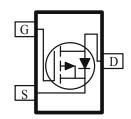

P - Channel Logic Level MOSFET


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are voltage control small signal switch, power management in portable and battery-powered products and most low current high side switch.

•	Low r _{DS(on)} Provides Higher Efficiency and
	Extends Battery Life

- Fast Switch
- Low Gate Charge
- High Saturation Current
- Miniature SOT-23 Surface Mount Package Saves Board Space

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)		
-60	$10 @ V_{GS} = -10 V$	-0.2		
-00	$20 @ V_{GS} = -4.5V$	-0.12		

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage			-60	V	
Gate-Source Voltage			±20	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$		±0.12		
Continuous Drain Current	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	П	±0.09	A	
Pulsed Drain Current ^b			±1		
Continuous Source Current (Diode Conduction) ^a		I_S	0.24	Α	
D D: : /: a	$T_A=25^{\circ}C$	D	0.36	W	
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	L D	0.29	VV	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Maximum	Units		
M · I · · · · · · · · · · · · · · · · ·	t <= 5 sec	D	350	°C/W		
Maximum Junction-to-Ambient ^a	Steady-State	R _{THJA}	400	C/W		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Freescale 2SJ210

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
-			Limits			TT •4	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Switch Off Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	-60				
Zero Gate Voltage Drain Current	T	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$			-1		
Zero Gate Voltage Drain Current	Idss	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			-150	μΑ	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	nA	
Switch On Characteristics							
Gate-Threshold Voltage	V _{GS(th)}	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 1 \text{ mA}$	-1.0	-1.7	-3.5	V	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-0.6			A	
		$V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A}$		1	10		
Drain-Source On-Resistance ^A	TDS(on)	$V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A T}_J = 55^{\circ} \text{C}$		1.5	12	Ω	
		$V_{GS} = -4.5 \text{ V}, I_D = -0.25 \text{ A}$		1.3	20		
Forward Tranconductance ^A	gs	$V_{DS} = -5 \text{ V}, I_D = -1.1 \text{ A}$	75	435		mS	
Diode Forward Voltage	V _{SD}	$I_S = 0.4 \text{ A}, V_{GS} = 0 \text{ V}$		-0.80	-1.5	V	
Dynamic ^b							
Total Gate Charge	Qg	V 40 V/ V 10 V/		1.8	2.5		
Gate-Source Charge	Q_{gs}	$V_{DS} = -48 \text{ V}, V_{GS} = -10 \text{ V},$ $I_{D} = -0.5 \text{ A}$		0.3		nC	
Gate-Drain Charge	Qgd	ID – -0.3 A		0.4			
Switching							
Turn-On Delay Time	td(on)			2.7	5.5		
Rise Time	$t_{\rm r}$	$V_{DS} = -25 \text{ V}, I_D = -0.5 \text{ A},$		6.8	13	ns	
Turn-Off Delay Time	td(off)	$R_G = 6 \Omega$, $V_{GEN} = -10 V$		10	16	115	
Fall-Time	t_{f}			7.8	16		

Notes

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.

FREESCALE reserves the right to make changes without further notice to any products herein. freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale assume any liability arising ou t of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in freescale data sheet s and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. freescale does not convey any license under its patent rights nor the rights of others. freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use freescale products for any such uninte nded or unauthorized application, Buyer shall indemnify and hold freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.

Typical Electrical Characteristics

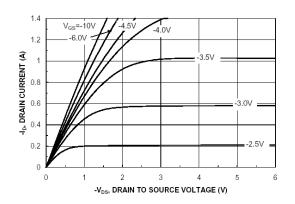


Figure 1. On-Region Characteristics

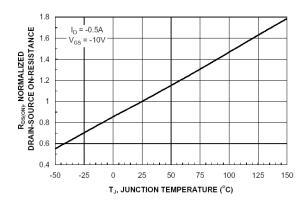


Figure 3. On-Resistance Variation with Temperature

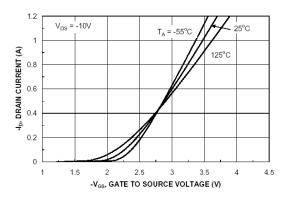


Figure 5. Transfer Characteristics

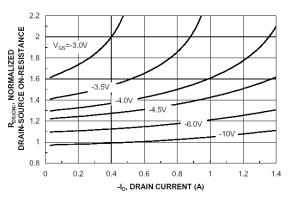


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

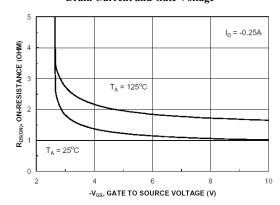


Figure 4. On-Resistance Variation with Gate to Source Voltage

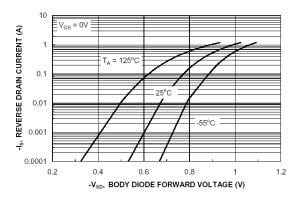
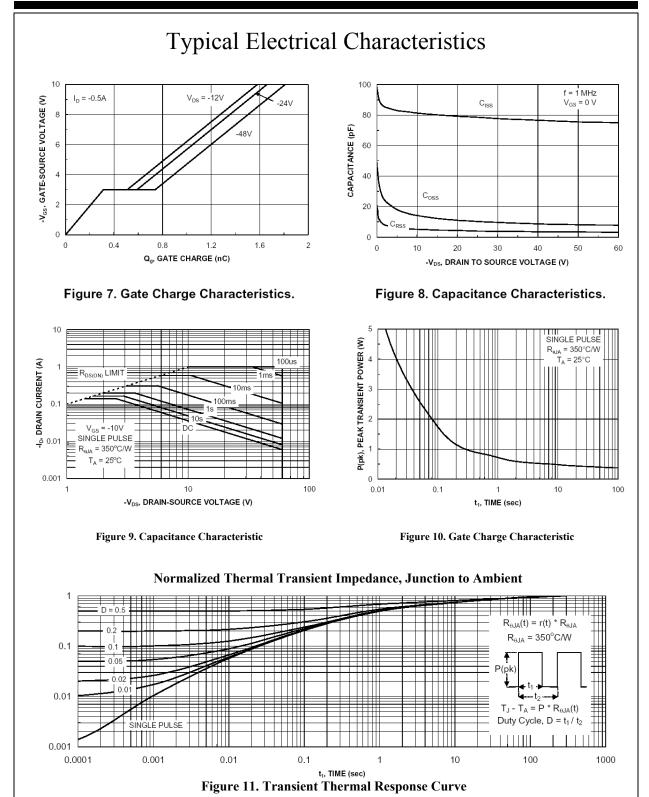
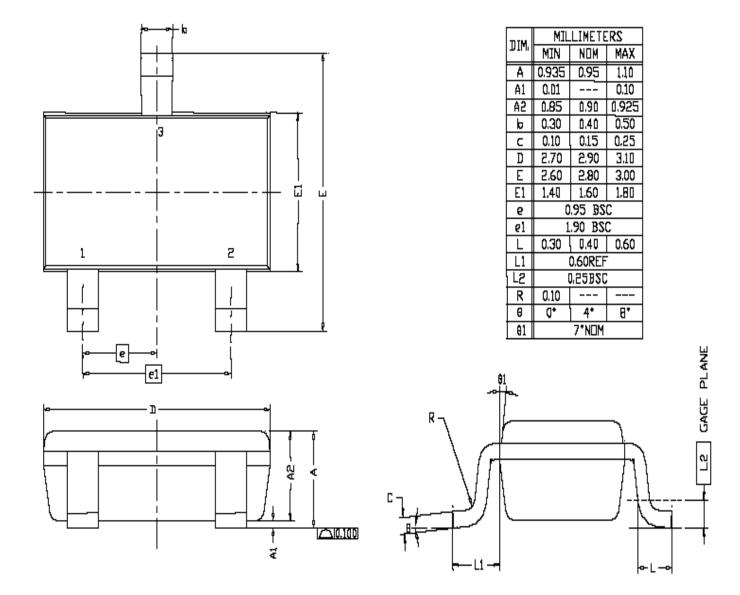




Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Freescale 2SJ210

Package Information

