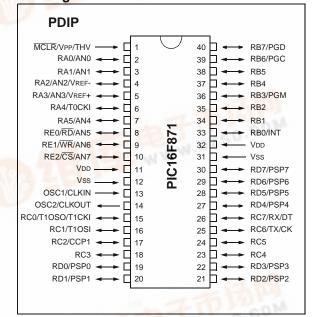


28/40-Pin 8-Bit CMOS FLASH Microcontrollers


Devices Included in this Data Sheet:

- PIC16F870
- PIC16F871

Microcontroller Core Features:

- High-performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 2K x 14 words of FLASH Program Memory 128 x 8 bytes of Data Memory (RAM) 64 x 8 bytes of EEPROM Data Memory
- Pinout compatible to the PIC16CXXX 28 and 40pin devices
- Interrupt capability (up to 11 sources)
- Eight level deep hardware stack
- Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode
- Selectable oscillator options
- Low-power, high-speed CMOS FLASH/EEPROM technology
- Fully static design
- In-Circuit Serial Programming™ (ICSP) via two pins
- · Single 5V In-Circuit Serial Programming capability
- In-Circuit Debugging via two pins
- Processor read/write access to program memory
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Commercial and Industrial temperature ranges
- Low-power consumption:
 - < 1.6 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

Pin Diagram

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- · One Capture, Compare, PWM module
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit multi-channel Analog-to-Digital converter
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

Pin Diagrams DIP, SOIC, SSOP RA0/AN0 ← □ 28 → RB7/PGD MCLR/VPP/THV 27 → RB6/PGC 26 ☐ ←→ RB5 RA1/AN1 ▼ 25 ☐ ←→ RB4 RA2/AN2/VREF- ◀ RA3/AN3/VREF+ ← □ 24 ☐ → RB3/PGM RA4/T0CKI ← □ 6 RA5/AN4 7 8 Vss OSC1/CLKIN OSC2/CLKOUT -10 18 → RC7/RX/DT 17 → RC6/TX/CK RC0/T1OSO/T1CKI ← OSO/11CK1 → 12 RC1/T1OSI ← 12 RC2/CCP1 ← 13 15 ☐ **←** RC4 RA3/AN3/NREF-RA2/AN2/NREF-RA1/AN1 RA0/AN1 MCLR/NPP/THV NC RB7/PGD RB6/PGC RB5 RB5 **PLCC** ъ rv 4 ω vi – 4 ω vi – 6 ¬______ RA4/T0CKI → RB3/PGM → □ 7 → □ 9 → □ 10 → □ 12 → □ 12 → □ 14 → □ 16 RA5/AN4 38 RB2 RE0/RD/AN5 RE1/WR/AN6 RE2/CS/AN7 37□ RB1 RB0/INT 10 11 12 13 14 VDD PIC16F871 VDD Vss RD7/PSP7 Vss OSC1/CLKIN OSC2/CLKOUT RC0/T1OSO/T1CK1 RD6/PSP6 RD5/PSP5 15 RD4/PSP4 16 NC RC7/RX/DT RC1/T10SI RC2/CCP1 RC3/RC3P0 RD1/PSP1 RD2/PSP2 RD3/PSP3 RC4 RC5 RC6/TX/CK NC RC6/TX/CK RC5 RC4 RD3/PSP3 RD2/PSP1 RD1/PSP1 RD0/PSP0 RC3 RC3/CCP1 **TQFP** 33 🞞 RC7/RX/DT RC0/T1OSO/T1CKI RD4/PSP4 → □□□ 2 32 -OSC2/CLKOUT ΙП -RD5/PSP5 30 ₩ ◄ →□□ OSC1/CLKIN RD6/PSP6 **→** □□□ 5 Vss RD7/PSP7 Vss -28 □□ ← Vdd PIC16F871 27 ₩ V_{DD} -RE2/AN7/CS RB0/INT → □ 8 26 ₩ → RE1/AN6/WR 25 ₩ RB1 ←→□□9 RE0/AN5/RD RB2 **→** □ 10 24 ---RA5/AN4 → III 25 4 5 5 7 8 6 8 2 8 2 8 RA4/T0CKI RB3/PGM ← NC NC RB4 A RB5 A RB7/PGD A MCLR/VP/THV — RA0/AN0 A RA2/AN2/NE-1 A RA3/AN3/VRE-1 A RA3/AN3/VRE-1 A

Key Features PICmicro™ Mid-Range Reference Manual (DS33023)	PIC16F870	PIC16F871
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
EEPROM Data Memory	64	64
Interrupts	10	11
I/O Ports	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	USART	USART
Parallel Communications	_	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels
Instruction Set	35 Instructions	35 Instructions

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	11
3.0	I/O Ports	27
4.0	Data EEPROM and FLASH Program Memory	
5.0	Timer0 Module	
6.0	Timer1 Module	
7.0	Timer2 Module	
8.0	Capture/Compare/PWM Module	
9.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
10.0	Analog-to-Digital Converter (A/D) Module	79
11.0	Special Features of the CPU	89
12.0	Instruction Set Summary	105
13.0	Development Support	113
14.0	Electrical Characteristics	
15.0	DC and AC Characteristics Graphs and Tables	135
16.0	Packaging Information	137
Index	(145
	ine Support	
	ler Response	
	uct Identification System	

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Frrata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There are two devices (PIC16F870 and PIC16F871) covered by this data sheet. The PIC16F870 device comes in a 28-pin package and the PIC16F871 device comes in a 40-pin package. The 28-pin device does not have a Parallel Slave Port implemented.

The following two figures are device block diagrams sorted by pin number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-1 and Table 1-2, respectively.

FIGURE 1-1: PIC16F870 BLOCK DIAGRAM

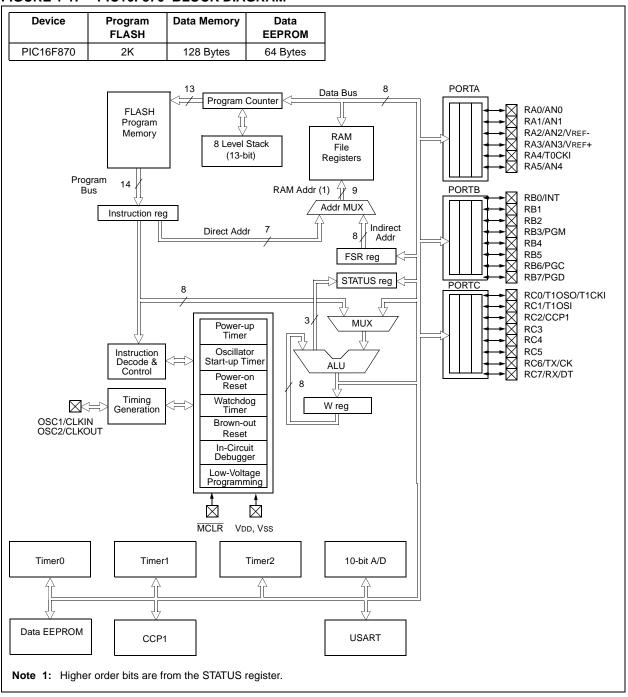
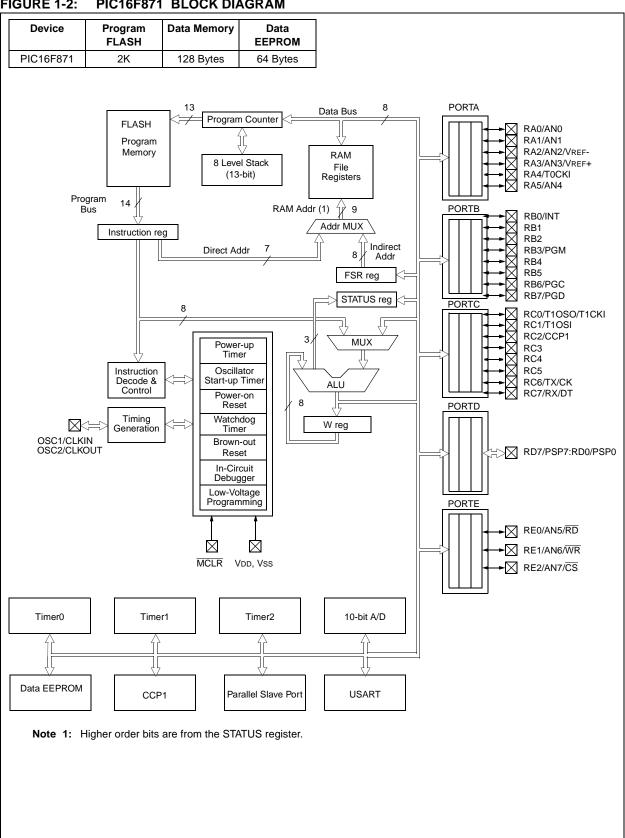



FIGURE 1-2: PIC16F871 BLOCK DIAGRAM

TABLE 1-1: PIC16F870 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP/THV	1	1	I/P	ST	Master clear (reset) input or programming voltage input or high voltage test mode control. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-	4	4	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage
RA3/AN3/VREF+	5	5	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/AN4	7	7	I/O	TTL	RA5 can also be analog input4
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3/PGM	24	24	I/O	TTL/ST ⁽¹⁾	RB3 can also be the low voltage programming input
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6/PGC	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin or In-Circuit Debugger pin. Serial programming clock.
RB7/PGD	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin or In-Circuit Debugger pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3	14	14	I/O	ST	
RC4	15	15	I/O	ST	
RC5	16	16	I/O	ST	
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
VDD	20	20	Р	_	Positive supply for logic and I/O pins.

Legend: I = input

O = output

I/O = input/output

P = power

TTL = TTL input ST = Schmitt Trigger input

— = Not used Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or LVP mode.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

TABLE 1-2: PIC16F871 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	Ι	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	ı	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLK-OUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP/THV	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input or high voltage test mode control. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage
RA3/AN3/VREF+	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3/PGM	36	39	11	I/O	TTL/ST ⁽¹⁾	RB3 can also be the low voltage programming input
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6/PGC	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin or In-Circuit Debugger pin. Serial programming clock.
RB7/PGD	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin or In-Circuit Debugger pin. Serial programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3	18	20	37	I/O	ST	
RC4	23	25	42	I/O	ST	
RC5	24	26	43	I/O	ST	
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.

Legend: I = input

I = input O = output

I/O = input/output TTL = TTL input P = power

— = Not used

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt or LVP mode.

- 2: This buffer is a Schmitt Trigger input when used in serial programming mode.
- 3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).
- 4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

TABLE 1-2: PIC16F871 PINOUT DESCRIPTION (CONTINUED)

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC		1,17,28, 40	12,13, 33,34		<u>-</u>	These pins are not internally connected. These pins should be left unconnected.

Legend: I = input

O = output

I/O = input/output

P = power

— = Not used

TTL = TTL input

ST = Schmitt Trigger input

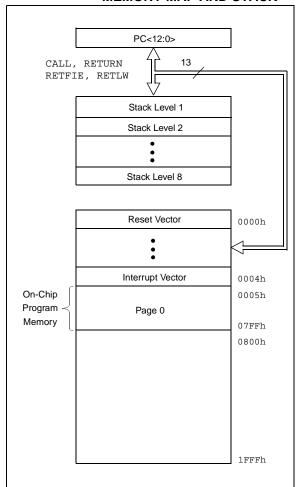
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt or LVP mode.

- 2: This buffer is a Schmitt Trigger input when used in serial programming mode.
 - 3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).
 - 4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

NOTES:

2.0 MEMORY ORGANIZATION

There are three memory blocks in each of these PICmicro® MCUs. The Program Memory and Data Memory have separate buses, so that concurrent access can occur, and is detailed in this section. The EEPROM data memory block is detailed in Section 4.0.


Additional information on device memory may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

2.1 **Program Memory Organization**

The PIC16F870/871 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F870/871 devices have 2K x 14 words of FLASH program memory. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PIC16F870/871 PROGRAM MEMORY MAP AND STACK

2.2 <u>Data Memory Organization</u>

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1(STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP<1:0>	Bank
0.0	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note: EEPROM Data Memory description can be found in Section 4.0 of this Data Sheet

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR.

FIGURE 2-2: PIC16F870/871 REGISTER FILE MAP

	File Address		File Address		File Address	ļ.	File Addre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽²⁾	08h	TRISD ⁽²⁾	88h		108h		188
PORTE ⁽²⁾	09h	TRISE ⁽²⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	181
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18[
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18
T1CON	10h		90h		110h		19
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh				
	20h	General	A0h		120h		1A
		Purpose	Aon	accesses		accesses	
		Register		20h-7Fh		A0h - BFh	
General		32 Bytes	BFh				1B
Purpose Register		,	C0h				1C
96 Bytes							
ao bytes			EFh		16Fh		1E
		accesses	F0h	accesses	170h	accesses	1F
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1F
Bank 0	71 11	Bank 1	1 1 11	Bank 2		Bank 3	11.1

Unimplemented data memory locations, read as '0'.

^{*} Not a physical register.

Note 1: These registers are reserved; maintain these registers clear.

2: These registers are not implemented on the PIC16F870.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (no	t a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽⁴⁾	FSR	Indirect data	a memory ac	ldress pointe	er	•	•			xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch when	written: POR	RTA pins whe	en read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	en read	•			xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins wh	en read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	n written: PC	ORTD pins wh	en read				xxxx xxxx	uuuu uuuu
09h ⁽⁵⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	Program Co	ounter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
0Dh	PIR2	_	_	_	EEIF	_	_	_	_	0	0
0Eh	TMR1L	Holding reg	ister for the l	east Signific	ant Byte of th	e 16-bit TMR	1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of the	e 16-bit TMR	1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h											
14h											
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	_SB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (M	MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh											
1Ch											
1Dh											
1Eh	ADRESH	A/D Result	Register Hig	h Byte		Γ	1			xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 - 2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 - 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.
 - 4: These registers can be addressed from any bank.
 - 5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 1											
80h ⁽⁴⁾	INDF	Addressing	this location	uses conter	nts of FSR to a	ddress data	memory (no	t a physical	register)	0000 0000	0000 0000
81h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽⁴⁾	FSR	Indirect data	ndirect data memory address pointer								uuuu uuuu
85h	TRISA	_	_	· ·	ta Direction Re	eaister				11 1111	11 1111
86h	TRISB	PORTB Date	ta Direction F			-9				1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h ⁽⁵⁾	TRISD	PORTD Da	ta Direction F	Register						1111 1111	1111 1111
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE	Data Direc	tion Bits	0000 -111	0000 -111
8Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	0 0000
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
8Dh	PIE2	_	_	_	EEIE	_	_	_	_	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR	qq	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h											
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h											
94h											
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000
9Ah	_	Unimplemented								_	_
9Bh	_	Unimplemented								_	_
9Ch	_	Unimplemented								_	_
9Dh	_	Unimpleme	nted							_	_
9Eh	ADRESL	A/D Result	Register Lov	v Byte						xxxx xxxx	uuuu uuuu
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 - 2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 - 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.
 - 4: These registers can be addressed from any bank.
 - 5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 2											
100h ⁽⁴⁾	INDF	Addressing	this location	uses conter	its of FSR to a	address data	memory (no	t a physical	register)	0000 0000	0000 0000
101h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
102h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signi	icant Byte					0000 0000	0000 0000
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h ⁽⁴⁾	FSR	Indirect data	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
105h	_	Unimpleme	nted							_	_
106h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	en read				xxxx xxxx	uuuu uuuu
107h	_	Unimpleme	nted							_	_
108h	_	Unimpleme	nted							_	_
109h	_	Unimpleme	nted							_	_
10Ah ^(1,4)	PCLATH	_	-	_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	0 0000
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Ch	EEDATA	EEPROM d	ata register	•	•					xxxx xxxx	uuuu uuuu
10Dh	EEADR	EEPROM a	ddress regis	ter						xxxx xxxx	uuuu uuuu
10Eh	EEDATH	_	ı	EEPROM o	lata register h	igh byte				xxxx xxxx	uuuu uuuu
10Fh	EEADRH	_	_	_	EEPROM ac	ddress registe	r high byte			xxxx xxxx	uuuu uuuu
Bank 3											
180h ⁽⁴⁾	INDF	Addressing	this location	uses conter	its of FSR to a	address data	memory (no	t a physical	register)	0000 0000	0000 0000
181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Sigr	ificant Byte					0000 0000	0000 0000
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h ⁽⁴⁾	FSR	Indirect data	a memory ac	ddress pointe	er	•	•			xxxx xxxx	uuuu uuuu
185h	_	Unimpleme	nted							_	_
186h	TRISB	PORTB Dat	a Direction I	Register						1111 1111	1111 1111
187h	_	Unimpleme	Unimplemented								_
188h	_	Unimplemented								_	_
189h	_	Unimplemented									_
18Ah ^(1,4)	PCLATH	Write Buffer for the upper 5 bits of the Program Counter							0 0000	0 0000	
18Bh ⁽⁴⁾	INTCON	GIE PEIE TOIE INTE RBIE TOIF INTE RBIF							RBIF	0000 000x	0000 000u
18Ch	EECON1	EEPGD — — WRERR WREN WR RD								x x000	x u000
18Dh	EECON2	EEPROM c	ontrol registe								
18Eh		Reserved n	naintain clea	r						0000 0000	0000 0000
18Fh	_	Reserved m	naintain clea	•						0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- **Note 1:** The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 - 2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 - 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.
 - 4: These registers can be addressed from any bank.
 - 5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

2.2.2.1 STATUS REGISTER

The STATUS Register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable, therefore, the result of an instruction with the STATUS Register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS Register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note 1: The <u>C and DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit
it7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset
it 7:	1 = Bank	gister Banl (2, 3 (100 (0, 1 (00h	h - 1FFh		or indirect a	ddressing)		
oit 6-5:	11 = Bar 10 = Bar 01 = Bar 00 = Bar	0: Registe nk 3 (180h nk 2 (100h nk 1 (80h - nk 0 (00h - nk is 128 b	- 1FFh) - 17Fh) - FFh) - 7Fh)	elect bits	(used for dire	ect address	sing)	
oit 4:	TO : Time 1 = After 0 = A WI		, CLRWD'	r instructio	on, or SLEER	instruction	n	
bit 3:	1 = After	er-down b power-up xecution o	or by the		instruction			
bit 2:		result of a			c operation i			
bit 1:	(for borro	ow the polarry-out fro	arity is re m the 4th	versed) I low orde	DLW, SUBLW r bit of the re er bit of the	esult occuri	•	
bit 0:	1 = A ca 0 = No c Note: Fo the seco	rry-out from arry-out from or borrow t	m the mo om the n the polar d. For ro	ost signific nost signif ity is reve		e result occ ne result oc raction is e	curred executed by	adding the two's compleme with either the high or low o

2.2.2.2 OPTION REG REGISTER

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit7							bit0

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

- n= Value at POR reset

- bit 7: RBPU: PORTB Pull-up Enable bit
 - 1 = PORTB pull-ups are disabled
 - 0 = PORTB pull-ups are enabled by individual port latch values
- bit 6: INTEDG: Interrupt Edge Select bit
 - 1 = Interrupt on rising edge of RB0/INT pin
 - 0 = Interrupt on falling edge of RB0/INT pin
- bit 5: TOCS: TMR0 Clock Source Select bit
 - 1 = Transition on RA4/T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: T0SE: TMR0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on RA4/T0CKI pin
 - 0 = Increment on low-to-high transition on RA4/T0CKI pin
- bit 3: PSA: Prescaler Assignment bit
 - 1 = Prescaler is assigned to the WDT
 - 0 = Prescaler is assigned to the Timer0 module
- bit 2-0: PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1 : 16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 · 256	1 : 128

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an

interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset
bit 7:	1 = Enab	bal Interru bles all un- bles all int	masked ir					
bit 6:	1 = Enab	ripheral Ir bles all un- bles all pe	masked p	eripheral i	nterrupts			
bit 5:								
bit 4:	1 = Enab	30/INT Extended the RI color of the RI color o	30/INT ext	ernal inte	rrupt			
bit 3:	1 = Enab	B Port Cha ples the RI ples the R	3 port cha	nge interr	upt			
bit 2:	1 = TMR	IR0 Overfl 0 register 0 register	has overfl	owed (mu	st be clear	ed in softw	are)	
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur							
bit 0:	RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state							

2.2.2.4 PIE1 REGISTER

The PIE1 Register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

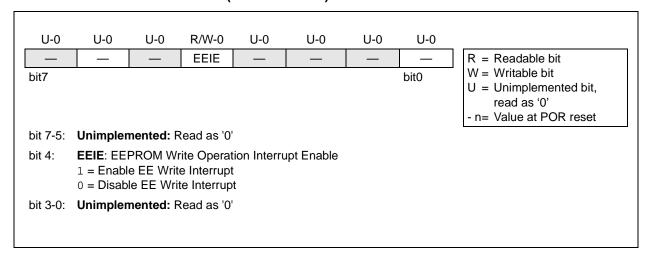
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
PSPIE ⁽¹⁾ bit7	ADIE RCIE TXIE — CCP1IE TMR2IE TMR1IE bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset									
bit 7: PSPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt										
	·									
:	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt									
:	1 = Enable	ART Transles the USA les the USA	ART transr	nit interru	pt					
bit 3:	Unimplen	nented: Re	ead as '0'							
	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt									
:	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt									
:	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt									
Note 1: PSPIE is reserved on the PIC16F870; always maintain this bit clear.										

2.2.2.5 PIR1 REGISTER

The PIR1 Register contains the individual flag bits for the peripheral interrupts.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

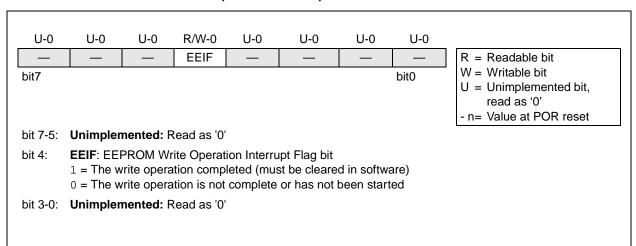

R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0		
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	R = Readable bit	
bit7	bit0 W = Writable bit - n= Value at POR r								
		or a write o	peration ha	s taken pla	errupt Flag bit ce (must be o		oftware)		
	ADIF : A/D (1 = An A/D 0 = The A/D	conversion	completed						
	RCIF : USAI 1 = The US 0 = The US	ART receiv	e buffer is f	ull					
	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full								
bit 7:	Unimpleme	ented: Read	d as '0'						
	0 = No TMF Compare M	de I register ca R1 register d lode I register ca R1 register d	apture occu capture occ ompare ma	curred	be cleared in d (must be cl		ftware)		
	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred								
	0 = TMR1 r	egister over egister did	rflowed (mu not overflow	ıst be clear v	ed in softwar	,			

Note:

2.2.2.6 PIE2 REGISTER

The PIE2 Register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)



2.2.2.7 PIR2 REGISTER

The PIR2 Register contains the flag bit for the EEPROM write operation interrupt.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2 REGISTER (ADDRESS 0Dh)

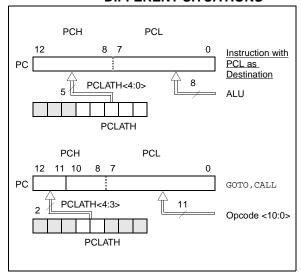
Note:

2.2.2.8 PCON REGISTER

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watch-dog Reset (WDT) and an external $\overline{\text{MCLR}}$ Reset.

BOR is unknown on POR. It must be set by the user and checked on subsequent rests to see if BOR is clear, indicating a brownout has occurred. The BOR status bit is a don't care and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)


U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1			
_	_	_	_	_	_	POR	BOR	R = Readable bit		
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset									
bit 7-2:	'-2: Unimplemented: Read as '0'									
bit 1:	POR : Pow 1 = No Pow 0 = A Pow	wer-on R	eset occu	red	e set in so	ftware afte	r a Power-	on Reset occurs)		
bit 0:	 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 0: BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 									

Note:

2.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL Register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, "Implementing a Table Read" (AN556).

2.3.2 STACK

The PIC16FXXX family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

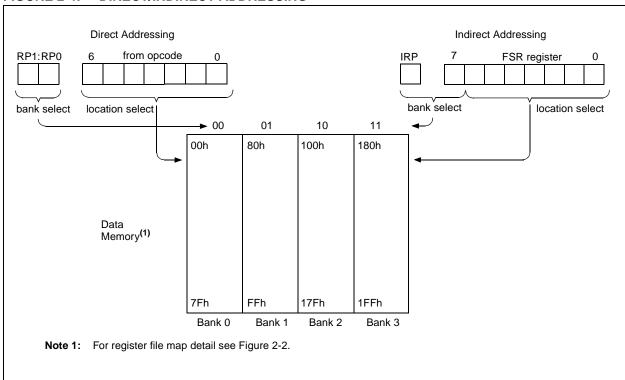
- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

The PIC16FXXX architecture is capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide 11 bits of the address, which allows branches within any 2K program memory page. Therefore, the 8K words of program memory are broken into four pages. Since the PIC16F872 has only 2K words of program memory or one page, additional code is not required to ensure that the correct page is selected before a CALL or GOTO instruction is executed. The PCLATH<4:3> bits should always be maintained as zeros. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Manipulation of the PCLATH is not required for the return instructions.

2.5 <u>Indirect Addressing, INDF and FSR</u> Registers

The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.


Indirect addressing is possible by using the INDF Register. Any instruction using the INDF Register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF Register itself indirectly (FSR = '0') will read 00h. Writing to the INDF Register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR Register and the IRP bit (STATUS<7>), as shown in Figure 2-4.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	clear INDF register;
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING

NOTES:

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA Register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 Register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA Register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA Register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
BCF	STATUS,		;	Bank0
CLRF	PORTA		;	Initialize PORTA by
				clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0x06		;	Configure all pins
MOVWF	ADCON1		;	as digital inputs
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

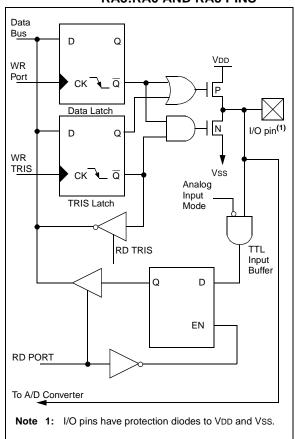


FIGURE 3-2: BLOCK DIAGRAM OF RA4/ TOCKI PIN

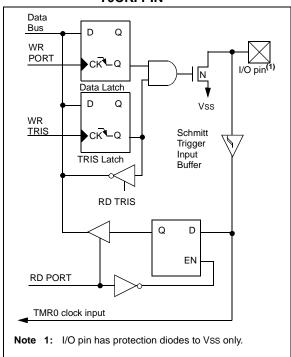


TABLE 3-1: PORTA FUNCTIONS

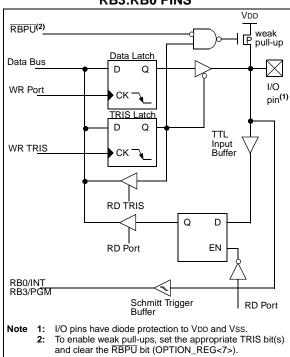
Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/AN4	bit5	TTL	Input/output or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_		RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	PORTA Data Direction Register						11 1111
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.


3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Three pins of PORTB are multiplexed with the Low Voltage Programming function; RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are described in the Special Features Section.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

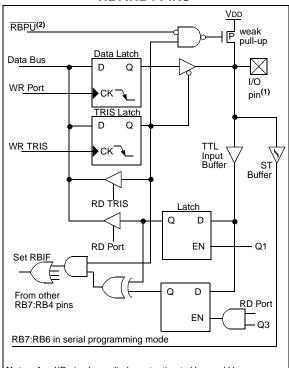
FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.


The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, "Implementing Wake-Up on Key Stroke" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in Section 11.10.1.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

te 1: I/O pins have diode protection to VDD and Vss.

 To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL/ST ⁽¹⁾	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

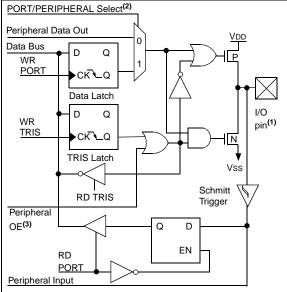
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or LVP mode.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB I	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.


3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Note 1: I/O pins have diode protection to VDD and Vss.
 - 2: Port/Peripheral select signal selects between port data and peripheral output.
 - 3: Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 3-5: PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3	bit3	ST	Input/output port pin
RC4	bit4	ST	Input/output port pin
RC5	bit5	ST	Input/output port pin
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	Data Dire	1111 1111	1111 1111						

Legend: x = unknown, u = unchanged.

3.4 PORTD and TRISD Registers

This section is not applicable to the PIC16F870.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 3-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

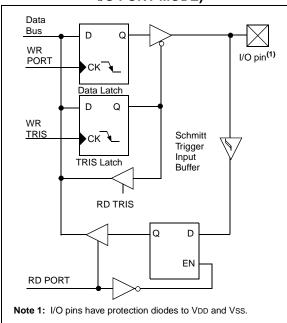


TABLE 3-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

TABLE 3-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTE	Data D	Direction	1111 1111	1111 1111					
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE	Data Direc	0000 -111	0000 -111	

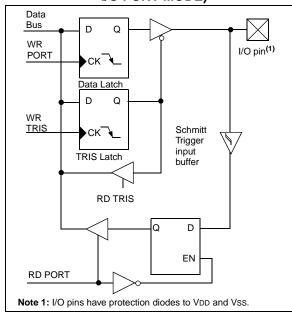
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

3.5 PORTE and TRISE Register

This section is not applicable to the PIC16F870.

PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.


Register 3-1 shows the TRISE Register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs.

FIGURE 3-7: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

REGISTER 3-1: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	
IBF	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset
	Parallel S	Slave Port	Status/Contr	ol Bits				
bit 7 :	IBF: Input		Status bit received and is a	vaiting to h	ne read by th	e CPU		

- 1 = A word has been received and is waiting to be read by the CPU
- 0 = No word has been received
- bit 6: **OBF**: Output Buffer Full Status bit
 - 1 = The output buffer still holds a previously written word
 - 0 = The output buffer has been read
- bit 5: IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)
 - 1 = A write occurred when a previously input word has not been read (must be cleared in software)
 - 0 = No overflow occurred
- bit 4: PSPMODE: Parallel Slave Port Mode Select bit
 - 1 = Parallel slave port mode
 - 0 = General purpose I/O mode
- bit 3: Unimplemented: Read as '0'

PORTE Data Direction Bits

- bit 2: Bit2: Direction Control bit for pin RE2/CS/AN7
 - 1 = Input
 - 0 = Output
- bit 1: Bit1: Direction Control bit for pin RE1/WR/AN6
 - 1 = Input
 - 0 = Output
- bit 0: Bit0: Direction Control bit for pin RE0/RD/AN5
 - 1 = Input
 - 0 = Output

TABLE 3-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in parallel slave port mode or analog input: RD 1 = Not a read operation 0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in parallel slave port mode or analog input: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in parallel slave port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data Direction Bits		0000 -111	0000 -111	
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

3.6 Parallel Slave Port

The Parallel Slave Port is not implemented on the PIC16F870.

PORTD operates as an 8-bit wide Parallel Slave Port or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode, it is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the $\overline{\text{CS}}$ (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches. One for data-out and one for data input. The user writes 8-bit data to the PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low. When either the $\overline{\text{CS}}$ or $\overline{\text{WR}}$ lines become high (level triggered), the Input Buffer Full (IBF) status flag bit (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 3-9). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if a second write to the PSP is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 3-10) indicating that the PORTD latch is waiting to be read by the external bus. When either the $\overline{\text{CS}}$ or $\overline{\text{RD}}$ pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in PSP mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 3-8: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

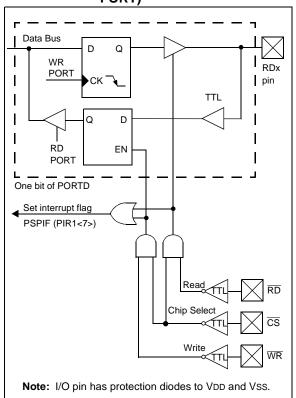


FIGURE 3-9: PARALLEL SLAVE PORT WRITE WAVEFORMS

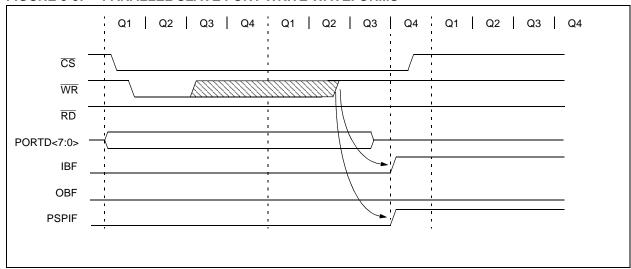


FIGURE 3-10: PARALLEL SLAVE PORT READ WAVEFORMS

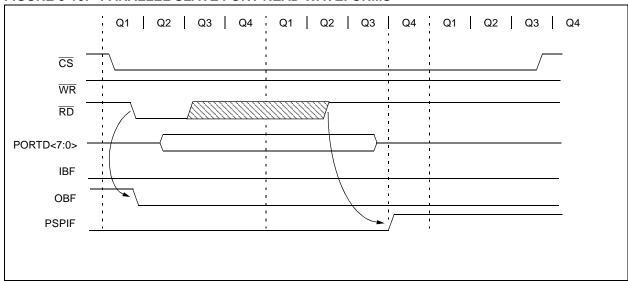


TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	a latch	when wr	itten: Port pin	s when read		xxxx xxxx	uuuu uuuu		
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	Data Direct	ion Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	_		_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

NOTES:

4.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program Memory are readable and writable during normal operation over the entire VDD range. A bulk erase operation may not be issued from user code (which includes removing code protection). The data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR).

There are six SFRs used to read and write the program and data EEPROM memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

The EEPROM data memory allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. The registers EEDATH and EEADRH are not used for data EEPROM access. The PIC16F870/871 devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh.

The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip-to-chip. Please refer to the specifications for exact limits.

The program memory allows word reads and writes. Program memory access allows for checksum calculation and calibration table storage. A byte or word write automatically erases the location and writes the new data (erase before write). Writing to program memory will cease operation until the write is complete. The program memory cannot be accessed during the write, therefore code cannot execute. During the write operation, the oscillator continues to clock the peripherals, and therefore, they continue to operate. Interrupt events will be detected and essentially "queued" until the write is completed. When the write completes, the next instruction in the pipeline is executed and the branch to the interrupt vector address will occur.

When interfacing to the program memory block, the EEDATH:EEDATA registers form a two byte word, which holds the 14-bit data for read/write. The EEADRH:EEADR registers form a two byte word, which holds the 13-bit address of the FLASH location being accessed. The PIC16F870/871 devices have 2K words of program FLASH with an address range from 0h to 7FFh. The unused upper bits in both the EEDATH and EEDATA registers all read as "0's".

The value written to program memory does not need to be a valid instruction. Therefore, up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

4.1 **EEADR**

The address registers can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program FLASH. However, the PIC16F870/871 have 64 bytes of data EEPROM and 2K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the EEADRH register and the LSByte is written to the EEADR register. When selecting a data address value, only the LSByte of the address is written to the EEADR register.

On the PIC16F870/871 devices, the upper two bits of the EEADR must always be cleared to prevent inadvertent access to the wrong location in data EEPROM. This also applies to the program memory. The upper five MSbits of EEADRH must always be clear during program FLASH access.

4.2 <u>EECON1 and EECON2 Registers</u>

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write sequence.

Control bit EEPGD determines if the access will be a program or a data memory access. When clear, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits RD and WR initiate read and write operations, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at the completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WRERR bit and rewrite the location. The value of the data and address registers and the EEPGD bit remains unchanged.

Interrupt flag bit EEIF, in the PIR2 register, is set when write is complete. It must be cleared in software.

REGISTER 4-1: EECON1 REGISTER (ADDRESS 18Ch)

 R/W-x
 U-0
 U-0
 R/W-x
 R/W-0
 R/W-0
 R/W-0

 EEPGD
 —
 —
 WRERR
 WREN
 WR
 RD

 bit7
 bit0

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

- n= Value at POR reset

bit 7: **EEPGD**: Program / Data EEPROM Select bit

1 = Accesses Program memory

0 = Accesses data memory

(This bit cannot be changed while a read or write operation is in progress)

bit 6-4: Unimplemented: Read as '0'

bit 3: WRERR: EEPROM Error Flag bit

1 = A write operation is prematurely terminated

(any MCLR reset or any WDT reset during normal operation)

0 = The write operation completed

bit 2: WREN: EEPROM Write Enable bit

1 = Allows write cycles

0 = Inhibits write to the EEPROM

bit 1: WR: Write Control bit

1 = Initiates a write cycle. (The bit is cleared by hardware once write is complete.) The WR bit can only be set (not cleared) in software.

0 = Write cycle to the EEPROM is complete

bit 0: RD: Read Control bit

1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software

0 = Does not initiate an EEPROM read

4.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available in the very next instruction cycle of the EEDATA register, therefore it can be read by the next instruction. EEDATA will hold this value until another read operation or until it is written to by the user (during a write operation).

4.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. Then the sequence in Example 4-2 must be followed to initiate the write cycle.

EXAMPLE 4-2: DATA EEPROM WRITE

```
BSF
                         STATUS, RP1
                BCF
                         STATUS, RP0
                                       ; Bank 2
                MOVLW
                         DATA_EE_ADDR ;
                MOVWF
                         EEADR
                                       ; Data Memory Address to write
                         DATA EE DATA ;
                MOVLW
                MOVWE
                         EEDATA
                                       ; Data Memory Value to write
                         STATUS, RP0
                                       ; Bank 3
                BSF
                BCF
                         EECON1, EEPGD; Point to DATA memory
                BSF
                         EECON1, WREN ; Enable writes
                BCF
                         INTCON, GIE
                                       ; Disable Interrupts
                         55h
                MOVLW
Required
                MOVWF
                         EECON2
                                       ; Write 55h
Sequence
                MOVLW
                         AAh
                MOVWF
                         EECON2
                                       ; Write AAh
                BSF
                         EECON1, WR
                                       ; Set WR bit to begin write
                BSF
                         INTCON, GIE
                                      ; Enable Interrupts
                SLEEP
                                       ; Wait for interrupt to signal write complete
                BCF
                         EECON1, WREN ; Disable writes
```

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect the current write cycle. The WR bit will be inhibited from being set unless the WREN bit

EXAMPLE 4-1: DATA EEPROM READ

```
STATUS, RP1
      STATUS, RPO
BCF
                   ;Bank 2
MOVLW DATA_EE_ADDR ;
MOVWE EEADR
                   ;Data Memory Address to read
      STATUS, RPO ; Bank 3
      EECON1, EEPGD; Point to DATA memory
BCF
      EECON1, RD
BSF
                   ;EEPROM Read
BCF
      STATUS, RPO
                   ;Bank 2
MOVF EEDATA, W
                   ;W = EEDATA
```

is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Write Complete Interrupt Flag bit (EEIF) is set. EEIF must be cleared by software.

4.5 Reading the FLASH Program Memory

A program memory location may be read by writing two bytes of the address to the EEADR and EEADRH registers, setting the EEPGD control bit (EECON1<7>) and then setting control bit RD (EECON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The

data is available in the EEDATA and EEDATH registers after the second NOP instruction. Therefore, it can be read as two bytes in the following instructions. The EEDATA and EEDATH registers will hold this value until another read operation or until it is written to by the user (during a write operation).

EXAMPLE 4-3: FLASH PROGRAM READ

```
BSF
                        STATUS, RP1
                        STATUS, RPO
                BCF
                                           ; Bank 2
                MOVLW
                        ADDRH
                MOVWF
                        EEADRH
                                           ; MSByte of Program Address to read
                MOVLW
                        ADDRL
                MOVWF
                        EEADR
                                           ; LSByte of Program Address to read
                BSF
                        STATUS, RPO
                                           ; Bank 3
                        EECON1, EEPGD
                                           ; Point to PROGRAM memory
                BSF
                        EECON1, RD
Required
                BSF
                                           ; EEPROM Read
Sequence
                                          ; memory is read in the next two cycles after BSF EECON1, \ensuremath{\mathtt{RD}}
               NOP
                NOP
                BCF
                        STATUS, RPO
                                           ; Bank 2
                        EEDATA, W
                                           ; W = LSByte of Program EEDATA
                MOVF
                MOVF
                        EEDATH, W
                                           ; W = MSByte of Program EEDATA
```

4.6 Writing to the FLASH Program Memory

When the PIC16F870/871 are fully code protected or not code protected, a word of the FLASH program memory may be written provided the WRT configuration bit is set. If the PIC16F870/871 are partially code protected, then a word of FLASH program memory may be written if the word is in a non-code protected segment of memory and the WRT configuration bit is set. To write a FLASH program location, the first two bytes of the address must be written to the EEADR and EEADRH registers and two bytes of the data to the EEDATA and EEDATH registers, set the EEPGD con-

trol bit (EECON1<7>), and then set control bit WR (EECON1<1>). The sequence in Example 4-4 must be followed to initiate a write to program memory.

The microcontroller will then halt internal operations during the next two instruction cycles for the TPEW (parameter D133) in which the write takes place. This is not SLEEP mode, as the clocks and peripherals will continue to run. Therefore, the two instructions following the "BSF EECON, WR" should be NOP instructions. After the write cycle, the microcontroller will resume operation with the 3rd instruction after the EECON1 write instruction.

EXAMPLE 4-4: FLASH PROGRAM WRITE

```
BSF
                          STATUS, RP1
                  BCF
                          STATUS, RP0
                                            ; Bank 2
                          ADDRH
                  MOVLW
                          EEADRH
                  MOVWF
                                             ; MSByte of Program Address to read
                  MOVLW
                          ADDRL
                          EEADR
                  MOVWF
                                             ; LSByte of Program Address to read
                  MOVLW
                          DATAH
                  MOVWF
                           EEDATH
                                             ; MS Program Memory Value to write
                  MOVLW
                          DATAL
                  MOVWF
                           EEDATA
                                             ; LS Program Memory Value to write
                          STATUS, RP0
                                             ; Bank 3
                  BSF
                  BSF
                           EECON1, EEPGD
                                             ; Point to PROGRAM memory
                  BSF
                          EECON1, WREN
                                             ; Enable writes
                           INTCON, GIE
                  BCF
                                            ; Disable Interrupts
                           55h
                  MOVLW
Required
                           EECON2
                                             ; Write 55h
                  MOVWF
Sequence
                          AAh
                  MOVLW
                          EECON2
                                             ; Write AAh
                  MOVWF
                  BSF
                           EECON1, WR
                                            ; Set WR bit to begin write
                  NOP
                                            ; Instructions here are ignored by the microcontroller
                  NOP
                                             ; Microcontroller will halt operation and wait for
                                             ; a write complete. After the write
                                             ; the microcontroller continues with 3rd instruction
                         INTCON,
                                            ; Enable Interrupts
                  BSF
                                  GIE
                  BCF
                         EECON1, WREN
                                             ; Disable writes
```

4.7 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Generally a write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the bit).

4.8 Protection Against Spurious Write

4.8.1 EEPROM DATA MEMORY

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

4.8.2 PROGRAM FLASH MEMORY

To protect against spurious writes to FLASH program memory, the WRT bit in the configuration word may be programmed to '0' to prevent writes. The write initiate sequence must also be followed. WRT and the configuration word cannot be programmed by user code, only through the use of an external programmer.

4.9 Operation during Code Protect

Each reprogrammable memory block has its own code protect mechanism. External Read and Write operations are disabled if either of these mechanisms are enabled.

4.9.1 DATA EEPROM MEMORY

The microcontroller itself can both read and write to the internal Data EEPROM, regardless of the state of the code protect configuration bit.

When data memory is code protected (CONFIG<8>=0) any further external programming access of program memory is disabled. To reenable programming access to program memory, both bulk erase and removal of code protection must be performed on program and data memory.

4.9.2 PROGRAM FLASH MEMORY

The microcontroller can read and execute instructions out of the internal FLASH program memory, regardless of the state of the code protect configuration bits. However, the WRT configuration bit and the code protect bits have different effects on writing to program memory. Table 4-1 shows the various configurations and status of reads and writes. To erase the WRT or code protection bits in the configuration word requires that the device be fully erased.

TABLE 4-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

Con	Configuration Bits		Moment Leastion	Internal	Internal	ICCD Bood	ICCD Write	
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP Write	
0	0	1	All program memory	Yes	Yes	No	No	
0	0	0	All program memory	Yes	No	No	No	
1	1	0	All program memory	Yes	No	Yes	Yes	
1	1	1	All program memory	Yes	Yes	Yes	Yes	

TABLE 4-2: REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPROM 8	address regi	ister						xxxx xxxx	uuuu uuuu
10Fh	EEADRH	_	_	_	— — EEPROM address high						uuuu uuuu
10Ch	EEDATA	EEPROM (data resister							xxxx xxxx	uuuu uuuu
10Eh	EEDATH	_	_	EEPROM o	data resiste	high				xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	EEPROM (control resis	ter2 (not a p	er2 (not a physical resister)						
8Dh	PIE2	_		_	EEIE	_	_			0	0
0Dh	PIR2	_	_	_	EEIF	_	_	_	_	0	0

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

5.0 TIMERO MODULE

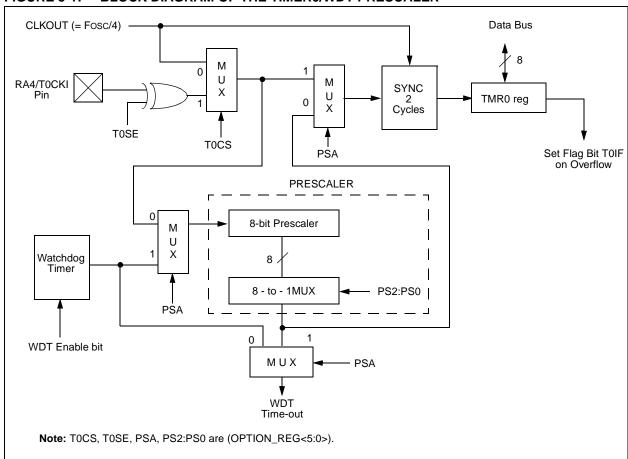
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the watchdog timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

5.2 <u>Using Timer0 with an External Clock</u>

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the watchdog timer. A prescaler assignment for the Timer0

module means that there is no prescaler for the watchdog timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

REGISTER 5-1: OPTION REG REGISTER

REGISTI	ER 5-1: (OPTION_RE	EG REGIS	IEK				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU			TOSE	PSA	PS2	PS1	PS0	R = Readable bit
bit 7	1	1	1				bit 0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	RBPU							
bit 6:	INTEDG							
bit 5:	1 = Transi	R0 Clock So tion on T0CK al instruction	(I pin)			
bit 4:	1 = Incren	R0 Source Enent on high- nent on low-to	to-low transi	tion on TO				
bit 3:	1 = Presc	scaler Assign aler is assign aler is assign	ed to the W		ule			
bit 2-0:	PS2:PS0:	Prescaler Ra	ate Select bi	ts				
	Bit Value	TMR0 Rate	WDT Rate					
	000 001 010 011 100 101 110	1:2 1:4 1:8 1:16 1:32 1:64 1:128	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128					

Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h,101h	TMR0	Timer0	module's re	egister						xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 8.0). Register 6-1 shows the Timer1 control register.

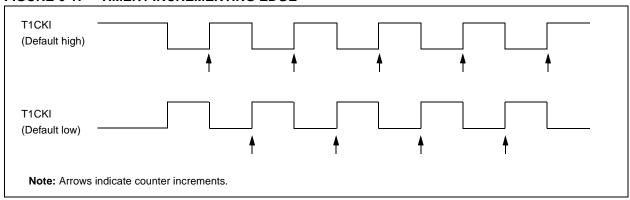
When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Additional information on timer modules is available in the PICmicro TM Mid-range MCU Family Reference Manual (DS33023).

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— Dit7	T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	
bit 5-4:	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3:	T10SCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off (The oscillator inverter is turned off to eliminate power drain)
bit 2:	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	TMR1CS = 1 1 = Do not synchronize external clock input 0 = Synchronize external clock input
	$\overline{\text{TMR1CS}} = 0$ This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1:	TMR1CS : Timer1 Clock Source Select bit 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0:	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

6.1 <u>Timer1 Operation in Timer Mode</u>

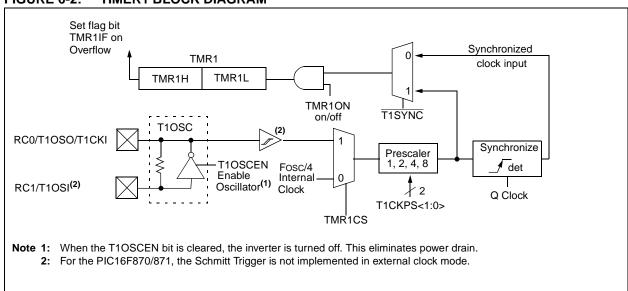

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit $\overline{T1SYNC}$ (T1CON<2>) has no effect since the internal clock is always in sync.

6.2 <u>Timer1 Counter Operation</u>

Timer1 may operate in asynchronous or usynchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in counter mode, the module must first have a falling edge before the counter begins to increment.

FIGURE 6-1: TIMER1 INCREMENTING EDGE


6.3 <u>Timer1 Operation in Synchronized</u> Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

6.4 <u>Timer1 Operation in Asynchronous</u> Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In asynchronous counter mode, Timer1 can not be used as a time-base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in asynchronous mode.

6.5 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2					
LP	32 kHz	33 pF	33 pF					
	100 kHz	15 pF	15 pF					
	200 kHz	15 pF	15 pF					
Thes	e values are for o	design guidance	only.					
Crystals Test	ed:							
32.768 kHz	Epson C-00	1R32.768K-A	± 20 PPM					
100 kHz	Epson C-2 1	Epson C-2 100.00 KC-P ± 20 PPN						
200 kHz	200 kHz STD XTL 200.000 kHz ±							
Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/								

6.6 Resetting Timer1 using CCP1 Trigger Output

external components.

crystal manufacturer for appropriate values of

If the CCP1 module is configured in compare mode to generate a "special event trigger" (CCP1M<3:0> = 1011), this signal will reset Timer1.

Note:	The special event trigger from the CCP	1
	module will not set interrupt flag b	it
	TMR1IF (PIR1<0>).	

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

6.8 <u>Timer1 Prescaler</u>

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	gister for	the Least S	Significant I	Byte of the	16-bit TMR	1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	gister for	the Most S	ignificant E	Byte of the 1	6-bit TMR	l register		xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

 $\label{eq:local_$

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

7.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for the PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

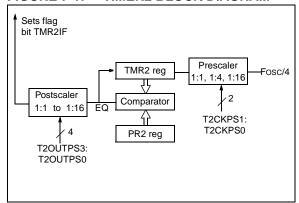
Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 7-1 shows the Timer2 control register.

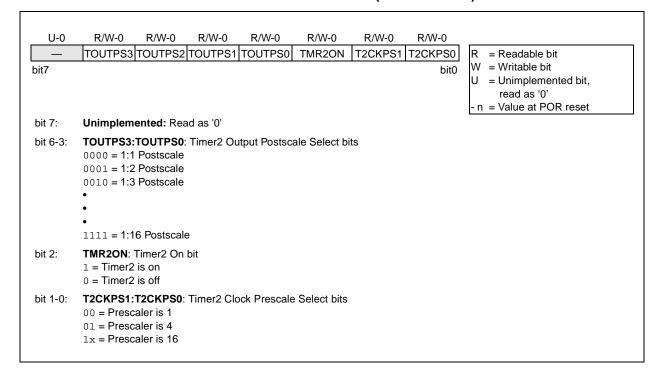
Additional information on timer modules is available in the PICmicro TM Mid-Range MCU Family Reference Manual (DS33023).

7.1 <u>Timer2 Prescaler and Postscaler</u>

The prescaler and postscaler counters are cleared when any of the following occurs:


- · a write to the TMR2 register
- · a write to the T2CON register
- any device reset (POR, MCLR reset, WDT reset or BOR)

TMR2 is not cleared when T2CON is written.


7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSPort module, which optionally uses it to generate shift clock.

FIGURE 7-1: TIMER2 BLOCK DIAGRAM

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER TABLE 7-1:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register	•		•				1111 1111	1111 1111

 $\begin{array}{ll} \mbox{Legend:} & \mbox{$x = $ unknown, $u = $ unchanged, $- = $ unimplemented read as '0'. Shaded cells are not used by the Timer2 module.} \\ \mbox{\bf Note} & \mbox{\bf 1:} & \mbox{Bits PSPIE} \mbox{ and PSPIF are reserved on the PIC16F870; always maintain these bits clear.} \\ \end{array}$

8.0 CAPTURE/COMPARE/PWM MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- · PWM master/slave Duty Cycle register

Table 8-1 shows the resources used by the CCP module. In the following sections, the operation of a CCP module is described.

CCP1 Module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls

the operation of CCP1. The special event trigger is generated by a compare match and will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the PICmicro $^{\text{TM}}$ Mid-Range MCU Family Reference Manual (DS33023) and in Application Note 594, "Using the CCP Modules" (DS00594).

TABLE 8-1: CCP MODE - TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

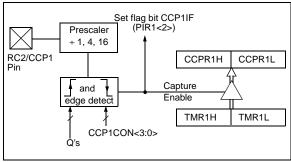
REGISTER 8-1: CCP1CON REGISTER (ADDRESS: 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	R =Readable bit				
bit7	bit0 W =Writable bit U =Unimplemented bit, read - n =Value at POR res											
bit 7-6:	Unimplemented: Read as '0'											
bit 5-4:	Captu Comp	ıre Mode: oare Mode	Unused : Unused	Significant re the two L		PWM duty c	ycle. The eig	ht MSbs are found in CCPR1L.				
bit 3-0:	0000 0100 0101 0110 0111 1000 1001	= Capture = Capture = Capture = Capture = Capture = Compa = Compa	e/Compare e mode, eve e mode, eve e mode, eve e mode, eve re mode, s re mode, c	very falling of very rising every 4th rising every 16th rise toutput oblear output openerate so	resets CCP edge dge ng edge ning edge n match (CC on match (f	CP1IF bit is CCP1IF bit i upt on mate	is set) ch (CCP1IF b	it is set, CCP pin is unaffected) oin is unaffected); CCP1 resets				

8.1 <u>Capture Mode</u>

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- Every falling edge
- · Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge


An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M<3:0>. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. Any reset will clear the prescaler counter.

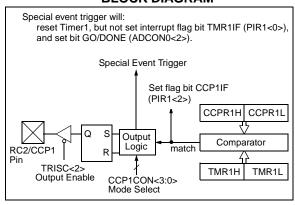
Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF CCP1CON ;Turn CCP module off

MOVLW NEW_CAPT_PS;Load the W reg with
; the new precscaler
; move value and CCP ON

MOVWF CCP1CON ;Load CCP1CON with this
; value


8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- · Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M<3:0> (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set causing a CCP interrupt (if enabled).

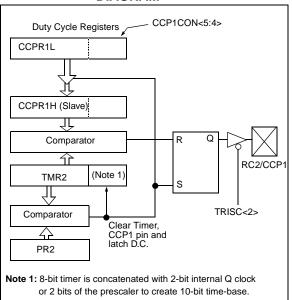
8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

8.3 PWM Mode (PWM)


In pulse width modulation mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

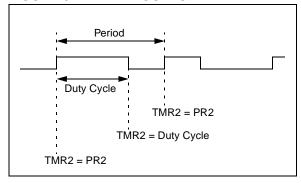

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 8-4: PWM OUTPUT

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

$$PR2 = \frac{FOSC}{4 \cdot FPWM \cdot TMR2 \text{ Prescale value}} - 1$$

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- · TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 8.1) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Resolution =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

8.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value of POR, BOR	on:	Value all oth resets	ner
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	x000	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -	-000	0000	-000
87h	TRISC	PORTC D	ata Direc	tion Registe	er					1111	1111	1111	1111
0Eh	TMR1L	Holding re	egister for	the Least S	ignificant B	yte of the 16-	bit TMR1 r	egister		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister for	the Most S	ignificant By	te of the 16-l	oit TMR1 re	egister		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 (0000	uu	uuuu
15h	CCPR1L	Capture/C	e/Compare/PWM register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	/Compare/PWM register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0							00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.**Note 1:**The PSP is not implemented on the PIC16F870; always maintain these bits clear.

TABLE 8-3: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, BOR	on:	Value all oth resets	ner
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISC	PORTC [Data Direct	on Registe	r					1111	1111	1111	1111
11h	TMR2	Timer2 m	odule's reg	ister						0000	0000	0000	0000
92h	PR2	Timer2 m	odule's per	iod register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/0	apture/Compare/PWM register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/0	Capture/Compare/PWM register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M						CCP1M0	00	0000	00	0000	

 $\label{eq:local_equation} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{-} = \textbf{unimplemented read as '0'}. \ \textbf{Shaded cells are not used by PWM and Timer2}.$

Note 1:Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

NOTES:

9.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

REGISTER 9-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	CSRC: Clo Asynchrono Don't care Synchrono 1 = Master 0 = Slave n	ous mode us mode mode (Clo	ock generat			(G)		
bit 6:	TX9 : 9-bit 1	9-bit trans	smission					
bit 5:	TXEN : Transm 1 = Transm 0 = Transm Note : SRE	nit enabled nit disabled		(EN in SY	NC mode.			
bit 4:	SYNC: USA 1 = Synchr 0 = Asynch	onous mod	de					
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	BRGH : High Asynchronous 1 = High sp	ous mode	ite Select b	it				
	0 = Low sp Synchrono Unused in	us mode						
bit 1:	TRMT : Train 1 = TSR er 0 = TSR fu	npty	Register S	tatus bit				
bit 0:	TX9D: 9th	bit of trans	mit data. C	an be pari	ty bit.			

REGISTER 9-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit read as '0' - n = Value at POR rese
oit 7:			d (Configu	ures RC7/R	X/DT and	RC6/TX/C	K pins as s	erial port pins)
bit 6:		Receive Er s 9-bit rece s 8-bit rece	ption					
bit 5:	0 = Disable	ous mode - es single reces single recleared after	master ceive ceive er receptio	oit n is comple	te.			
bit 4:	0 = Disable Synchrono	ous mode es continuo es continuo eus mode es continuo	us receive us receive us receive	e until enable	e bit CREÎ	N is cleared	I (CREN ov	verrides SREN)
bit 3:		ous mode s s address	9-bit (RX9 detection,	= 1) enable inte				rffer when RSR<8> is set used as parity bit
bit 2:	FERR: Fra 1 = Framin 0 = No fran	g error (Ca		ited by read	ling RCRE	G register	and receive	e next valid byte)
bit 1:	OERR: Ov 1 = Overru 0 = No ove	n error (Ca		ed by clear	ing bit CR	EN)		

bit 0: **RX9D:** 9th bit of received data (Can be parity bit)

9.1 <u>USART Baud Rate Generator (BRG)</u>

The BRG supports both the asynchronous and synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode, bit BRGH is ignored. Table 9-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 9-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

9.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 9-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

 \overline{X} = value in SPBRG (0 to 255)

TABLE 9-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud Ra	ate Gene	erator Re	gister	•		•		0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 9-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	osc = 20 N	1Hz	F	osc = 16 N	1Hz	Fosc = 10 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	-	-	-	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129	
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64	
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15	
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7	
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4	
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4	
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2	
HIGH	1.221	-	255	0.977	-	255	0.610	-	255	
LOW	312.500	-	0	250.000	-	0	156.250	-	0	

BAUD	ı	Fosc = 4 M	Hz	Fos	sc = 3.6864	MHz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.300	0	207	0.301	0.33	185
1.2	1.202	0.17	51	1.216	1.33	46
2.4	2.404	0.17	25	2.432	1.33	22
9.6	8.929	6.99	6	9.322	2.90	5
19.2	20.833	8.51	2	18.643	2.90	2
28.8	31.250	8.51	1	-	-	-
33.6	-	-	-	-	-	-
57.6	62.500	8.51	0	55.930	2.90	0
HIGH	0.244	-	255	0.218	-	255
LOW	62.500	-	0	55.930	-	0

TABLE 9-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

DALID	F	osc = 20 M	Hz	F	osc = 16 M	Hz	Fosc = 10 MHz			
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	-	-	-	
1.2	-	-	-	-	-	-	-	-	-	
2.4	-	-	-	-	-	-	2.441	1.71	255	
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64	
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31	
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21	
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18	
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10	
HIGH	4.883	-	255	3.906	-	255	2.441	-	255	
LOW	1250.000	-	0	1000.000		0	625.000	-	0	

BAUD	F	osc = 4 MI	Ηz	Fos	c = 3.6864	MHz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-
1.2	1.202	0.17	207	1.203	0.25	185
2.4	2.404	0.17	103	2.406	0.25	92
9.6	9.615	0.16	25	9.727	1.32	22
19.2	19.231	0.16	12	18.643	2.90	11
28.8	27.798	3.55	8	27.965	2.90	7
33.6	35.714	6.29	6	31.960	4.88	6
57.6	62.500	8.51	3	55.930	2.90	3
HIGH	0.977	-	255	0.874	-	255
LOW	250.000	-	0	273.722	-	0

9.2 **USART Asynchronous Mode**

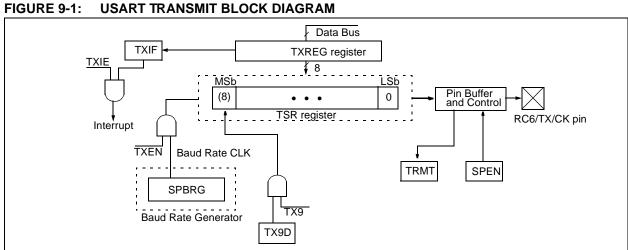
In this mode, the USART uses standard non-return-tozero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- **Baud Rate Generator**
- Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

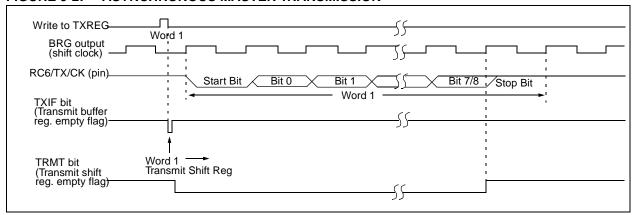
9.2.1 USART ASYNCHRONOUS TRANSMITTER

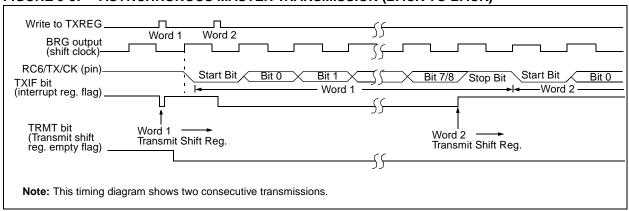

The USART transmitter block diagram is shown in Figure 9-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcy), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE

(PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- Note 1: The TSR register is not mapped in data memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 9-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 9-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.


In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.


Steps to follow when setting up an Asynchronous Transmission:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 9.1)
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit TXIF
- If 9-bit transmission is desired, then set transmit bit TX9.
- Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts transmission).

FIGURE 9-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 9-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 9-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tran	nsmit Reg	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (aud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

9.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 9-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e. it is a two deep FIFO). It is possible

for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 9-4: USART RECEVE BLOCK DIAGRAM

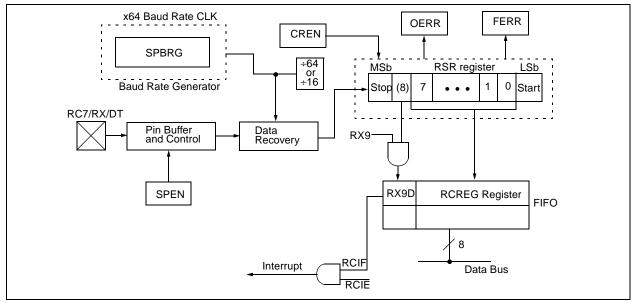
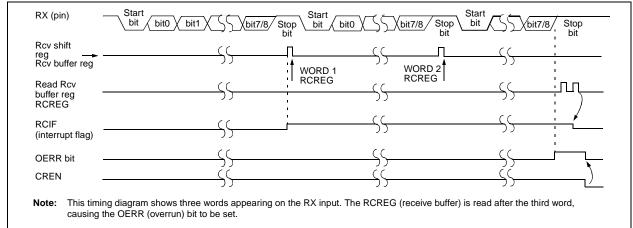



FIGURE 9-5: ASYNCHRONOUS RECEPTION

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 9.1).
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

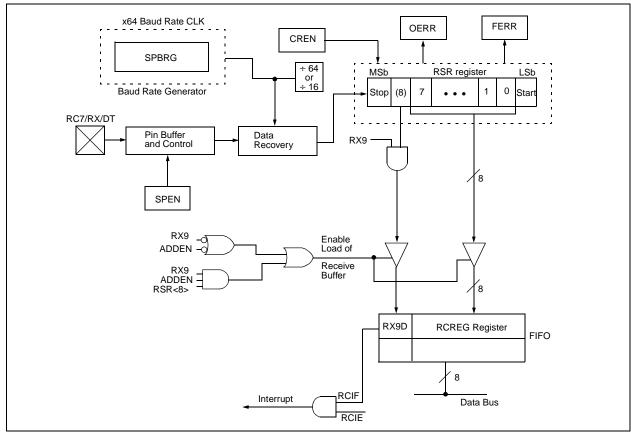
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.

TABLE 9-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

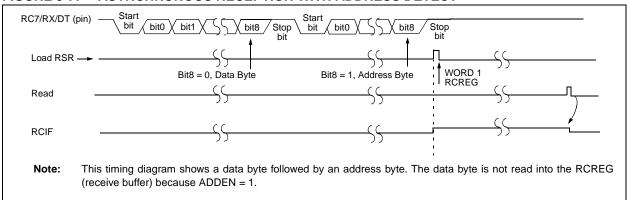
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	1	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive Reg	ister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	aud Rate Generator Register								0000 0000

 $\label{eq:continuous} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown, -= unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used for asynchronous reception}.$

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.


9.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

Steps to follow when setting up an Asynchronous Reception with Address Detect Enabled:


- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- · Set ADDEN to enable address detect.
- · Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register, to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer, and interrupt the CPU.

FIGURE 9-6: USART RECEIVE BLOCK DIAGRAM

FIGURE 9-7: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

FIGURE 9-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

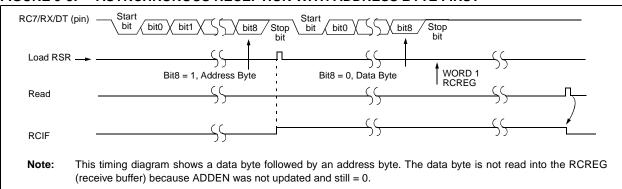


TABLE 9-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Receive Register								0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

 $\label{eq:continuous} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown, -= unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used for Asynchronous Reception}.$

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

9.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manne (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

9.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 9-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and interrupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 9-9). The transmission can also be started by first loading the TXREG register and then setting bit TXEN (Figure 9-10). This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN, CREN and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally, when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If either bit CREN or bit SREN is set during a transmission, the transmission is aborted and the DT

pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic, however, is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting, since bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 9.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.

TABLE 9-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ı	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

FIGURE 9-9: SYNCHRONOUS TRANSMISSION

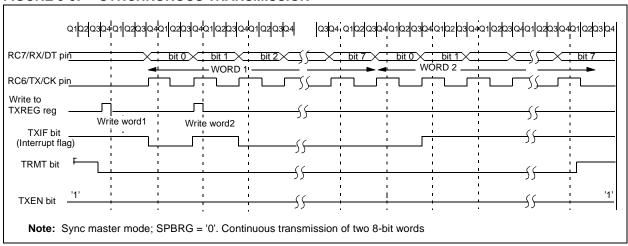
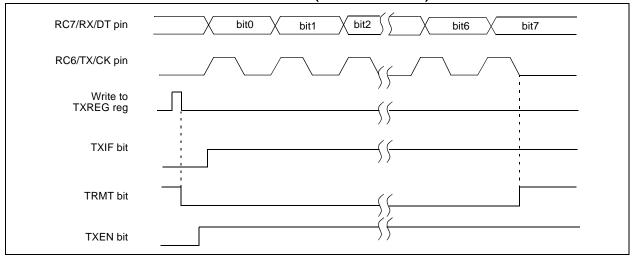



FIGURE 9-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

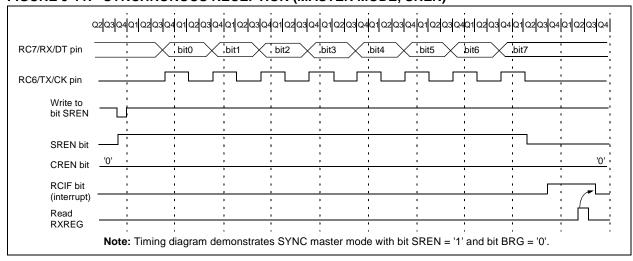
9.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit

OERR if it is set. The ninth receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 9.1)
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing bit CREN.


TABLE 9-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

FIGURE 9-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

9.4 USART Synchronous Slave Mode

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

9.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.

9.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

TABLE 9-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

TABLE 9-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	BRG Baud Rate Generator Register								0000 0000	0000 0000

 $\label{eq:continuous} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown, -= unimplemented read as '0'}. \ \textbf{Shaded cells are not used for Synchronous Slave Reception}.$

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870, always maintain these bits clear.

NOTES:

10.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the PIC16F870 and eight for the PIC16F871.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2 or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D clock must be derived from the A/D's internal RC oscillator.

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 10-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 10-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference) or as digital I/O.

Additional information on using the A/D module can be found in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 10-1: ADCONO REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0					
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7-6:			Conversion	n Clock Se	lect bits							
	00 = Fosc											
	01 = FOSC 10 = FOSC	-										
			ad from an	RC oscillation	nn)							
hit <i>E</i> 2.	,)(1)							
bit 5-3:	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0)											
	000 = channel 0, (RAU/AN0) 001 = channel 1, (RA1/AN1)											
	010 = channel 2, (RA2/AN2)											
		nnel 3, (RA	,									
	100 = cha											
		nnel 5, (RE										
	110 = char 111 = char	nnel 6, (RE	1/AN6)(1)									
1 % 0		•		1.14								
bit 2:	GO/DONE If ADON =	1										
				•	oit starts the A/ automatically o		,	the A/D conversion is complete)				
bit 1:	Unimplem	ented: Rea	ad as '0'									
bit 0:	ADON: A/I											
			dule is ope									
	0 = A/D co	nverter mo	dule is shu	toff and cons	sumes no oper	ating current	t					
Note 1:	These cha	nnels are r	ot available	on the PIC	16F870.							

REGISTER 10-2: ADCON1 REGISTER (ADDRESS 9Fh)

 U-0
 U-0
 R/W-0
 U-0
 R/W-0
 R/W-0
 R/W-0
 R/W-0

 ADFM
 —
 —
 —
 PCFG3
 PCFG2
 PCFG1
 PCFG0

 bit7
 bit0

R = Readable bit W = Writable bit

U = Unimplemented bit, read as '0'- n = Value at POR reset

bit 7: ADFM: A/D Result format select

1 = Right Justified. 6 most significant bits of ADRESH are read as '0'. 0 = Left Justified. 6 least significant bits of ADRESL are read as '0'.

bit 6-4: Unimplemented: Read as '0'

bit 3-0: **PCFG3:PCFG0**: A/D Port Configuration Control bits

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN / Refs ⁽²⁾
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	Vdd	Vss	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	RA3	RA2	1/2

A = Analog input

D = Digital I/O

Note 1: These channels are not available on the PIC16F870.

2: This column indicates the number of analog channels available as A/D inputs and the numer of analog channels used as voltage reference inputs.

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 10-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine sample time, see Section 10.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- · Waiting for the A/D interrupt
- Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

CHS2:CHS0 111 RE2/AN7⁽¹⁾ 110 RE1/AN6⁽¹⁾ 101 RE0/AN5⁽¹⁾ 100 RA5/AN4 VAIN 011 (Input voltage) RA3/AN3/VREF+ 010 RA2/AN2/VREF-A/D Converter 001 RA1/AN1 VDD RA0/AN0 VREF+ (Reference voltage) PCFG3:PCFG0 VREF-(Reference voltage) Vss PCFG3:PCFG0 Note 1: Not available on PIC16F870.

FIGURE 10-1: A/D BLOCK DIAGRAM

10.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 10-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 10-2. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 10-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the $PICmicro^{TM}$ Mid-Range Reference Manual (DS33023).

EQUATION 10-1: ACQUISITION TIME

TACQ = Amplifier Settling Time +
Hold Capacitor Charging Time +
Temperature Coefficient

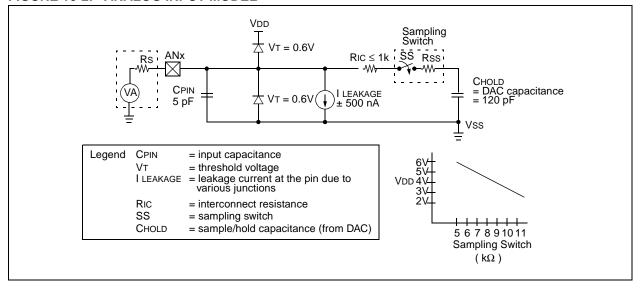
= TAMP + TC + TCOFF

= 2μ S + Tc + [(Temperature -25°C)(0.05 μ S/°C)]

TC = CHOLD (Ric + Rss + Rs) In(1/2047)

 $- 120 pF (1k\Omega + 7k\Omega + 10k\Omega) ln(0.0004885)$

= 16.47 μ S


TACQ = $2\mu S + 16.47\mu S + [(50^{\circ}C - 25 \times C)(0.05\mu S/\times C)]$

= 19.72 μ S

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- 3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 10-2: ANALOG INPUT MODEL

10.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- · Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s.

Table 10-1shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 10-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Clock	AD Clock Source (TAD)					
Operation	ADCS1:ADCS0	Max.				
2Tosc	00	1.25 MHz				
8Tosc	01	5 MHz				
32Tosc	10	20 MHz				
RC ^(1, 2, 3)	11	Note 1				

- Note 1: The RC source has a typical TAD time of 4 μs but can vary between 2-6 μs.
 - 2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for sleep operation.
 - 3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

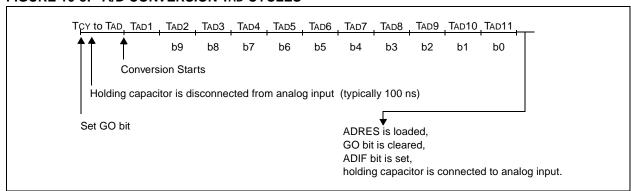
10.3 Configuring Analog Port Pins

The ADCON1, and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, any pin configured as an analog input channel will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

10.4 A/D Conversions


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is

required before the next acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started.

In Figure 10-3, after the GO bit is set, the first time segmant has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 10-3: A/D CONVERSION TAD CYCLES

10.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 10-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

10.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/ \overline{DONE} bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from

SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To allow the conversion to occur during SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

10.6 Effects of a Reset

Note:

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

FIGURE 10-4: A/D RESULT JUSTIFICATION

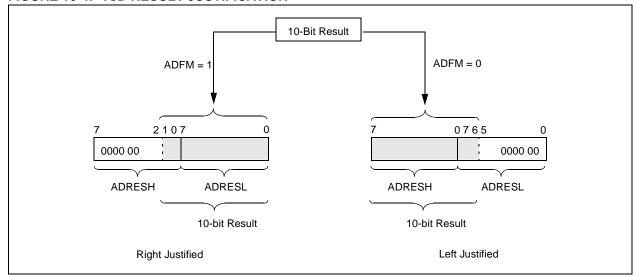


TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
1Eh	ADRESH	A/D Result	A/D Result Register High Byte								uuuu uuuu
9Eh	ADRESL	A/D Result	Register Lo	ow Byte						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	_	_	PORTA I	Data Direction F	Register				11 1111	11 1111
05h	PORTA	_	_	PORTA [PORTA Data Latch when written: PORTA pins when read						0u 0000
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data	Direction B	its	0000 -111	0000 -111
09h ⁽¹⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu

 $\begin{array}{ll} \mbox{Legend:} & \mbox{$x = $unknown, $u = $unchanged, $- = $unimplemented read as '0'. Shaded cells are not used for A/D conversion.} \\ \mbox{\bf Note} & \mbox{\bf 1:} & \mbox{These registers/bits are not available on the PIC16F870.} \\ \end{array}$

NOTES:

11.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection
- · ID locations
- · In-Circuit Serial Programming
- · Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

These devices have a watchdog timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the $PICmicro^{TM}$ Mid-Range Reference Manual, (DS33023).

11.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 11-1: CONFIGURATION WORD

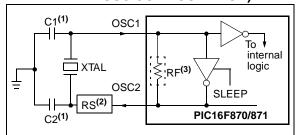
CP1 (CP0	DEBUG	_	WRT	CPD	LVP	BODEN	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0	Register: CONFIG
oit13											I		bit0	Address 2007h
bit 13-12	2:													
oit 5-4:	11 10 01	<1:0>: Flace = Code p = Not sup = Not sup = Code p	rotecti porte porte	on off d d	Memo	ry Cod	e Protectio	n bits ⁽³	2)					
oit 11:	1 =	DEBUG: In-Circuit Debugger Mode 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins. 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.												
oit 10:	Uni	impleme	nted:	Read a	ıs '1'									
oit 9:	1 =		cted pr	ogram	memo	ry may	able be written not be wri	-			ol			
oit 8:	1 =	CPD: Data EE Memory Code Protection 1 = Code protection off 0 = Data EEPROM memory code protected												
bit 7:	LVP: Low Voltage In-Circuit Serial Programming Enable bit 1 = RB3/PGM pin has PGM function, low voltage programming enabled 0 = RB3 is digital I/O, HV on MCLR must be used for programming													
oit 6:	1 =	DEN: Bro BOR ena BOR dis	abled	ıt Rese	et Enab	e bit ⁽¹)							
bit 3:	1 =	RTE : Pov PWRT d PWRT e	isable	d	Enable	e bit ⁽¹⁾								
oit 2:	1 =	TE : Wate WDT end WDT dis	abled	Timer	Enable	bit								
bit 1-0:	11 10 01	SC1:FOS = RC osc = HS osc = XT osc = LP osci	illator illator illator	scillato	or Selec	tion bi	ts							
	the	Power-up	Time	r is en	abled a	nytime	y enables I Brown-ou en the sam	t Reset	is enal	oled.	•			it PWRTE. Ensur

11.2 <u>Oscillator Configurations</u>

11.2.1 OSCILLATOR TYPES

The PIC16F870/871 can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator


• HS High Speed Crystal/Resonator

RC Resistor/Capacitor

11.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 11-1). The PIC16F870/871 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 11-2).

FIGURE 11-1: CRYSTAL/CERAMIC
RESONATOR OPERATION
(HS, XT OR LP
OSC CONFIGURATION)

Note 1: See Table 11-1 and Table 11-2 for recommended values of C1 and C2.

- **2:** A series resistor (RS) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

FIGURE 11-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

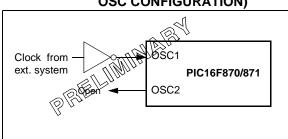
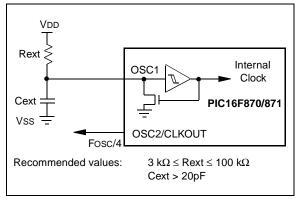


TABLE 11-1: CERAMIC RESONATORS

Ranges Tested:									
Mode	Freq	OSC1	OSC2						
XT	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz 15 - 68 pF								
HS 8.0 MHz 10 - 68 pF 10 - 68 pF									
16.0 MHz 10 - 22 pF									
These values are for design guidance only. See									
note	s at bottom of t	palge. // 🗸							
	Resona	nors Used:							
455 kHz <	Panasonic E	FO-A455K04B	± 0.3%						
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%						
4:0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%								
8.0 MHz Murata Erie CSA8.00MT ± 0.5%									
16.0 MHz Murata Erie CSA16.00MX ± 0.5%									
All resonators used did not have built-in capacitors.									

TABLE 11-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR


OKTOTAL GOODLESKTOK									
Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2						
LP	32 kHz	33 pF	33 pF						
	200 kHz	15 pF	15 pF						
XT	200 kHz	47-68 pF	47-68 pF						
	1 MHz	15 pF	15 pF						
	4 MHz	15 pF	15 pF						
HS	4 MHz	15 pF	15 pF						
	8 MHz	15-33 pF	15-33 pF						
	20 MHz	15-33 pF	15-33 pF						
	se values are	e for design guidar om of page.	ice only.						
	Cry	stals Used							
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM						
200 kHz	STD XTL 2	00.000 kHz	± 20 PPM						
1 MHz	ECS ECS-	± 50 PPM							
4 MHz	ECS ECS-	± 50 PPM							
8 MHz	B MHz								
20 MHz	EPSON CA	A-301 20.000M-C	± 30 PPM						

- **Note 1:** Higher capacitance increases the stability of oscillator but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** When migrating from other PICmicro devices, oscillator performance should be verified.

11.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 11-3 shows how the R/C combination is connected to the PIC16F870/871.

FIGURE 11-3: RC OSCILLATOR MODE

11.3 <u>Reset</u>

The PIC16F870/871 differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition. Their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 11-4. These bits are used in software to determine the nature of the reset. See Table 11-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 11-4.

These devices have a MCLR noise filter in the MCLR reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 11-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

11.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note, AN007, "Power-up Trouble Shooting", (DS00007).

11.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

11.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

11.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled regardless of the state of the PWRT configuration bit.

11.8 <u>Time-out Sequence</u>

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled) when a POR reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 11-5 shows the reset conditions for the STATUS, PCON and PC registers, while Table 11-6 shows the reset conditions for all the registers.

11.9 <u>Power Control/Status Register</u> (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit0 is Brown-out Reset Status bit, \overline{BOR} . Bit \overline{BOR} is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit \overline{BOR} cleared, indicating a BOR occurred. The \overline{BOR} bit is a "don't care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 11-3: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power-	·up	Brown-out	Wake-up from
	PWRTE = 0	PWRTE = 1		SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	
0	х	1	1	Power-on Reset
0	х	0	х	Illegal, TO is set on POR
0	х	х	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 1uuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 1uuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Register Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	870	871	N/A	N/A	N/A
TMR0	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	870	871	0000h	0000h	PC + 1 ⁽²⁾
STATUS	870	871	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	870	871	0x 0000	0u 0000	uu uuuu
PORTB	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	870	871	xxx	uuu	uuu
PCLATH	870	871	0 0000	0 0000	u uuuu
INTCON	870	871	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
PIR1	870	871	r000 -000	r000 -000	ruuu -uuu ⁽¹⁾
	870	871	0000 -000	0000 -000	uuuu -uuu ⁽¹⁾
PIR2	870	871	0	0	u ⁽¹⁾
TMR1L	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	870	871	00 0000	uu uuuu	uu uuuu
TMR2	870	871	0000 0000	0000 0000	uuuu uuuu
T2CON	870	871	-000 0000	-000 0000	-uuu uuuu
CCPR1L	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	870	871	00 0000	00 0000	uu uuuu
RCSTA	870	871	0000 000x	0000 000x	uuuu uuuu
TXREG	870	871	0000 0000	0000 0000	uuuu uuuu
RCREG	870	871	0000 0000	0000 0000	uuuu uuuu
ADRESH	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	870	871	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	870	871	1111 1111	1111 1111	uuuu uuuu
TRISA	870	871	11 1111	11 1111	uu uuuu
TRISB	870	871	1111 1111	1111 1111	uuuu uuuu
TRISC	870	871	1111 1111	1111 1111	uuuu uuuu
TRISD	870	871	1111 1111	1111 1111	uuuu uuuu
TRISE	870	871	0000 -111	0000 -111	uuuu -uuu
PIE1	870	871	r000 -000	r000 -000	ruuu -uuu
	870	871	0000 0000	0000 0000	uuuu uuuu
PIE2	870	871	0	0	u
PCON	870	871	qq	uu	uu
PR2	870	871	1111 1111	1111 1111	1111 1111
TXSTA	870	871	0000 -010	0000 -010	uuuu -uuu
SPBRG	870	871	0000 0000	0000 0000	uuuu uuuu
ADRESL	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', <math>q = value depends on condition, r = reserved maintain clear.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

^{3:} See Table 11-5 for reset value for specific condition.

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register	Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
ADCON1	870	871	0 0000	0 0000	u uuuu
EEDATA	870	871	0 0000	0 0000	u uuuu
EEADR	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATH	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADRH	870	871	xxxx xxxx	uuuu uuuu	uuuu uuuu
EECON1	870	871	x x000	u u000	u uuuu
EECON2	870	871			

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', <math>q = value depends on condition, r = reserved maintain clear.

- Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).
 - 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 3: See Table 11-5 for reset value for specific condition.

FIGURE 11-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

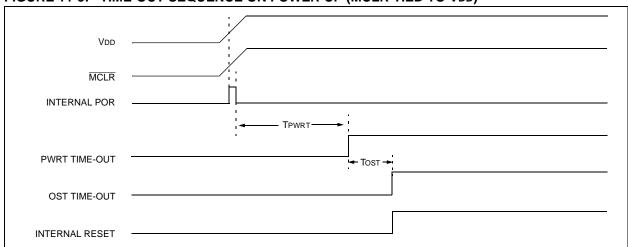


FIGURE 11-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

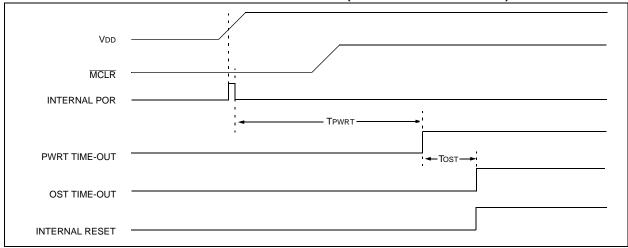


FIGURE 11-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

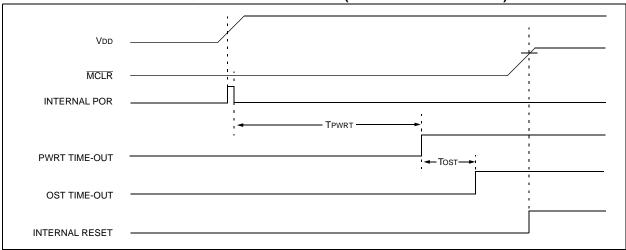
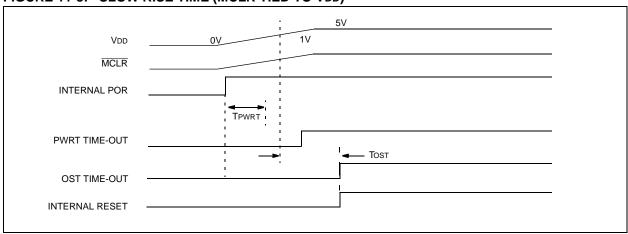



FIGURE 11-8: SLOW RISE TIME (MCLR TIED TO VDD)

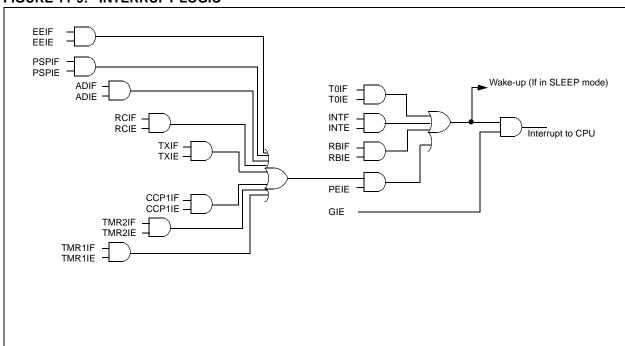
11.10 Interrupts

The PIC16F870/871 family has up to 11 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.


The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 11-9: INTERRUPT LOGIC

The following table shows which devices have which interrupts.

Device	T0IF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	CCP1IF	TMR2IF	TMR1IF	EEIF
PIC16F870	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16F871	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
				•							

11.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 11.13 for details on SLEEP mode.

11.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 5.0)

11.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

11.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

Since the upper 16 bytes of each bank are common in the PIC16F870/871 devices, temporary holding registers W_TEMP, STATUS_TEMP and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. Example 11-1 can be used to save and restore context for interrupts.

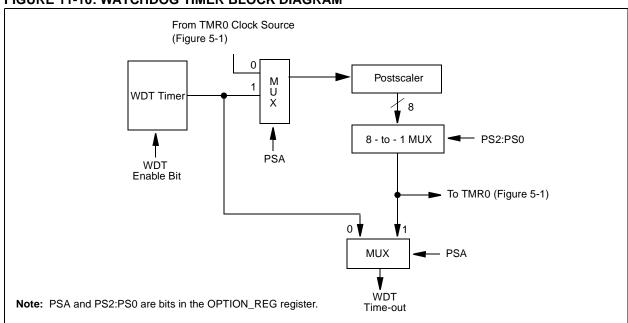
EXAMPLE 11-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

```
MOVWF
         W TEMP
                          ;Copy W to TEMP register
SWAPE
         STATUS.W
                          ;Swap status to be saved into W
         STATUS
CLRF
                          ; bank 0, regardless of current bank, Clears IRP, RP1, RP0
MOVWF
         STATUS_TEMP
                          ; Save status to bank zero STATUS_TEMP register
MOVF
         PCLATH, W
                          ;Only required if using pages 1, 2 and/or 3
         PCLATH_TEMP
MOVWF
                          ;Save PCLATH into W
CLRF
         PCLATH
                          ;Page zero, regardless of current page
:(ISR)
MOVE
         PCLATH_TEMP, W
                          Restore PCLATH
                          ;Move W into PCLATH
MOVWF
         PCLATH
SWAPF
         STATUS_TEMP,W
                          ;Swap STATUS_TEMP register into W
                          ; (sets bank to original state)
MOVWF
         STATUS
                          ; Move W into STATUS register
         W_TEMP,F
SWAPF
                          ;Swap W TEMP
SWAPF
         W_TEMP,W
                          ;Swap W_TEMP into W
```

11.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.


The WDT can be permanently disabled by clearing configuration bit WDTE (Section 11.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 11-10: WATCHDOG TIMER BLOCK DIAGRAM

Note:

FIGURE 11-11: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 11-1 for operation of these bits.

11.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

11.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on \overline{MCLR} pin.
- Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or some Peripheral Interrupts.

External \overline{MCLR} Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device reset. The \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if a WDT time-out occurred and caused wake-up.

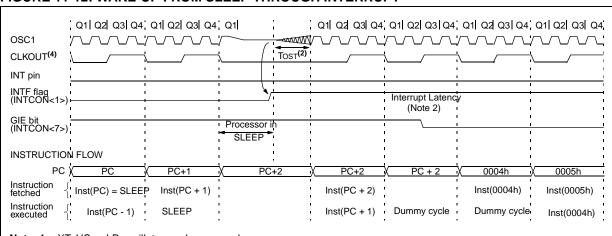
The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP capture mode interrupt.
- Special event trigger (Timer1 in asynchronous mode using an external clock).
- 5. USART RX or TX (synchronous slave mode).
- 6. A/D conversion (when A/D clock source is RC).
- 7. EEPROM write operation completion

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is

clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.


11.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 11-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

- 2: Tost = 1024Tosc (drawing not to scale) This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
- 4: CLKOUT is not available in these osc modes, but shown here for timing reference.

11.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 11-7 shows which features are consumed by the background debugger.

TABLE 11-7: DEBUGGER RESOURCES

I/O pins	RB6, RB7
Stack	1 level
Program Memory	Address 0000h must be NOP
	Last 100h words
Data Memory	0x070(0x0F0, 0x170, 0x1F0)
	0x1EB - 0x1EF

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to $\overline{\text{MCLR}}/\text{VPP}$, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

11.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

11.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

11.17 In-Circuit Serial Programming

PIC16F870/871 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

When using ICSP, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code protect both from an onstate to off-state. For all other cases of ICSP, the part may be programmed at the normal operating voltages. This means calibration values, unique user IDs or user code can be reprogrammed or added.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277B).

11.18 Low Voltage ICSP Programming

The LVP bit of the configuration word enables low voltage ICSP programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. To enter programming mode, VDD must be applied to the RB3/PGM provided the LVP bit is set. The LVP bit defaults to on ('1') from the factory.

- Note 1: The high voltage programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in low voltage ICSP mode, the RB3 pin can no longer be used as a general purpose I/O pin.

If low-voltage programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on $\overline{\text{MCLR}}$. The LVP bit can only be charged when using high voltage on $\overline{\text{MCLR}}$.

It should be noted, that once the LVP bit is programmed to 0, only the high voltage programming mode is available and only high voltage programming mode can be used to program the device.

When using low voltage ICSP, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code protect bits from an on-state to off-state. For all other cases of low voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs or user code can be reprogrammed or added.

12.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 12-2 lists byte-oriented, bit-oriented, and literal and control operations. Table 12-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

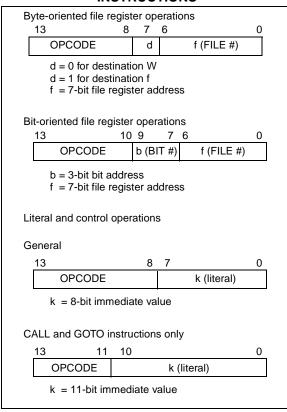
- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction

execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 12-2 lists the instructions recognized by the MPASM assembler.

Figure 12-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

TABLE 12-2: PIC16CXXX INSTRUCTION SET

Mnemonic,		Description	Description Cycles 14-Bit Opcode			Status	Notes		
Operand	ds			MSb			LSb	Affected	
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	ì	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	ì	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		•
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101		ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	0.0	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01		bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01			ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01			ffff		3
	-, -	LITERAL AND CONTROL	L	ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk		_	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	-,	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx		kkkk		
RETURN	_	Return from Subroutine	2	0.0	0000	0000	1000		
SLEEP	_	Go into standby mode	1	00	0000	0110	0011	$\overline{TO},\overline{PD}$	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010		kkkk	Z	
	•••				-0-0			_	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

Note: Additional information on the mid-range instruction set is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

12.1 <u>Instruction Descriptions</u>

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow (f \mathord{<} b \mathord{>})$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if $(f < b >) = 1$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is exe-

instruction.

cuted instead making this a 2Tcy

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (f)$ $1 \rightarrow Z$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	skip if $(f < b >) = 0$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \rightarrow (W)$ $1 \rightarrow Z$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine
Syntax:	[label] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$ \begin{array}{l} (PC)+\ 1\rightarrow TOS, \\ k\rightarrow PC<10:0>, \\ (PCLATH<4:3>)\rightarrow PC<12:11> \end{array} $
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

COMF	Complement f	GOTO	Unconditional Branch
Syntax:	[label] COMF f,d	Syntax:	[label] GOTO k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 2047$
	$d \in [0,1]$	Operation:	$k \rightarrow PC < 10:0 >$
Operation:	$(\bar{f}) \to (destination)$		PCLATH<4:3> → PC<12:11>
Status Affected:	Z	Status Affected:	None
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.	Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

DECF	Decrement f		
Syntax:	[label] DECF f,d	INCF	Increment f
Operands:	$0 \le f \le 127$	Syntax:	[label] INCF f,d
	$d \in [0,1]$	Operands:	$0 \le f \le 127$
Operation:	(f) - 1 \rightarrow (destination)		d ∈ [0,1]
Status Affected:	Z	Operation:	(f) + 1 \rightarrow (destination)
Description: Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	Decrement register 'f'. If 'd' is 0,	Status Affected:	Z
	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	

DECFSZ	Decrement f, Skip if 0		
Syntax:	[label] DECFSZ f,d	INCFSZ	Increment f, Skip if 0
Operands:	0 ≤ f ≤ 127	Syntax:	[label] INCFSZ f,d
Operation	$d \in [0,1]$	Operands:	0 ≤ f ≤ 127
Operation:	Operation: (f) - 1 \rightarrow (destination); skip if result = 0		d ∈ [0,1]
Status Affected:	None	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Description:	The contents of register 'f' are	Status Affected:	None
	decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.

IORLW	Inclusive OR Literal with W	
Syntax:	[label] IORLW k	
Operands:	$0 \le k \le 255$	
Operation:	(W) .OR. $k \rightarrow$ (W)	
Status Affected:	Z	
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.	

MOVLW	Move Literal to W	
Syntax:	[label] MOVLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$k \rightarrow (W)$	
Status Affected:	None	
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.	

IORWF	Inclusive OR W with f	
Syntax:	[label] IORWF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(W) .OR. (f) \rightarrow (destination)	
Status Affected:	Z	
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

MOVF	Move f	
Syntax:	[label] MOVF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(f) \rightarrow (destination)	
Status Affected:	Z	
Description:	The contents of register f are moved to a destination dependant upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.	

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

If 'd' is 1, the result is stored back

Register f

in register 'f'.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[label] RLF f,d
Operands: Operation:	None TOS \rightarrow PC.	Operands:	$0 \le f \le 127$ d $\in [0,1]$
	1 → GIE	•	
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register.

RETLW	Return with Literal in W	
Syntax:	[label] RETLW k	RRF
Operands:	$0 \leq k \leq 255$	Syntax:
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow PC \end{array}$	Operand
Status Affected:	None	Operation
Description:	The W register is loaded with the	Status A
	eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Descript

RETLW k	RRF	Rotate Right f through Carry
5	Syntax:	[label] RRF f,d
	Operands:	$0 \le f \le 127$ $d \in [0,1]$
	Operation:	See description below
ister is loaded with the	Status Affected:	С
eral 'k'. The program loaded from the top of the return address). wo cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
		C Register f

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \to PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.

SLEEP	
Syntax:	[label SLEEP]
Operands:	None
Operation:	00h → WDT, 0 → WDT prescaler, 1 → \overline{TO} , 0 → \overline{PD}
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared.

The processor is put into SLEEP mode with the oscillator stopped.

SUBLW	Subtract W from Literal								
Syntax:	[label] SUBLW k								
Operands:	$0 \le k \le 255$								
Operation:	$k - (W) \rightarrow (W)$								
Status Affected:	C, DC, Z								
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.								

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f							
Syntax:	[label] SUBWF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(f) - (W) \rightarrow (destination)							
Status Affected:	C, DC, Z							
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.							

Syntax:	[<i>label</i>] XORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Exclusive OR W with f

XORWF

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.

13.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- · Integrated Development Environment
 - MPLAB® IDE Software
- · Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER®/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- · Device Programmers
 - PRO MATE® II Universal Programmer
 - PICSTART® Plus Entry-Level Prototype Programmer
- · Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ®

13.1 <u>MPLAB Integrated Development</u> Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows®-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- · A full featured editor
- · A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- · Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro tools (automatically updates all project information)
- · Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

13.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PICmicro MCU's. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

13.3 MPLAB-C17 and MPLAB-C18 C Compilers

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

13.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

13.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

13.6 MPLAB-ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PICmicro microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PICmicro MCU.

13.7 PICMASTER/PICMASTER CE

The PICMASTER system from Microchip Technology is a full-featured, professional quality emulator system. This flexible in-circuit emulator provides a high-quality, universal platform for emulating Microchip 8-bit PICmicro microcontrollers (MCUs). PICMASTER systems are sold worldwide, with a CE compliant model available for European Union (EU) countries.

13.8 ICEPIC

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-time-programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

13.9 MPLAB-ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost run-time development tool. This tool is based on the flash PIC16F877 and can be used to develop for this and other PICmicro microcontrollers from the PIC16CXXX family. MPLAB-ICD utilizes the In-Circuit Debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming protocol, offers cost-effective in-circuit flash programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB-ICD is also a programmer for the flash PIC16F87X family.

13.10 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode the PRO MATE II can read, verify or program PICmicro devices. It can also set code-protect bits in this mode.

13.11 PICSTART Plus Entry Level Development System

The PICSTART programmer is an easy-to-use, low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PICmicro devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

13.12 <u>SIMICE Entry-Level</u> Hardware Simulator

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB-SIM. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro 8-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entry-level system development.

13.13 PICDEM-1 Low-Cost PICmicro Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with

the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

13.14 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

13.15 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

13.16 **PICDEM-17**

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microconincluding PIC17C752, PIC17C756, trollers. PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

13.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials™ and secure serials. The Total Endurance™ Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

13.18 <u>KeeLoo Evaluation and</u> <u>Programming Tools</u>

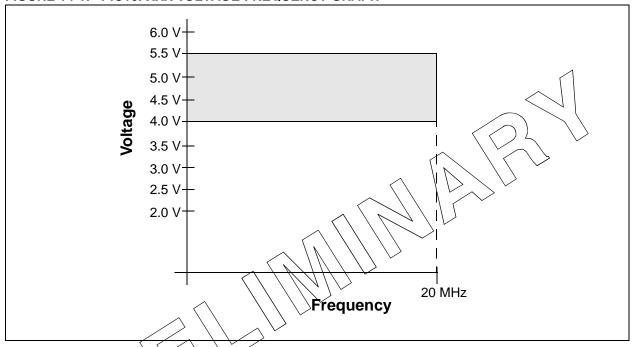
KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP

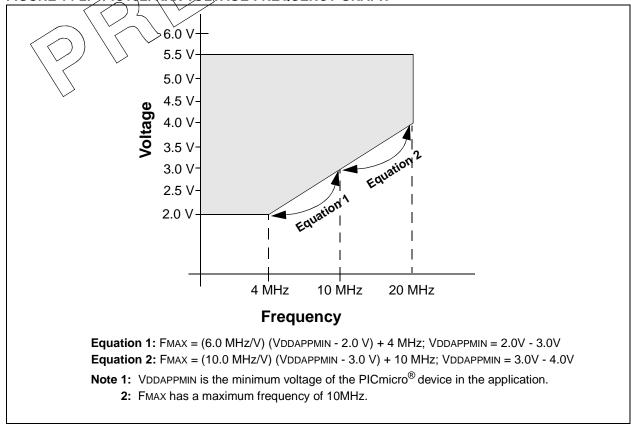
	PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62	(TOBIOIG	X73813I9	PIC16C8)	PIC16F8X	PIC16C9X	PIC17C4)	PIC17C7X	PIC18CXX	93CXX S2CXX\	нсеххх	MCRFXX	WCP2510
MPLAB [®] Integrated Development Environment	>	<i>^</i>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 Compiler												>	>					
MPLAB® C18 Compiler														>				
MPASM/MPLINK	^	^	^	^	^	^	>	^	>	>	^	>	>	^	^	>		
MPLAB®-ICE	>	^	>	>	>	** >	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	>	>	>		>	>	>		>	>	>					
ICEPIC™ Low-Cost In-Circuit Emulator	>		^	>	>		`	>	>		>							
e gg MPLAB®-ICD In-Circuit a Debugger A				*			*			>								
PICSTART®Plus Low-Cost Universal Dev. Kit	>	>	`	>	>	** ^	`	`	>	>	>	>	>	>				
PRO MATE [®] II Universal Programmer	>	<i>></i>	>	>	>	**	>	>	>	>	>	>	>	>	>	>		
SIMICE	>		>															
PICDEM-1			>		>		†		>			>						
PICDEM-2				1			↓							^				
PICDEM-3											^							
PICDEM-14A		1																
PICDEM-17													>					
KEELOQ® Evaluation Kit																>		
KEELOQ Transponder Kit																>		
microlD™ Programmer's Kit																	^	
125 kHz microID Developer's Kit																	>	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microlD Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

NOTES:

14.0 ELECTRICAL CHARACTERISTICS


Absolute Maximum Ratings †

Ambient temperature under bias55 to +125°C
Storage temperature65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss
Voltage on MCLR with respect to Vss (Note 2)
Voltage on RA4 with respect to Vss
Total power dissipation (Note 1)
Maximum current out of Vss pin
Maximum current into VDD pin
Input clamp current, IIK (VI < 0 or VI > VDD)±20 mA
Output clamp current, loκ (Vo < 0 or Vo > VDD)± 20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD) ± 20 mA Maximum output current sunk by any I/O pin
Maximum output current sourced by any I/O ptn
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)
Maximum current sourced by PORTC and PORTD (combined) (Note 3)
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)
2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,


- 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.
- 3. PORTD and PORTE are not implemented on the 28-pin devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 14-1: PIC16FXXX VOLTAGE-FREQUENCY GRAPH

14.1 DC Characteristics: PIC16F870/871 (Industrial)

DC CH	ARACTERISTICS			-	_		tions (unless otherwise stated) C≤ Ta ≤ +85°C for industrial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5 VBOR*	- - -	5.5 5.5 5.5	V V V	XT, RC and LP osc configuration HS osc configuration BOR enabled, Fmax = 14MHz (Note 7)
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V <	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05		(-)	Wms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	VBOR <	$\sqrt{3.}$	4.0	4.35	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD		1.6	4	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013)-'	7	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	∆lbor	-	85	200	μА	BOR enabled VDD = 5.0V
D020/	Power-down Current	IPD	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C
D021 \	(Nøte 3,5)		-	1.5	16	μΑ	VDD = $4.0V$, WDT disabled, -0° C to $+70^{\circ}$ C
D021A			-	1.5	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C
D023* \	Brown-out Reset Current (Note 6)	ΔIBOR	-	85	200	μΑ	BOR enabled VDD = 5.0V

Legend: * These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - **6:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

14.2 <u>DC Characteristics:</u> <u>PIC16LF870/871 (Commercial, Industrial)</u>

DC CHA	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for industrial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	2.0	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details		
D005	Brown-out Reset Voltage	VBOR	3.7	4.0	4\35	\V\	BODEN bit in configuration word enabled		
D010	Supply Current (Note 2,5)	IDD		0.6	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			1	20	35	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015*	Brown-out Reset Current (Note 6)	Albor) `	85	200	μΑ	BOR enabled VDD = 5.0V		
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3,5)		-	0.8	4.5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		
D023*	Brown-out Reset Current (Note 6)	ΔIBOR	-	85	200	μΑ	BOR enabled VDD = 5.0V		

Legend: * These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- **4:** For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μ A to the specification. This value is from characterization and is for design guidance only. This is not tested.
- **6:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

14.3 DC Characteristics: PIC16F870/871 (Industrial)

DC CHA	RACTERISTICS	Operati	ng tempe ng voltage	rature	-40°(ວ ≤1	ess otherwise stated) Ta ≤ +85°C for industrial oed in DC spec Section 14.1 and
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
140.	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer	V 1.L	Vss	_	0.15VDD	V	For entire Vpp range
D030A			Vss	_	0.8V		4.5V ≤ VDQ ≤ 5.5V >
D031	with Schmitt Trigger buffer		Vss	_	0.2VDD	V	
	MCLR, OSC1 (in RC mode)		Vss	_	0.2Vdd	\sqrt{V}	
D033	OSC1 (in XT, HS and LP)		Vss	-	DO STOR	/ <i>N</i>	Note1
	Ports RC3 and RC4				1/	1/	
D034	with Schmitt Trigger buffer		Vss /	\-\	0.3VpD	W	For entire VDD range
D034A	with SMBus		<i>-</i> 0.5 \	1 -/	/ 0,6 /	V	for VDD = 4.5 to 5.5V
	Input High Voltage	_		1//			
	I/O ports	Λί́́́́ /		11/	>		
D040	with TTL buffer		2.0	\\\\\\	VDD	V	4.5V ≤ VDD ≤ 5.5V
D040A			Q.25VDD	-	VDD	V	For entire VDD range
			¥0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD	V	For entire VDD range
D042	MCLR ()		0.8VDD	-	VDD	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	VDD	V	Note1
D043 <	QSC1 (in RC mode)		0.9VDD	-	VDD	V	
	Ports RC3 and RC4						
D044	with Schmitt Trigger buffer		0.7Vdd	-	VDD		For entire VDD range
D044A	with SMBus		1.4	-	5.5	V	for VDD = 4.5 to 5.5V
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current						
Doco	(Notes 2, 3)	1				_	No. (New Chee Die et hi immed
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi-imped- ance
D061	MCLR, RA4/T0CKI		_	_	±5	μA	Vss ≤ Vpin ≤ Vdd
D063	OSC1		_	_	±5		Vss ≤ VPIN ≤ VDD, XT, HS and LP osc
					_0	per t	configuration
	Output Low Voltage						-
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V,
	Output High Volta						-40°C to +85°C
Dooo	Output High Voltage	1/0	VDD 0.3			/	10U 2.0 mA 1/DD 4.51/
D090	I/O ports (Note 3)	Voh	VDD - 0.7	-	-	V	IOH = -3.0 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D092	OSC2/CLKOUT (RC osc config)		Vpp - 0.7	_	_	V	
5002	(1.0 000 001111g)		0.7			•	-40°C to +85°C
D092	OSC2/CLKOUT (RC osc config)		VDD - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V,

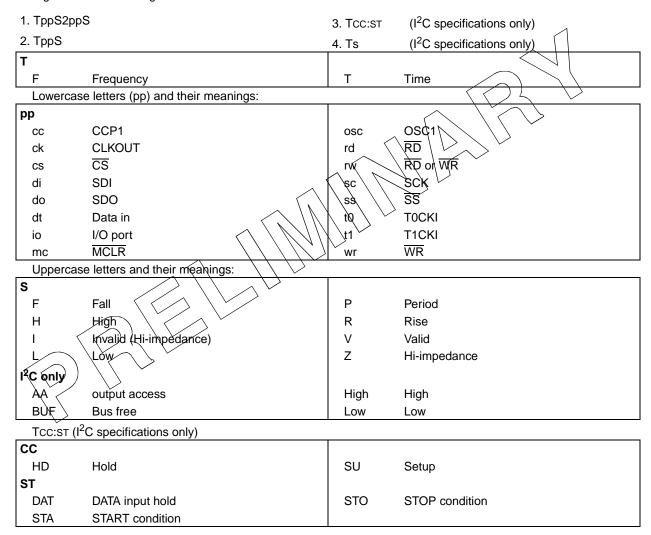
Legend: * These parameters are characterized but not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F870/871 be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

DC CHA	ARACTERISTICS	Operati	ng tempe ng voltage	rature	-40°0	C ` ≤1	ess otherwise stated) FA ≤ +85°C for industrial oed in DC spec Section 14.1 and
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D150*	Open-Drain High Voltage	VOD	-	-	8.5	V	RA4 pin
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101 D102	All I/O pins and OSC2 (in RC mode) SCL, SDA in I ² C mode	CIO CB	-	-	50 400	pF pF	
D120 D121 D122	Data EEPROM Memory Endurance VDD for read/write Erase/write cycle time	ED VDRW TDEW	100K Vmin		5.5	E/W/ / / ms	25°C at 5V Using EECON to read/write Vmin = min operating voltage
D122	Program FLASH Memory	TDEW	1 / /	1	<u> </u>	1113	
D130	Endurance	ЕP	1000) <u> </u>	-	E/W	25°C at 5V
D131	VDD for read	VPR	√ Xmin	-	5.5		Vmin = min operating voltage
D132a	VDD for erase/write		∕ Vmin	-	5.5	V	using EECON to read/write, Vmin = min operating voltage
D133	Erase/Write cycle time	TPEW	-	4	8	ms	


Legend: * These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F870/871 be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as current sourced by the pin.

14.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

FIGURE 14-3: LOAD CONDITIONS

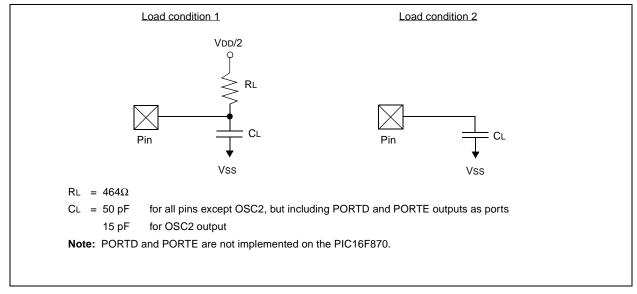


FIGURE 14-4: EXTERNAL CLOCK TIMING

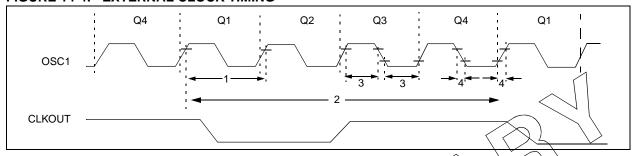


TABLE 14-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typ†_	Max	Units	Conditions
No.							
	Fosc	External CLKIN Frequency	DC		14	MHz	XT and RC osc mode
		(Note 1)	Ďα	/ + /	\ <u>\</u>	MHz	HS osc mode (-04)
			\b¢/	\ \-\ \	20	MHz	HS osc mode (-20)
			/bg/	$//\rightarrow$	200	kHz	LP osc mode
		Oscillator Frequency	/ p/c/	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			50	_	_	ns	HS osc mode (-20)
	$\mathcal{V} \mathcal{V} \setminus$		5			μs	LP osc mode
\ \		Öscillator Period	250	-	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
V			250	_	250	ns	HS osc mode (-04)
			50	_	250	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200	Tcy	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	100	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			15	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

Legend: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

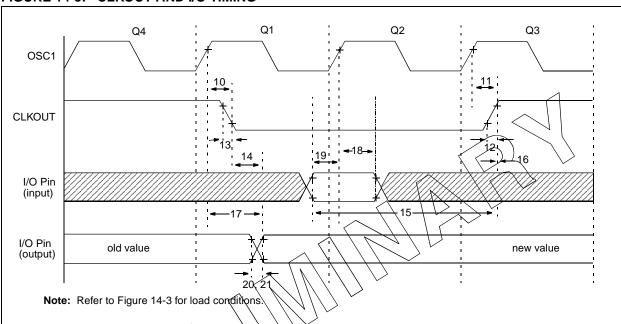


FIGURE 14-5: CLKOUT AND I/O TIMING

TABLE 14-2: CLKOUT AND VO TIMING REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	QSC11 to CLKOUT		_	75	200	ns	Note 1
11*		OSCN to CLKOUT		_	75	200	ns	Note 1
12*	TckR	CLKQUT rise time		_	35	100	ns	Note 1
13*	7ckF	CLKOUT fall time		_	35	100	ns	Note 1
14*\	TckL2ioV	CLKOUT ↓ to Port out valid	d	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	T ↑	Tosc + 200	_	_	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT	0	_	_	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	_	100	255	ns		
18*	TosH2iol	OSC1↑ (Q2 cycle) to	Standard (F)	100	_	_	ns	
		Port input invalid (I/O in hold time)	Extended (LF)	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	Standard (F)	_	10	40	ns	
			Extended (LF)	_	_	145	ns	
21*	TioF	Port output fall time	Standard (F)	_	10	40	ns	
			Extended (LF)		_	145	ns	
22††*	Tinp	INT pin high or low time		Tcy	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Tcy	_	_	ns	

Legend: * These parameters are characterized but not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edges.

FIGURE 14-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

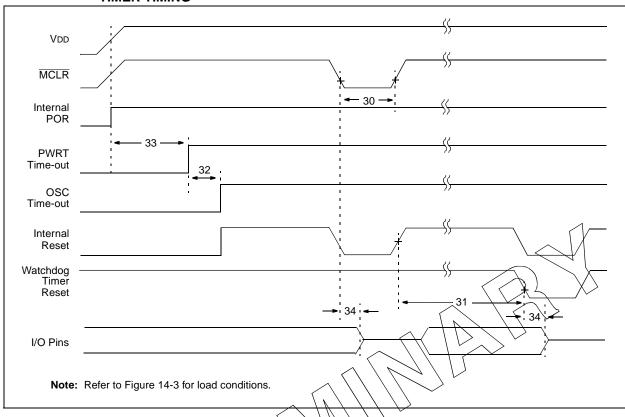


FIGURE 14-7: BROWN-OUT RESET TIMING

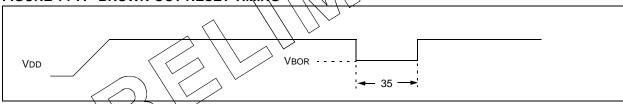


TABLE 14-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	VDD ≤ VBOR (D005)

Legend: * These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

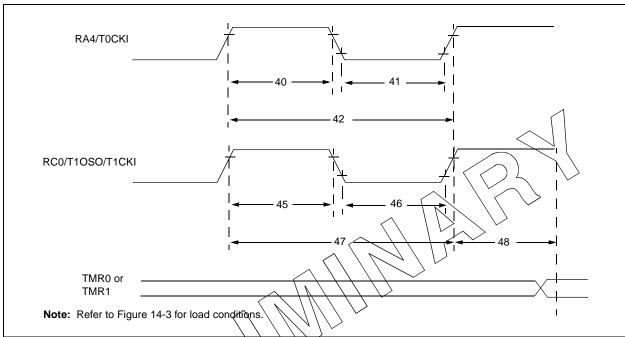


FIGURE 14-8: TIMERO AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 14-4: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	TOCKI Nigh Pulse V	Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
		$D \downarrow \setminus \checkmark /$		With Prescaler	10	_	_	ns	parameter 42
41*	TtOL	TOCKI Low Pulse W	/idth	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
	7) / '			With Prescaler	10	_	_	ns	parameter 42
42*	√t0P \	TOCKI Period		No Prescaler	Tcy + 40	_	_	ns	
				With Prescaler	Greater of:	_	_	ns	N = prescale value
					20 or <u>TCY + 40</u> N				(2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, P	Propositor 1	0.5Tcy + 20	_	_		Must also meet
45	111111	I ICKI nigri Time	Synchronous, P	Standard(F)	15		_	ns ns	parameter 47
			Prescaler =	Extended(LF)	25			ns	parameter 47
			2,4,8	Exterided(Li)	23			115	
			Asynchronous	Standard(F)	30	_	_	ns	
				Extended(LF)	50	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5Tcy + 20	_	_	ns	Must also meet
			Synchronous,	Standard(F)	15	_	_	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	_	_	ns	
			Asynchronous	Standard(F)	30	_	_	ns	
				Extended(LF)	50	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	Standard(F)	Greater of:	_	_	ns	N = prescale value
					30 OR TCY + 40 N				(1, 2, 4, 8)
				Extended(LF)	Greater of:				N = prescale value
					50 OR TCY + 40				(1, 2, 4, 8)
				0: 1 1/5)	N				
			Asynchronous	Standard(F)	60	_	_	ns	
	Ft1	Time and an aillete a land	Extended		100 DC	_	_	ns	
	FtT		imer1 oscillator input frequency range oscillator enabled by setting bit T1OSCEN)			_	200	kHz	
48	TCKE7tmr1	Delay from external	, ,		2Tosc		7Tosc		
40	IONLZUIIII	Delay Horn external	GOOK EUGE 10 III	nei incienient	21030		1 1030		

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

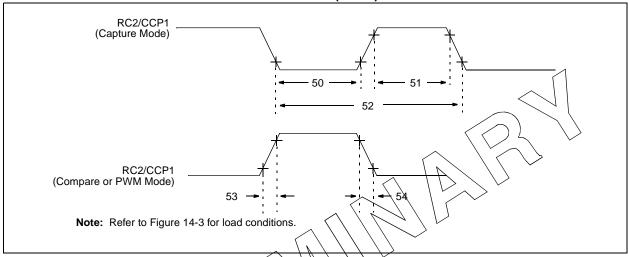


TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	. / /	No Prescaler		0.5Tcy + 20	_	_	ns	
		low time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_	_	ns	
51*	TccH		No Prescaler		0.5Tcy + 20	_	_	ns	
		high time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_	_	ns	
52*	TccP	CCP1 input period			3Tcy + 40 N		_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise ti	me	Standard(F)	_	10	25	ns	
				Extended(LF)	_	25	50	ns	
54*	TccF	CCP1 output fall tir	ne	Standard(F)	_	10	25	ns	
				Extended(LF)	_	25	45	ns	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated.

These parameters are for design guidance only and are not tested.

RE2/CS

RE0/RD

RE1/WR

RD7:RD0

Note: Refer to Figure 14-3 for load conditions.

FIGURE 14-10: PARALLEL SLAVE PORT TIMING (PIC16F871 ONLY)

TABLE 14-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F871 ONLY)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup tir	ne)	20 25	_	_	ns ns	Extended Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold time)	Standard(F)	20	_	_	ns	
			Extended(LF)	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		 -	_	80 90	ns ns	Extended Range Only
65	TrdH2dtl	RD↑ or CS↓ to data–out invalid		10	_	30	ns	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

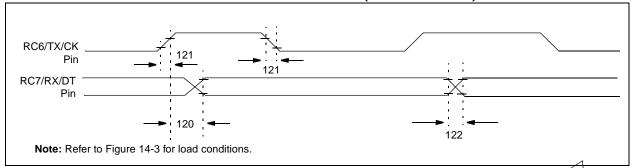


TABLE 14-7: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	Standard(F)	-/	_	80	ns	
		Clock high to data out valid	Extended(LF)	_/	/-/	100	ns	
121	Tckrf	Clock out rise time and fall time	Standard(F)	/-/		45	ns	
		(Master Mode)	Extended(LF)	17	<u> </u>	50	ns	
122	Tdtrf	Data out rise time and fall time	Standard(F)		_	45	ns	
			Extended(LF) \	\sim	_	50	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

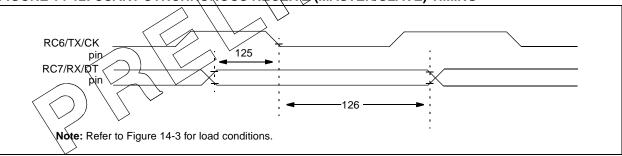


TABLE 14-8: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

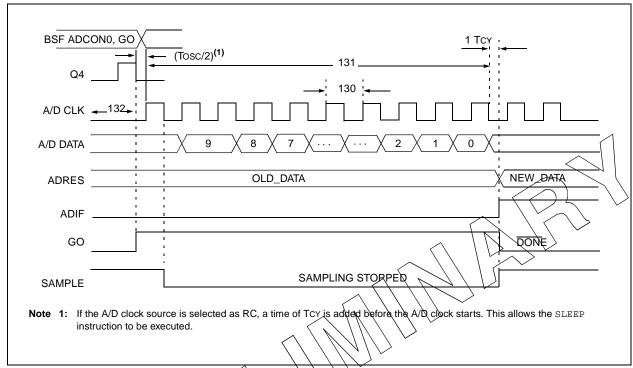
^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 14-9: PIC16F870/871 (INDUSTRIAL) PIC16LF870/871 (INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	_	10-bits	bit	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity error		_	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A04	EDL	Differential linearity error		_	_	< ± 1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A06	Eoff	Offset error		_	_	< ± 1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A07	EGN	Gain error		_	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS ≤ VANT ≤ VREF
A10		Monotonicity ⁽³⁾		_	guaranteed	_	_	VSS VAIN VREF
A20	VREF	Reference voltage (VREF+ - VREF-)		2.0V	_	VDD + 0.3	V	Absolute minimum electrical spec. to ensure 10-bit accuracy.
A21	VREF+	Reference voltage High	gh	VDD - 2.5V		VDD → 0.3V	\V<	Must meet spec. A20
A22	VREF-	Reference voltage lov	v	Vss - 0.3V	^	VREF+1-2.0V	()	Must meet spec. A20
A25	Vain	Analog input voltage		Vss - 0.3	_ \ \	VREF + 0.3	>v \	
A30	ZAIN	Recommended impedent analog voltage source		- <		10.0	kΩ	
A40	IAD	A/D conversion cur-	Standard(F)		220	_	μΑ	Average current consump-
		rent (VDD)	Extended(LF)	1/	90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μА	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 10.1.
				_	_	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

Note 1: When AXD is off it will not consume any current other than minor leakage current.


The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3. The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

Data in Typ) column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-13: A/D CONVERSION TIMING

TABLE 14-10: A/D CONVERSION REQUIREMENTS

Param	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
No.								
130	TAD	A/D clock period \	Standard(F)	1.6			μs	Tosc based, VREF ≥ 3.0V
			Extended(LF)	3.0	_	_	μs	Tosc based, VREF ≥ 2.0V
			Standard(F)	2.0	4.0	6.0	μs	A/D RC Mode
			Extended(LF)	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not inc (Note 1)	luding S/H time)		_	12	TAD	
132	TACQ	Acquisition time		Note 2	40	_	μs	
				10*	ľ	-	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	Tgo	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

- These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- § This specification ensured by design.
- Note 1: ADRES register may be read on the following TcY cycle.
 - 2: See Section 10.1 for min conditions.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

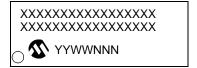
The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3 σ) or (mean - 3 σ) respectively, where σ is standard deviation, over the whole temperature range.

Graphs and Tables not available at this time.

NOTES:


16.0 PACKAGING INFORMATION

16.1 Package Marking Information

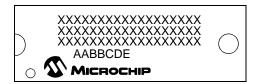
28-Lead PDIP (Skinny DIP)

28-Lead SOIC

28-Lead SSOP

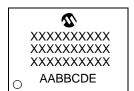
Example

Example

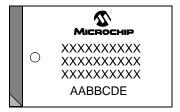

Example

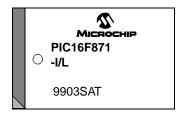
* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

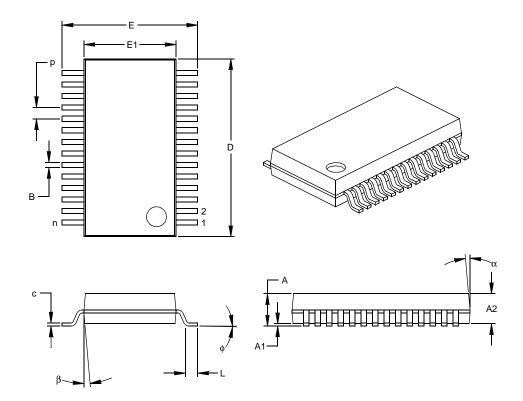
Package Marking Information (Cont'd)


40-Lead PDIP

Example

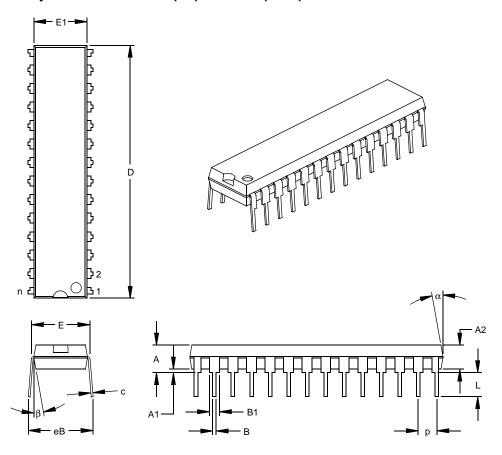

44-Lead TQFP


Example


44-Lead PLCC

Example

28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)


	Units		INCHES		MILLIMETERS*			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.026			0.65		
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	ф	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

^{*}Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073

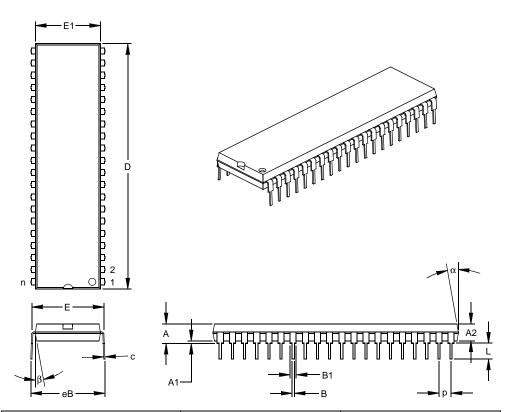
28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

	Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

*Controlling Parameter
Notes:
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254mm) per side.
JEDEC Equivalent: MO-095
Drawing No. C04-070

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	ф	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	


*Controlling Parameter

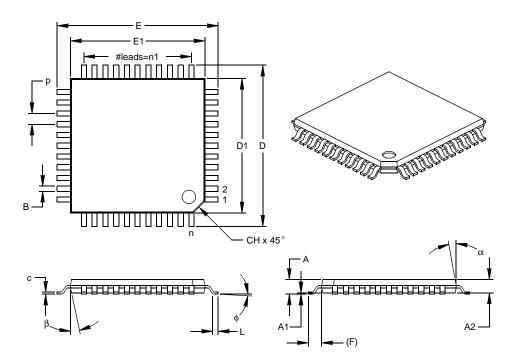
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

.010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

	Units INCHES*				MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


^{*}Controlling Parameter

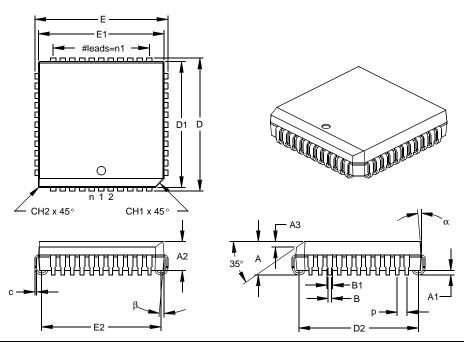
Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MO-011
Drawing No. C04-016

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Units			INCHES		MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р		.031			0.80		
Pins per Side	n1		11			11		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039		1.00			
Foot Angle	ф	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.012	.015	.017	0.30	0.38	0.44	
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	


^{*}Controlling Parameter

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 010" (0.254mm) per side

.010" (0.254mm) per side.
JEDEC Equivalent: MS-026
Drawing No. C04-076

44-Lead Plastic Leaded Chip Carrier (L) - Square (PLCC)

Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	MOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	А3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

^{*}Controlling Parameter

Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MO-047
Drawing No. C04-048

INDEX		Special Trigger Output of CCP1	
Α		Section	
		Special Event Trigger and A/D Conversions	59
A/D		Capture/Compare/PWM (CCP)	
ADCON0 Register		CCP1	7.0
ADCON1 Register		RC2/CCP1 Pin	7, 8
ADIF bit		CCP2 RC1/T1OSI/CCP2 Pin	7 0
Analog Input Model Block Diagram			
Analog Port Pins		PWM Block Diagram	
Block Diagram		PWM Mode CCP1CON	
Configuring Analog Port Pins		CCP1M0 bit	
Configuring the Interrupt		CCP1M0 bit	
Configuring the Module		CCP1M1 bit	
Conversion Clock		CCP1M3 bit	
Conversions		CCP1X bit	
Delays		CCP1Y bit	
Effects of a Reset		CCP2CON	
GO/DONE bit		CCPR1H Register	
Internal Sampling Switch (Rss) Impedence		CCPR1L Register	
Operation During Sleep		CCPR2H Register	
Sampling Requirements		CCPR2L Register	
Source Impedence		Code Examples	10
Time Delays		Indirect Addressing	24
Absolute Maximum Ratings		Code Protection	
ADRES Register s	. 13, 79	Computed GOTO	,
Application Notes		Configuration Bits	
AN552 (Implementing Wake-up on Key Strokes	20	Corniguration bits	08
Using PIC16CXXX)		D	
AN556 (Table Reading Using PIC16CXX)	24	Data Memory	11
Architecture	_	Bank Select (RP1:RP0 Bits)	
PIC16F870 Block Diagram		General Purpose Registers	
PIC16F871 Block Diagram	ь	Register File Map	
Assembler MDASM Assembler	110	Special Function Registers	
MPASM Assembler	113	DC Characteristics	
В		Development Support	
Banking, Data Memory	11 16	Device Overview	
Block Diagrams	. 11, 10	Direct Addressing	
A/D	82	· ·	20
Analog Input Model		E	
Capture		Electrical Characteristics	119
Compare		Errata	4
PWM		_	
Timer0/WDT Prescaler		F	
Timer2		Firmware Instructions	105
USART Receive		FSR Register13	3, 14, 15, 24
USART Transmit		•	
BOR. See Brown-out Reset		1	
BRGH bit	65	I/O Ports	27
Brown-out Reset (BOR)		ID Locations	89, 103
BOR Status (BOR Bit)		In-Circuit Serial Programming (ICSP)	89, 104
Bort dialas (Bort Bit)	20	INDF	15
C		INDF Register	13, 14, 24
Capture/Compare/PWM		Indirect Addressing	24, 25
Capture		FSR Register	11
Block Diagram	58	Instruction Format	
CCP1CON Register		Instruction Set	105
CCP1IF		ADDLW	107
Mode		ADDWF	
Prescaler		ANDLW	107
CCP Timer Resources		ANDWF	107
Compare	- *	BCF	
Block Diagram	59	BSF	
Mode		BTFSC	108
Software Interrupt Mode		BTFSS	108
Special Event Trigger		CALL	108
,		CLRF	108

CLRW	108	M	
CLRWDT		Master Clear (MCLR)	7.8
COMF	109	MCLR Reset, Normal Operation	
DECF	109	MCLR Reset, SLEEP	
DECFSZ		Memory Organization	
GOTO		Data Memory	11
INCF		Program Memory	
INCFSZ		MPLAB Integrated Development Environme	
IORLW		_	
IORWF		0	
MOVF		OPCODE Field Descriptions	105
MOVLW		OPTION	15
MOVWF		OPTION_REG Register	17
NOP		INTEDG Bit	17
RETFIE		PS2:PS0 Bits	17
RETLUDI		PSA Bit	
RETURN		RBPU Bit	17
RLF		TOCS Bit	
RRF		T0SE Bit	
SLEEP SUBLW		OSC1/CLKIN Pin	
SUBWF		OSC2/CLKOUT Pin	
SWAPF		Oscillator Configuration	
XORLW		HS	,
XORWF		LP	,
Summary Table		RC	, ,
INTCON		XT	- ,
INTCON Register		Oscillator, WDT	
GIE Bit		Output of TMR2	55
INTE Bit		Р	
INTF Bit		Packaging	127
PEIE Bit	-	Paging, Program Memory	
RBIE Bit		Parallel Slave Port (PSP)	
RBIF Bit		Block Diagram	
T0IE Bit	18	RE0/RD/AN5 Pin	
T0IF Bit	18	RE1/WR/AN6 Pin	
Internal Sampling Switch (Rss) Impedence	82	RE2/CS/AN7 Pin	
Interrupt Sources		Read Waveforms	, ,
Block Diagram	99	Select (PSPMODE Bit)	
Interrupt on Change (RB7:RB4)	29	Write Waveforms	
RB0/INT Pin, External	7, 8, 100	PCL Register	13, 14, 15, 24
TMR0 Overflow		PCLATH Register	
USART Receive/Transmit Complete		PCON Register	
Interrupts, Context Saving During	100	BOR Bit	23
Interrupts, Enable Bits		POR Bit	23
Global Interrupt Enable (GIE Bit)	18, 99	PIC16F876 Pinout Description	7
Interrupt on Change (RB7:RB4) Enable		PICDEM-1 Low-Cost PICmicro Demo Board	ł 115
(RBIE Bit)		PICDEM-2 Low-Cost PIC16CXX Demo Boa	
Peripheral Interrupt Enable (PEIE Bit)		PICDEM-3 Low-Cost PIC16CXXX Demo Bo	ard 115
RB0/INT Enable (INTE Bit)		PICSTART® Plus Entry Level Development	•
TMR0 Overflow Enable (T0IE Bit)	18	PIE1 Register	15, 19
Interrupts, Flag Bits		PIE2 Register	15, 21
Interrupt on Change (RB7:RB4) Flag	40.00.400	Pinout Descriptions	
(RBIF Bit)		PIC16F870	
RB0/INT Flag (INTF Bit)TMR0 Overflow Flag (T0IF Bit)		PIC16F871	
TWIND OVERHOW Flag (TUIF DIL)	10, 100	PIR1 Register	
K		PIR2 Register	
KeeLoq® Evaluation and Programming Tools .	116	POPTA	
		PORTA	
L		Analog Port Pins	
Loading of PC	24	Initialization	
-		PORTA RegisterRA3,RA0 and RA5 Port Pins	
		RA4/T0CKI Pin	
		RA5/AN4 Pin	
		IVAO/AINT III	, , 0

PORTA Register	13	Program Counter	
PORTB		Reset Conditions	95
PORTB Register		Program Memory	
Pull-up Enable (RBPU Bit)		Interrupt Vector	
RB0/INT Edge Select (INTEDG Bit)		Paging11	
RB0/INT Pin, External		Program Memory Map	
RB3:RB0 Port Pins		Reset Vector	
RB7:RB4 Interrupt on Change	-	Program Verification	
	100		
RB7:RB4 Interrupt on Change Enable	40.400	Programming Pin (VPP)	
(RBIE Bit)	18, 100	Programming, Device Instructions	
RB7:RB4 Interrupt on Change Flag		PUSH	. 24
(RBIF Bit)		R	
RB7:RB4 Port Pins			
TRISB Register		RAM. See Data Memory	
PORTB Register	13	RCREG	
PORTC	7, 8, 15	RCSTA Register15	, 64
Block Diagram	31	CREN Bit	. 64
PORTC Register	31	FERR Bit	. 64
RC0/T1OSO/T1CKI Pin		OERR Bit	. 64
RC1/T1OSI/CCP2 Pin	7. 8	RX9 Bit	. 64
RC2/CCP1 Pin	·	RX9D Bit	. 64
RC3 Pin	,	SPEN Bit63	. 64
RC4 Pin	,	SREN Bit	•
RC5 Pin	·	Register File	
	,	Register File Map	
RC6/TX/CK Pin	, ,	•	. 12
RC7/RX/DT Pin		Registers	15
TRISC Register		FSR Summary	
PORTC Register		INDF Summary	
PORTD		INTCON Summary	
Block Diagram		OPTION Summary	
Parallel Slave Port (PSP) Function	33	PCL Summary	. 15
PORTD Register	33	PCLATH Summary	. 15
TRISD Register	33	PORTB Summary	. 15
PORTD Register		STATUS Summary	. 15
PORTE		TMR0 Summary	. 15
Analog Port Pins	·	TRISB Summary	
Block Diagram		Reset	
Input Buffer Full Status (IBF Bit)		Block Diagram	
Input Buffer Overflow (IBOV Bit)		Reset Conditions for All Registers	
Output Buffer Full Status (OBF Bit)		Reset Conditions for PCON Register	
•		Reset Conditions for Program Counter	
PORTE Register		Reset Conditions for STATUS Register	
PSP Mode Select (PSPMODE Bit)		Reset Conditions for STATOS Register	. 95
RE0/RD/AN5 Pin	, ,	S	
RE1/WR/AN6 Pin			116
RE2/CS/AN7 Pin		gg	116
TRISE Register		SLEEP	
PORTE Register	13	Software Simulator (MPLAB-SIM)	
Postscaler, WDT		SPBRG	
Assignment (PSA Bit)	17	SPBRG Register	
Rate Select (PS2:PS0 Bits)	17	Special Features of the CPU	
Power-down Mode. See SLEEP		Special Function Registers	. 13
Power-on Reset (POR)89	9, 93, 94, 95, 96	Special Function Register Summary	. 13
Oscillator Start-up Timer (OST)		Speed, Operating	1
POR Status (POR Bit)		Stack	. 24
Power Control (PCON) Register		Overflows	. 24
Power-down (PD Bit)		Underflow	
Power-up Timer (PWRT)		STATUS Register	
		C Bit	
Time-out (TO Bit)		DC Bit	
Time-out Sequence on Power-up	·	IRP Bit	
PR2		PD Bit	
PR2 Register	14, 55		
Prescaler, Timer0		RP1:RP0 Bits	
Assignment (PSA Bit)		TO Bit	,
Rate Select (PS2:PS0 Bits)		Z Bit	. 16
PRO MATE® II Universal Programmer			
Product Identification System	193		

T	TMR0 Register	
T1CKPS0 bit51	TMR1CS bit	
T1CKPS1 bit51	TMR1H	
T1CON15	TMR1H Register	
T1CON Register	TMR1L	15
T1OSCEN bit	TMR1L Register	
T1SYNC bit51	TMR1ON bit	51
T2CKPS0 bit	TMR2	15
T2CKPS1 bit	TMR2 Register	13
T2CON Register	TMR2ON bit	55
	TOUTPS0 bit	55
TAD	TOUTPS1 bit	55
	TOUTPS2 bit	55
Clock Source Edge Select (T0SE Bit)	TOUTPS3 bit	55
Clock Source Select (T0CS Bit)	TRISA	
Overflow Enable (TOIE Bit)	TRISA Register	
Overflow Flag (T0IF Bit)18, 100	TRISB	
Overflow Interrupt100	TRISB Register	
RA4/T0CKI Pin, External Clock	TRISC	
Timer151	TRISC Register	
RC0/T1OSO/T1CKI Pin7, 8	TRISD	
RC1/T1OSI/CCP2 Pin7, 8		
Timers	TRISD Register	
Timer0	TRISE	
External Clock48	TRISE Register	
Interrupt47	IBF Bit	
Prescaler48	IBOV Bit	
Prescaler Block Diagram47	OBF Bit	
Section47	PSPMODE Bit	,
T0CKI48	TXREG	
Timer1	TXSTA	
Asynchronous Counter Mode53	TXSTA Register	
Capacitor Selection53	BRGH Bit	63
Operation in Timer Mode52	CSRC Bit	63
Oscillator53	SYNC Bit	63
Prescaler53	TRMT Bit	63
Resetting of Timer1 Registers53	TX9 Bit	63
Resetting Timer1 using a CCP Trigger Output53	TX9D Bit	63
Synchronized Counter Mode	TXEN Bit	63
T1CON51	U	
TMR1H53	•	
TMR1L53	Universal Synchronous Asynchronous Receiver	
Timer2	Transmitter (USART)	
Block Diagram55	Asynchronous Receiver	
	Setting Up Reception	71
Postscaler	Timing Diagram	72
Prescaler	USART	63
T2CON	Asynchronous Mode	67
Timing Diagrams	Receive Block Diagram	71
A/D Conversion	Asynchronous Receiver	
Brown-out Reset	Asynchronous Reception	
Capture/Compare/PWM130	Asynchronous Transmitter	
CLKOUT and I/O127	Baud Rate Generator (BRG)	
Power-up Timer128	Baud Rate Formula	
Reset	Baud Rates, Asynchronous Mode (BRGH=0) .	
Start-up Timer128	High Baud Rate Select (BRGH Bit)	
Time-out Sequence on Power-up97, 98	Sampling	
Timer0129	Clock Source Select (CSRC Bit)	
Timer1129	Continuous Receive Enable (CREN Bit)	
USART Asynchronous Master Transmission68	Framing Error (FERR Bit)	
USART Asynchronous Reception69	Mode Select (SYNC Bit)	
USART Synchronous Receive132	Overrun Error (OERR Bit)	
USART Synchronous Reception75	RC6/TX/CK Pin	
USART Synchronous Transmission74, 132	RC7/RX/DT Pin	
USART, Asynchronous Reception72	RCSTA Register	
Wake-up from SLEEP via Interrupt103	Receive Block Diagram	
Watchdog Timer128	Receive Data, 9th bit (RX9D Bit)	
TMR0 15	Toolito Bala, oli bit (Toob Bit)	0-

Receive Enable, 9-bit (RX9 Bit)	6/
Serial Port Enable (SPEN Bit)	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	
Synchronous Slave Mode	
Transmit Block Diagram	
Transmit Data, 9th Bit (TX9D)	
Transmit Enable (TXEN Bit)	
Transmit Enable, Nine-bit (TX9 Bit)	
Transmit Shift Register Status (TRMT Bit)	63
TXSTA Register	
W	
Wake-up from SLEEP	89, 102
Interrupts	
MCLR Reset	96
Timing Diagram	103
WDT Reset	
Watchdog Timer (WDT)	89, 101
Block Diagram	101
Enable (WDTE Bit)	101
Programming Considerations	101
	-
RC Oscillator	
	101
RC Oscillator	101 101
RC Oscillator Time-out Period	101 101 93, 95, 96
RC Oscillator Time-out Period WDT Reset, Normal Operation	101 101 93, 95, 96

...

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- · Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-480-786-7302 for the rest of the world.

991103

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER, PRO MATE and MPLAB are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM and fuzzyLAB are trademarks and SQTP is a service mark of Microchip in the IJ.S.A.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	m: Name	
	Company	
	Address	_
	City / State / ZIP / Country	
	Telephone: ()	
App	lication (optional):	
Wou	uld you like a reply?YN	
Dev	ice: PIC16F870/871 Literature	Number: DS30569A
Que	estions:	
1.	What are the best features of this document	?
2.	How does this document meet your hardwa	re and software development needs?
3.	Do you find the organization of this data she	eet easy to follow? If not, why?
4.	What additions to the data sheet do you thir	nk would enhance the structure and subject?
5.	What deletions from the data sheet could be	e made without affecting the overall usefulness?
6.	Is there any incorrect or misleading information	tion (what and where)?
7.	How would you improve this document?	
8.	How would you improve our software, syste	ms, and silicon products?

PIC16F870/871 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x</u> / <u>xx</u> <u>xxx</u>
Device	Temperature Package Pattern Range
Device	PIC16F870, PIC16F870T; VDD range 4.0V to 5.5V PIC16F871, PIC16F871T; VDD range 4.0V to 5.5V PIC16LF870X, PIC16LF870T; VDD range 2.0V to 5.5V PIC16LF871X, PIC16LF871T; VDD range 2.0V to 5.5V
	F = Normal VDD limits LP = Extended VDD limits T = In Tape and Reel - SOIC, SSOP, TQFP and PLCC packages only.
Temperature Range	blank ⁽³⁾ = 0° C to 70° C (Commercial) I = -40° C to $+85^{\circ}$ C (Industrial)
Package	PQ = MQFP (Metric PQFP) PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic dip SS = SSOP P = PDIP L = PLCC
Pattern	QTP, Code or Special Requirements (blank otherwise)

Examples:

- PIC16F870-I/SP 301 = Industrial temp., PDIP package, 20 MHz, normal VDD limits, QTP pattern #301.
- b) PIC16F871-I/PT = Industrial temp., TQFP package, 20 MHz, Extended VDD limits.
- c) PIC16F871-I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
- d) PIC16LF870-I/SS = Industrial temp., SSOP package, DC 20MHz, extended VDD limits.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

. ..

NOTES:

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific Unit 2101. Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104

India

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025. India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology Unit B701, Far East International Plaza, No. 317, Xianxia Road

Shanghai, 200051 P.R.C Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom Arizona Microchip Technology Ltd.

505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 1/00 🙀 Printed on recycled paper.

