DATA SHEET 74LV14 Hex inverting Schmitt-trigger

INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Feb 03 IC24 Data Handbook 1998 Apr 20

74LV14

FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for Low Voltage applications: 1.0 to 3.6 V
- \bullet Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C.$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C.$
- Output capability: standard
- I_{CC} category: SSI

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_{f} = t_{f} \le 2.5$ ns

APPLICATIONS

• Wave and pulse shapers for highly noisy environments

DESCRIPTION

The 74LV14 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT14.

The 74LV14 provides six inverting buffers with Schmitt-trigger action. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nA to nY	C _L = 15 pF; V _{CC} = 3.3 V	13	ns
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	See Notes 1 and 2	15	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz; } C_L = \text{output load capacitance in pF; } \\ f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; }$ $\sum_{i=1}^{n} (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$ 2. The condition is V₁ = GND to V_{CC.}

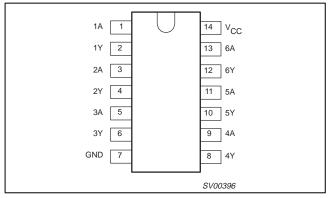
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	–40°C to +125°C	74LV14 N	74LV14 N	SOT27-1
14-Pin Plastic SO	–40°C to +125°C	74LV14 D	74LV14 D	SOT108-1
14-Pin Plastic SSOP Type II	–40°C to +125°C	74LV14 DB	74LV14 DB	SOT337-1
14-Pin Plastic TSSOP Type I	–40°C to +125°C	74LV14 PW	74LV14PW DH	SOT402-1

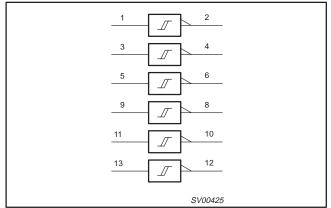
PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A – 6A	Data inputs
2, 4, 6, 8, 10, 12	1Y – 6Y	Data outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

FUNCTION TABLE


INPUT	OUTPUT
nA	nY
L	Н
н	L

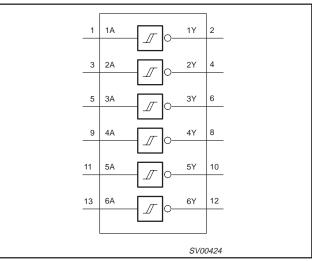
NOTES:


H = HIGH voltage level L = LOW voltage level

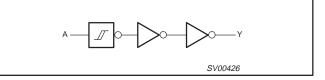
74LV14

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)


RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER CONDITIONS MAX UNIT MIN TYP See Note1 Vcc DC supply voltage 1.0 3.3 5.5 V 0 V V_{I} Input voltage _ V_{CC} V V_{O} Output voltage 0 _ V_{CC} Operating ambient temperature range in free See DC and AC -40 +85 °C Tamb characteristics -40 +125 air


NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

LOGIC SYMBOL

LOGIC DIAGRAM

74LV14

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
$\pm I_{OK}$	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
$\pm I_{O}$	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
$^{\pm I_{GND},}_{\pm I_{CC}}$	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

			LIMITS						
SYMBOL PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	o +125°C			
			MIN	TYP ¹	MAX	MIN	MAX	1	
		V_{CC} = 1.2V; V_I = V_{IH} or V_{IL} , $-I_O$ = 100 μ A		1.2					
		V_{CC} = 2.0V; V_I = V_{IH} or $V_{IL;}$ – I_O = 100 μ A	1.8	2.0		1.8]	
V _{OH}	HIGH level output voltage; all outputs	V_{CC} = 2.7V; V_I = V_{IH} or $V_{IL;}$ – I_O = 100 μ A	2.5	2.7		2.5		V	
	·····g-,	V_{CC} = 3.0V; V_I = V_{IH} or $V_{IL;}$ – I_O = 100 μ A	2.8	3.0		2.8]	
		V_{CC} = 4.5V; V_I = V_{IH} or $V_{IL;}$ – I_O = 100 μ A	4.3	4.5		4.3			
V _{OH}	HIGH level output voltage;	V_{CC} = 3.0V; V_I = V_{IH} or $V_{IL;}$ – I_O = 6mA	2.40	2.82		2.20		v	
VOH STANDARD outputs		V_{CC} = 4.5V; V_{I} = V_{IH} or $V_{IL;}$ – I_{O} = 12mA	3.60	4.20		3.50			
		V_{CC} = 1.2V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0					
		V_{CC} = 2.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	v	
V _{OL}	LOW level output voltage; all outputs	V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2		
	·····g·, ··· · ··· · ···	V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2		
		V_{CC} = 4.5V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2		
V _{OL}	LOW level output voltage;	V_{CC} = 3.0V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 6mA		0.25	0.40		0.50	v	
VOL STANDARD outputs		V_{CC} = 4.5V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 12mA		0.35	0.55		0.65		
I _I	Input leakage current	V_{CC} = 5.5V; V_{I} = V_{CC} or GND			1.0		1.0	μA	
I _{CC}	Quiescent supply current; SSI	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		40	μA	
ΔI_{CC}	Additional quiescent supply current	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$			500		850	μA	

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

74LV14

TRANSFER CHARACTERISTICS

Voltages are referenced to GND (ground = 0 V)

		T _{amb} (°C)						TEST CONDITIONS		
SYMBOL	PARAMETER	-40 TO +85		-40 TO +125		UNIT	V _{CC}	WAVEFORMS		
		MIN.	TYP.	MAX.	MIN.	MIN.		(Ŭ)	WAVEFORWIS	
		-	0.70	-	-	-		1.2		
		0.8	1.10	1.4	0.8	1.4		2.0		
		1.0	1.45	2.0	1.0	2.0		2.7		
V_{T+}	Positive-going threshold	1.2	1.60	2.2	1.2	2.2	V	3.0	Figure 1 and 2	
		1.5	1.95	2.4	1.5	2.4		3.6		
		1.7	2.50	3.15	1.7	3.15		4.5		
		2.1	3.00	3.85	2.1	3.85		5.5		
		-	0.34	-	-	-		1.2		
		0.3	0.65	0.9	0.3	0.9		2.0		
		0.4	0.90	1.4	0.4	1.4		2.7		
V_{T-}	Negative-going threshold	0.6	1.05	1.5	0.6	1.5	V	3.0	Figure 1 and 2	
		0.8	1.30	1.8	0.8	1.8		3.6		
		0.9	1.60	2.0	0.9	2.0		4.5		
		1.1	2.00	2.6	1.1	2.6		5.5		
		-	0.30	-	-	-		1.2		
		0.2	0.55	0.8	0.2	0.8		2.0		
		0.3	0.60	1.1	0.3	1.1		2.7		
V _H	Hysteresis (V _{T+} – V _{T-})	0.4	0.65	1.2	0.4	1.2	V	3.0	Figure 1 and 2	
	(17 17)	0.4	0.70	1.2	0.4	1.2		3.6		
		0.4	0.80	1.4	0.4	1.4		4.5		
		0.6	1.00	1.5	0.6	1.5		5.5		

NOTES:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$ 2. The V_{IH} and V_{IL} from the DC family characteristics are superseded by the V_{T+} and V_{T-}.

AC CHARACTERISTICS

GND = 0V; $t_r \le t_f$ = 2.5ns; C_L = 50pF; R_L = 1K Ω

SYMBOL PARAMETER			CONDITION		LIMITS					
		WAVEFORM			40 to +85 °	С	−40 to +125 °C		UNIT	
		V _{CC} (V)		MIN	TYP ¹	MAX	MIN	MAX		
			1.2		80					
	Propagation delay	Propagation delay nA to nY	Figure 6	2.0		27	37		48	
t _{PHL/PLH}				2.7		20	28		35	ns
		3.0 to 3.6		15 ²	22		28			
			4.5 to 5.5			18		23		

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

74LV14

TRANSFER CHARACTERISTIC WAVEFORMS V_{O} Vi V_{H} -≁ $V_{\mathsf{T}+}$ V_T-SV00427

Figure 1. Transfer characteristic.

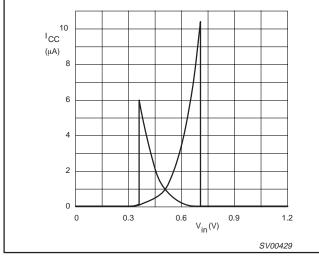


Figure 3. Typical 74LV14 transfer characteristics; $V_{CC} = 1.2V$.

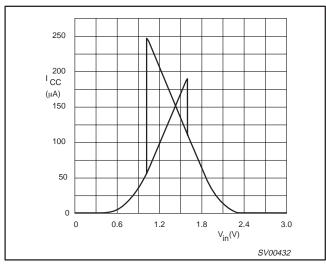


Figure 5. Typical 74LV14 transfer characteristics; V_{CC} = 3.0V.

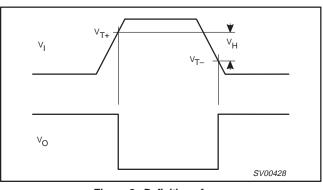


Figure 2. Definition of v_{T+} , V_{T-} and V_{H} ; where $V_{T\!+}$ and $V_{T\!-}$ are between limits of 20% and 70%

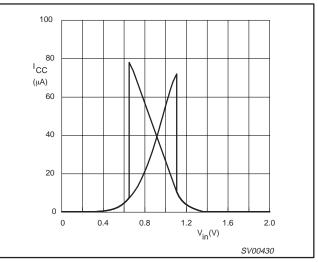


Figure 4. Typical 74LV14 transfer characteristics; V_{CC} = 2.0V.

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC} \geq 2.7$ V;

 $V_M^{}=0.5\times V_{CC}$ at V_{CC} < 2.7 V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

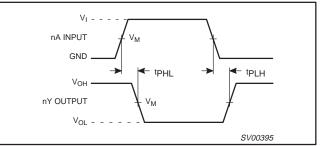


Figure 6. Input (nA) to output (nY) propagation delays.

Product specification

74LV14

APPLICATION INFORMATION

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $\mathsf{P}_{ad} \quad = \mathsf{f}_i \times (\mathsf{t}_r \times \mathsf{I}_{\mathsf{CCa}} + \mathsf{t}_f \times \,\mathsf{I}_{\mathsf{CCa}}) \times \mathsf{V}_{\mathsf{CC}}.$

Where:

 P_{ad} = additional power dissipation (μ W)

- f_i = input frequency (MHz)
- t_r = input rise time (ns); 10% 90%
- t_f = input fall time (ns); 10% 90%
- $I^{}_{CCa}~$ = average additional supply current (µA)

Average I_{CCa} differs with positive or negative input transitions, as shown in Figure 7.

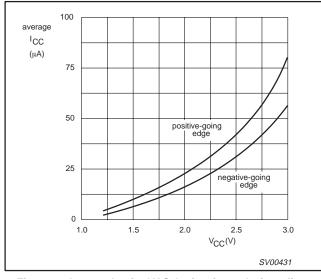


Figure 7. Average I_{CC} for LV Schmitt-trigger devices; linear change of V_I between 0.1 V_{CC} to 0.9 V_{CC}.

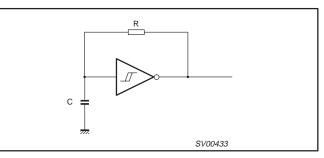
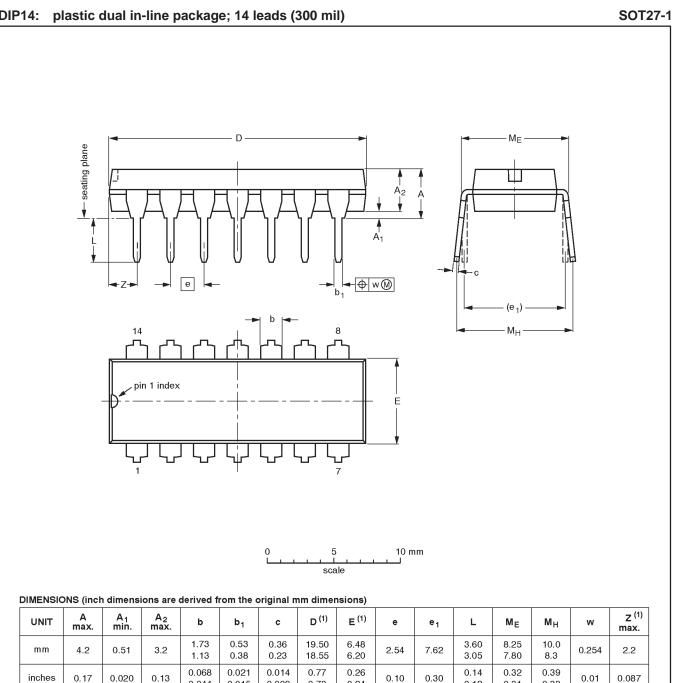



Figure 8. Relaxation oscillator using the LV14.

Note to application information:

All values given are typical unless otherwise specified. Note to Figure 8

$$f = \frac{1}{T} \approx \frac{1}{0.8 \times RC}$$

DIP14:

Note

inches

0.17

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

0.044

0.015

0.009

0.13

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

0.24

0.73

0.10

0.30

0.12

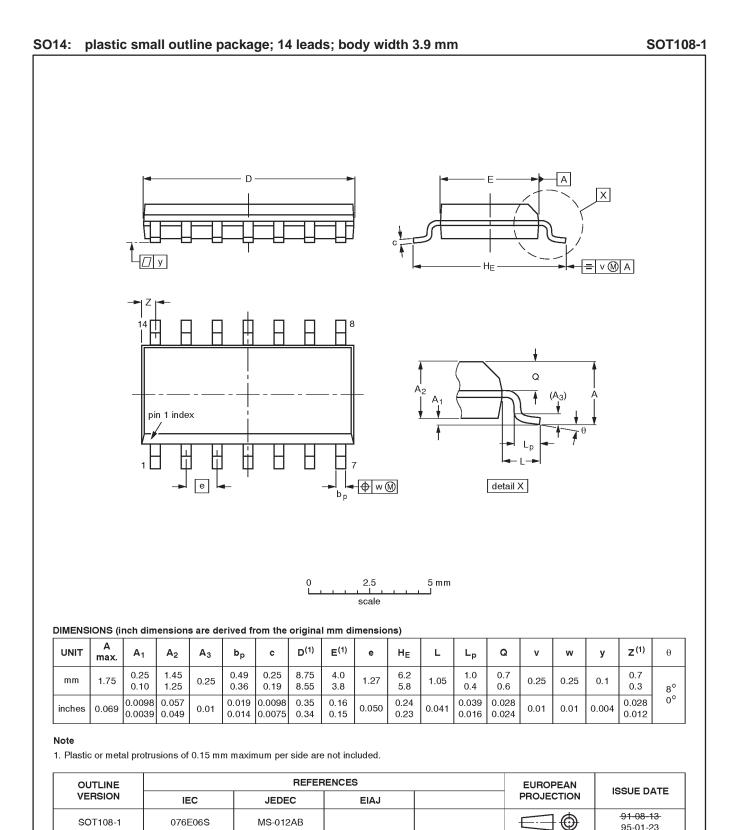
0.31

0.33

0.01

0.087

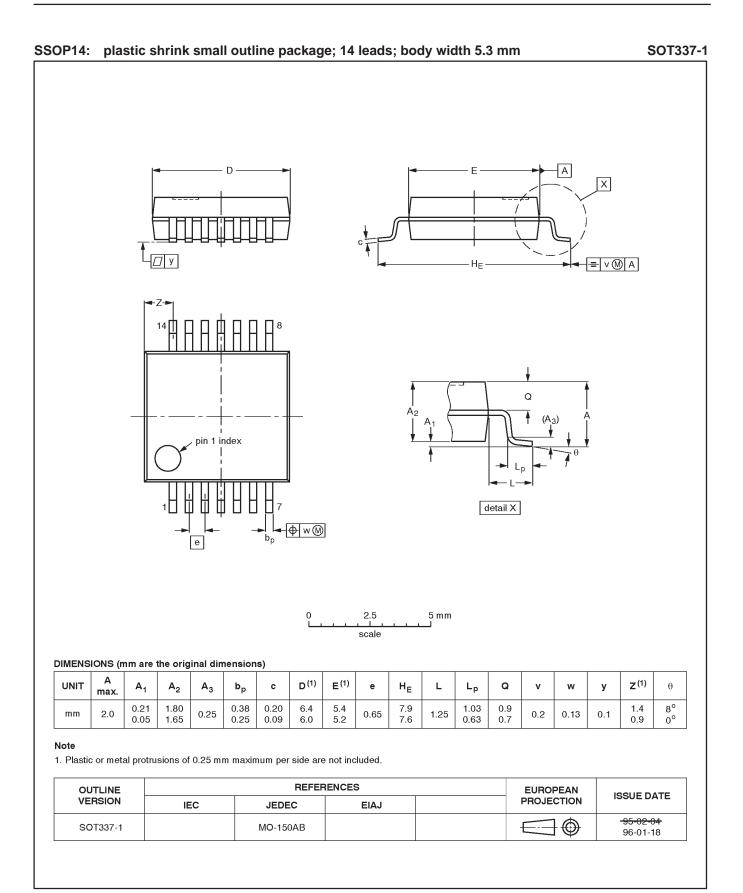
74LV14

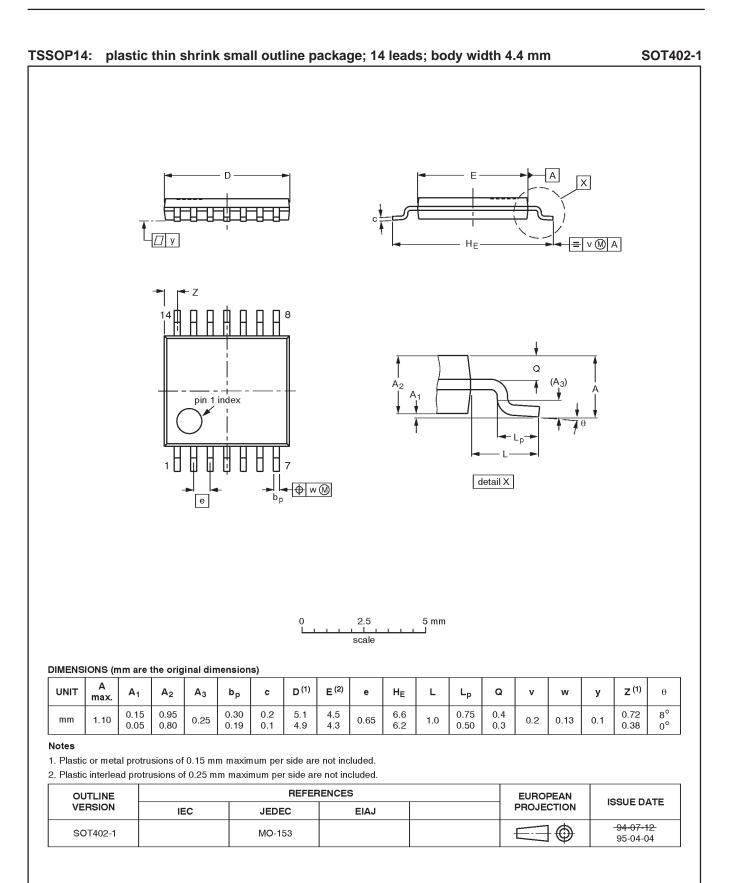

SOT108-1

076E06S

MS-012AB

Hex inverting Schmitt-trigger


74LV14


£

95-01-23

74LV14

74LV14

74LV14

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes on only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number: Date of release: 05-96 9397-750-04409

Let's make things better.

