V	I _D = - 50 A, T _J = 125 °C	-	-	0.019		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 10 V	I _D = - 50 A, T _J = 175 °C	-	-	0.023		
		V _{GS} = - 4.5 V	I _D = - 14 A	-	0.016	0.022		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 17 A		-	38	-	S	
Dynamic ^b								
Input Capacitance	C _{iss}			-	2872	3590		
Output Capacitance	C _{oss}	$V_{GS} = 0 V$	$V_{DS} = -20 \text{ V}, f = 1 \text{ MHz}$	-	508	635	pF	
Reverse Transfer Capacitance	C _{rss}			-	352	440		
Total Gate Charge ^c	Qg			-	60	90		
Gate-Source Charge ^c	Q _{gs}	V _{GS} = - 10 V	V _{DS} = - 40 V, I _D = - 50 A	-	5.7	8.6	nC	
Gate-Drain Charge ^c	Q _{gd}			-	14.7	22		
Gate Resistance	R _g		f = 1 MHz		3	4.5	Ω	
Turn-On Delay Time ^c	t _{d(on)}			-	10	15		
Rise Time ^c	t _r	$V_{DD} =$	$V_{DD} = -20 \text{ V}, R_{L} = 0.4 \Omega$		12	18	ns	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong -50$ A, $V_{GEN} = -10$ V, $R_g = 1$ Ω		-	40	60		
Fall Time ^c	t _f			-	16	24		
Source-Drain Diode Ratings and Char	acteristics ^b	•						
Pulsed Current ^a	I _{SM}			-	-	- 200	Α	
Forward Voltage	V_{SD}	I _F = - 35 A, V _{GS} = 0 V			- 0.9	- 1.5	V	

Notes


- a. Pulse test; pulse width $\leq 300~\mu\text{s},$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

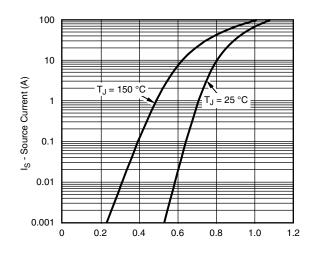
Automotive P-Channel 40 V (D-S) 175 °C MOSFET

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

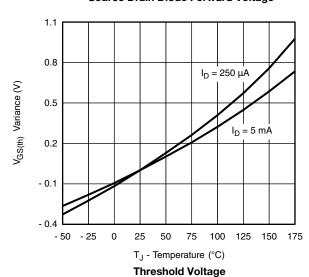
0.10

0.08

0.06


0.04

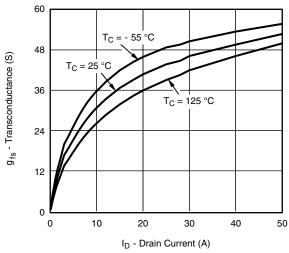
0.02


 $R_{DS(on)}$ - On-Resistance (Ω)

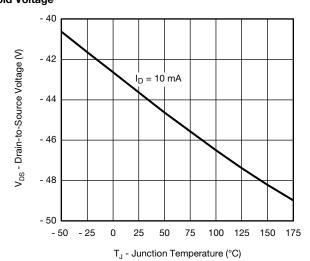
Automotive P-Channel 40 V (D-S) 175 °C MOSFET

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

V_{SD} - Source-to-Drain Voltage (V) **Source Drain Diode Forward Voltage**

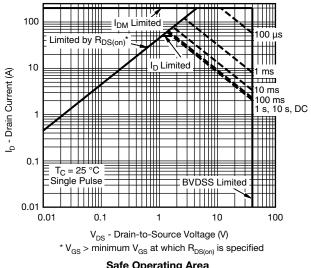

 $T_{J} = 25 \,^{\circ}\text{C}$ 0.00
0
2
4
6
8

V_{GS} - Gate-to-Source Voltage (V)

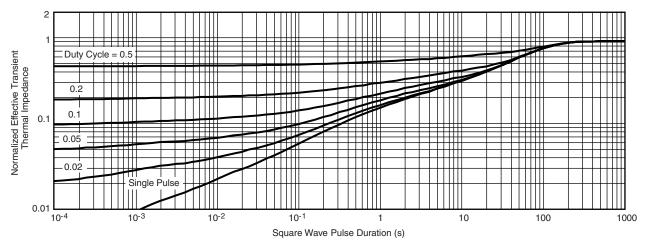

On-Resistance vs. Gate-to Source Voltage

T_J = 150 °C

10

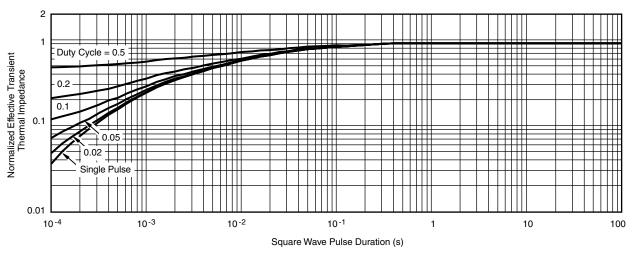


Transconductance



Drain Source Breakdown vs. Junction Temperature

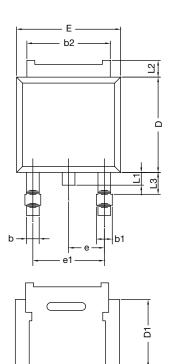
TYPICAL CHARACTERISTICS ($T_A = 25 \, ^{\circ}\text{C}$, unless otherwise noted)

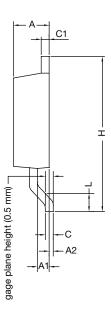


Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Ambient

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

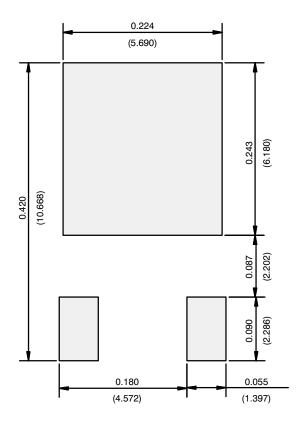

Normalized Thermal Transient Impedance, Junction-to-Case


Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C) are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Automotive P-Channel 40 V (D-S) 175 °C MOSFET

TO-252AA CASE OUTLINE



	MILLIMETERS		INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	2.21	2.38	0.087	0.094	
A1	0.89	1.14	0.035	0.045	
A2	0.030	0.127	0.001	0.005	
b	0.71	0.88	0.028	0.035	
b1	0.76	1.14	0.030	0.045	
b2	5.23	5.44	0.206	0.214	
С	0.46	0.58	0.018	0.023	
C1	0.46	0.58	0.018	0.023	
D	5.97	6.22	0.235	0.245	
D1	4.10	4.45	0.161	0.175	
Е	6.48	6.73	0.255	0.265	
E1	4.49	5.50	0.177	0.217	
е	2.28	BSC	0.090 BSC		
e1	4.57 BSC		0.180 BSC		
Η	9.65	10.41	0.380	0.410	
L	1.40	1.78	0.055	0.070	
L1	0.64	1.02	0.025	0.040	
L2	0.89	1.27	0.035	0.050	
L3	1.15	1.52	0.040	0.060	
ECN: T11-0110-Rev. L, 18-Apr-11 DWG: 5347					

Note

• Dimension L3 is for reference only.

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

freestyle Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on it s or their behalf (collectively, "freestyle"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

freestyle makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vi shay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation specia I, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain type s of applications are based on freestyle's knowledge of typical requirements that are often placed on freestyle products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specification s may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify freestyle's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, freestyle products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the freestyle product could result in personal injury or death. Customers using or selling freestyle products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold freestyle and its distributors harmless from and against an y and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vis hay

Material Category Policy

freestyle Intertechnology, Inc. hereby certi fies that all its products that are id entified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwis e specified as non-compliant.

Please note that some freestyle documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002 /95/EC conform to Directive 2011/65/EU.