

=AIRCHIL

SEMICONDUCTOR

CD4014BC 8-Stage Static Shift Register

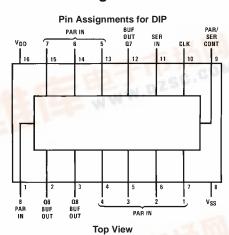
General Description

The CD4014BC is an 8-stage parallel input/serial output shift register. A parallel/serial control input enables individual JAM inputs to each of 8 stages. Q outputs are available from the sixth, seventh and eighth stages. All outputs have equal source and sink current capabilities and conform to standard "B" series output drive.

When the parallel/serial control input is in the logical "0" state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/ serial control input is in the logical "1" state, data is jammed into each stage of the register synchronously with the positive transition of the clock.

October 1987 Revised January 1999

All inputs are protected against static discharge with diodes to V_{DD} and V_{SS}.

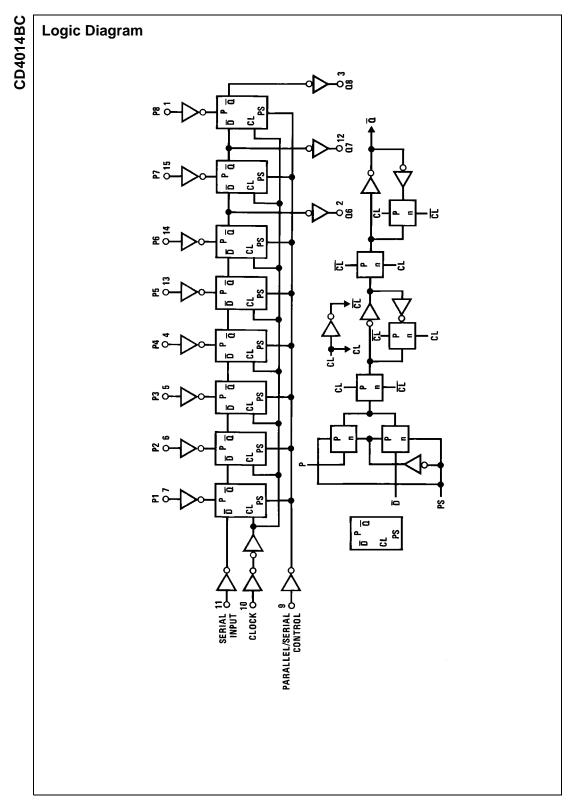

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage:
 - 1 μA at 15V over full temperature range

Ordering Code:

Order Number	Package Number	age Number Package Description					
CD4014BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow					
CD4014BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide					
Devices also available in	Tape and Reel. Specify by	/ appending the suffix letter "x" to the ordering code.					

Connection Diagram



Truth Table

Serial Input	Parallel/ Serial Control	PI 1	Pl n	Q1 (Internal)	Qn
Х	1	0	0	0	0
Х	1	1	0	1	0
Х	1	0	1	0	1
Х	1	1	1	1	1
0	0	Х	Х	0	Q_{n-1}
1	0	Х	Х	1	Q _{n-1}
Х	Х	Х	Х	Q1	Q _n
case	^	~	^		Qn
	X X X X 0 1 X	X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X X X X X X Case X	X 1 0 X 1 1 X 1 0 X 1 1 X 1 0 X 1 1 0 0 X 1 0 X X X X Case X	X 1 0 0 X 1 1 0 X 1 0 1 X 1 1 1 0 0 X X 1 0 X X 1 0 X X X X X X case X X	Control Control X 1 0 0 X 1 1 0 X 1 0 1 X 1 1 1 X 1 1 1 X 1 1 1 X 1 X X 1 0 X X 1 0 X X X X X X

Note 1: Level change

dzsc.com

Absolute Maximum Ratings(Note 2)

(N	ote	3)

(
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	-0.5 to $V_{\mbox{\scriptsize DD}}+0.5\mbox{\scriptsize V}$
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

Supply Voltage (V_{DD}) Input Voltage (V_{IN}) Operating Temperature Range (T_A) 3.0V to 15V 0 to V_{DD}

-40°C to +85°C

CD4014BC

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera-ture Range" they are not meant to imply that the devices should be oper-ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

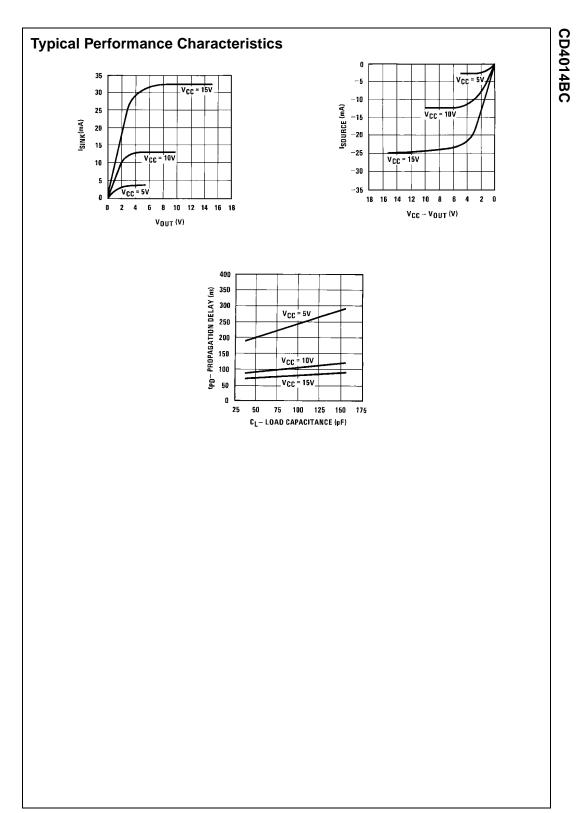
Note 3: $V_{SS} = 0V$ unless otherwise specified.

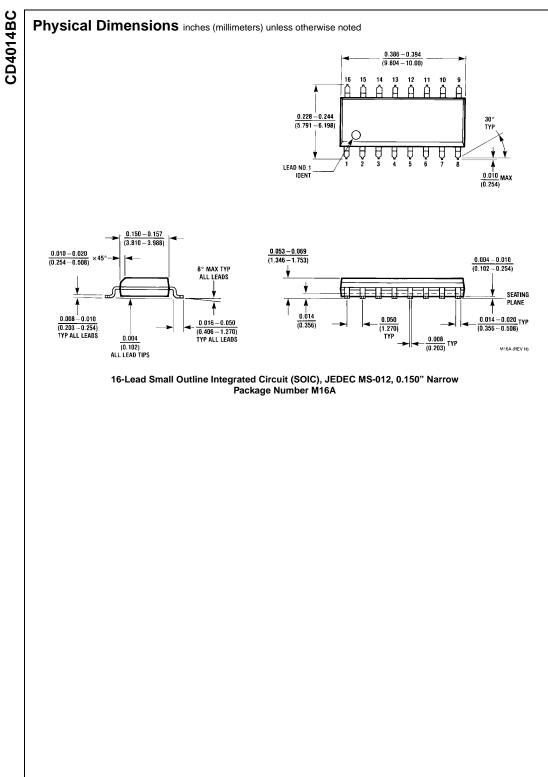
Symbol	Parameter	Conditions		−40°C		+25°C			+85°C		Units
Symbol	Farameter		nutions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} =$	V _{DD} or V _{SS}		20		0.1	20		150	μΑ
	Current	$V_{DD} = 10V, V_{IN}$	= V _{DD} or V _{SS}		40		0.2	40		300	μΑ
		$V_{DD} = 15V, V_{IN}$	= V _{DD} or V _{SS}		80		0.3	80		600	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$			0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$	I _O < 1 μA		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$			0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$		4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	I _O < 1 μA	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$		14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} =$	0.5V or 4.5V		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$			3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_O =$	= 1.5V or 13.5V		4.0		6	4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} =$	0.5V or 4.5V	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_O =$	= 1.0V or 9.0V	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_O$	= 1.5V or 13.5V	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} =$	0.4V	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$		1.3		1.1	2.2		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$		3.6		3.0	8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$		-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$		-1.3		-1.1	-2.2		-0.90		mA
		$V_{DD} = 15V, V_O$	= 13.5V	-3.6		-3.0	-8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN}$	= 0V		-0.3		-10 ⁻⁵	-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN}$	= 15V		0.3		10 ⁻⁵	0.3		1.0	μΑ

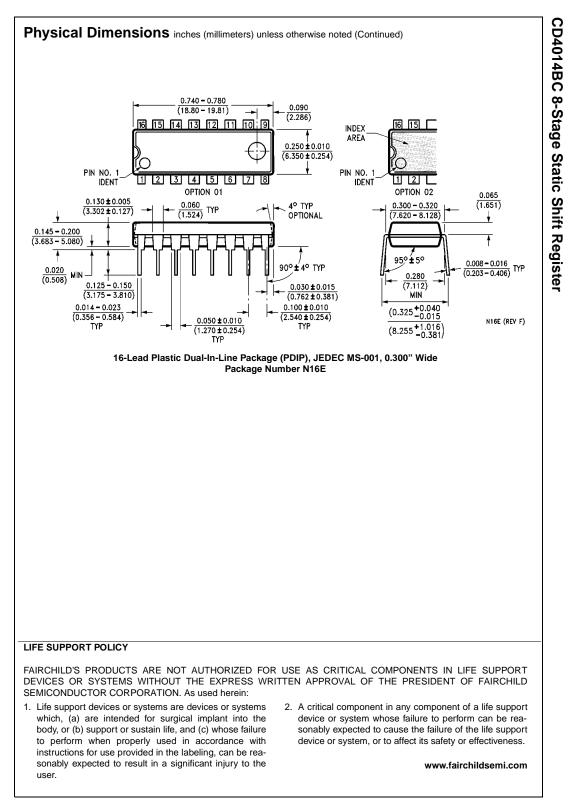
DC Electrical Characteristics (Note 3)

Note 4: I_{OL} and I_{OH} are tested one output at a time.

CD4014BC


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	320	ns
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		60	120	ns
THL, ^t TLH	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
CL	Maximum Clock	$V_{DD} = 5V$	2.8	4		MHz
	Input Frequency	$V_{DD} = 10V$	6	12		MHz
		$V_{DD} = 15V$	8	16		MHz
W	Minimum Clock	$V_{DD} = 5V$		90	180	ns
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		25	50	ns
rCL ^{, t} fCL	Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time (Note 6)	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	μs
S	Minimum Set-Up Time	$V_{DD} = 5V$		60	120	ns
	(Note 7) Serial Input	$V_{DD} = 10V$		40	80	ns
	t _H ≥ 200 ns	$V_{DD} = 15V$		30	60	ns
	Parallel Inputs	$V_{DD} = 5V$		80	160	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		30	60	ns
	Parallel/Serial Control	$V_{DD} = 5V$		100	200	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
н	Minimum Hold Time	$V_{DD} = 5V$			0	ns
	Serial In, Parallel In, $t_S \ge 400$ ns	$V_{DD} = 10V$			10	ns
	Parallel/Serial Control	$V_{DD} = 15V$			15	ns
2	Average Input Capacitance	Any Input		5	7.5	pF
	(Note 8)					
CPD	Power Dissipation Capacitance			110		pF
	(Note 8)					


Note 5: AC Parameters are guaranteed by DC correlated testing.


Note 6: If more than one unit is cascaded t_{rCL} should be made less than or equal to the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

Note 7: Setup times are measured with reference to clock and a fixed hold time $(\mathrm{t}_{\mathrm{H}})$ as specified.

Note 8: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C family characteristics application note AN-90.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.