DS07-13608-1E

16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90640A Series

MB90641A/P641A

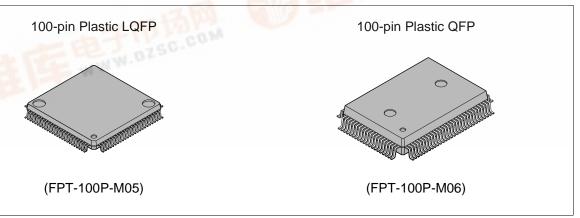
■ DESCRIPTION

MB90640A series includes 16-bit microcontrollers optimally suitable for process control in a wide variety of industrial and OA equipment. The series uses the F2MC*-16L CPU which is based on the F2MC-16 but with enhanced high-level language and task switching instructions and additional addressing modes.

The internal peripheral resources consist of a 2-channel serial port incorporating a UART function (and supporting I/O expansion serial mode), 8/16-bit 2-channel PPG, 5-channel 16-bit reload timer, 8-channel chip select function, and 8-channel DTP/external interrupts.

Also, multiplexed or non-multiplexed operation can be selected for the address/data bus. WWW.DZSC.COM

*: F2MC stands for FUJITSU Flexible Microcontroller.


■ FEATURES

F2MC-16L CPU

- Minimum instruction execution time: 58.8 ns/4.25 MHz oscillation (Uses PLL clock multiplication), maximum multiplier = 4
- Instruction set optimized for controller applications Upward object code compatibility with F²MC-16 (H) Wide range of data types (bit/byte/word/long word) Improved instruction cycles provide increased speed Additional addressing modes: 23 modes

(Continued)

■ PACKAGE

(Continued)

High code efficiency

Access methods (bank access/linear pointer)

Enhanced multiplication and division instructions (signed instructions added)

High precision operations are enhanced by use of a 32-bit accumulator

Extended intelligent I/O service (access area extended to 64 Kbytes)

Maximum memory space: 16 Mbytes

• Enhanced high level language (C)/multitasking support instructions

Use of a system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

Stack check function

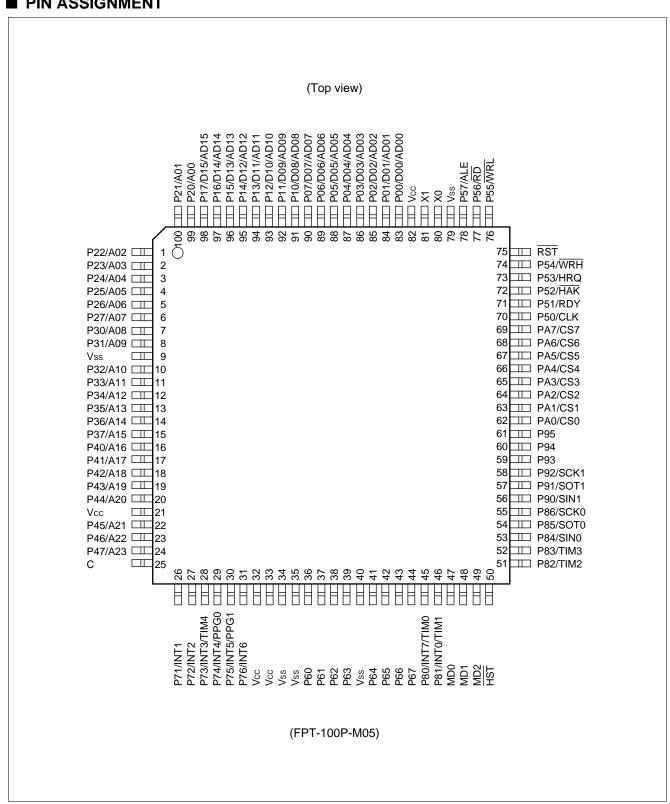
- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function (does not use instructions)

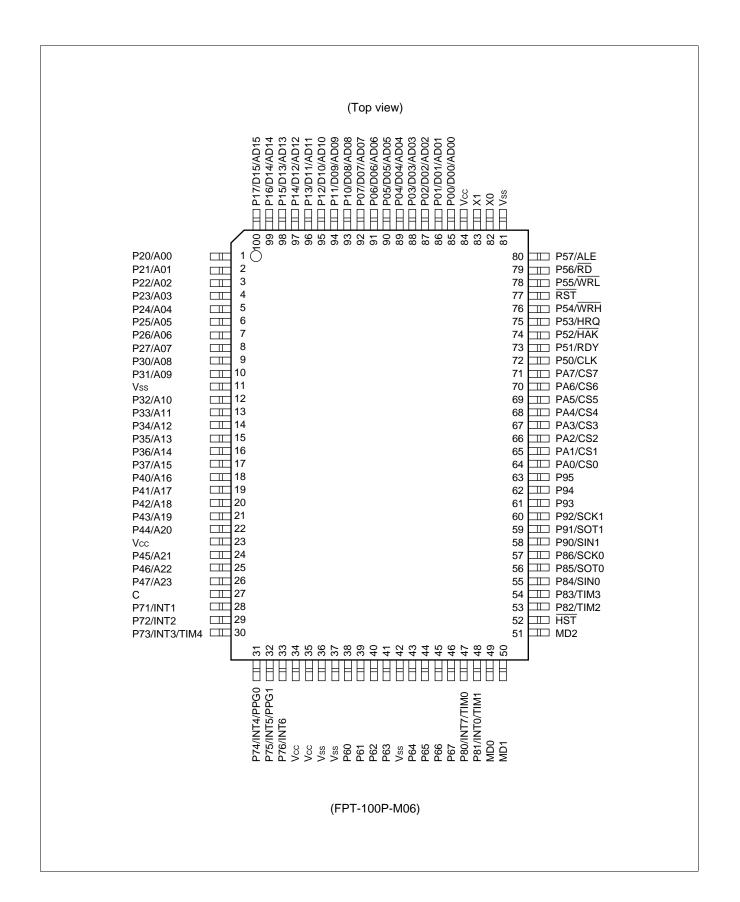
Internal peripherals

- RAM: 2 Kbytes
- General purpose ports Data bus, multiplexed mode: 56 ports max.

Non-multiplexed mode: 48 ports max. Single-chip mode: 75 ports max.

• UART0, 1 (SCI): 2 channels


For either asynchronous or clocked serial transfer (I/O expansion serial)


- 8/16-bit PPG (programmable pulse generator): 2 channels
- 16-bit reload timer: 5 channels
- Chip select function: 8 channels
- DTP/external interrupts: 8 channels
- Timebase timer/watchdog timer
- PLL clock multiplier function
- CPU intermittent operation function
- Various standby modes
- Packages: LQFP-100 and QFP-100
- CMOS technology

■ PRODUCT LINEUP

Part number Item	MB90641A	MB90P641A			
Classification	Mask ROM One-time PROM				
ROM size	64 Kbytes	64 Kbytes			
RAM size	2 Kbytes	2 Kbytes			
CPU functions	The number of instructions: 340 Instruction bit length: 8/16 bits Instruction length: 1 to 7 bytes Data bit length: 1/4/8/16/32 bits Minimum execution time: 58.8 ns at 4.25 MHz (PLL multiplier = 4) Interrupt processing time: 941 ns at 17 MHz (minimum)				
Ports	8/16-bit data bus, multiplexed mode: 56 ports (max) 8-bit non-multiplexed mode: 48 ports (max) Single-chip mode: 75 ports (max)				
Packages		0P-M05 0P-M06			
UARTO, 1 (SCI)	Two internal UARTs Full-duplex, double-buffered Selectable clock synchronous or asynchronous operation Built-in dedicated baud rate generator				
8/16-bit PPG		PG outputs tput in 16-bit mode)			
16-bit reload timer	(Selectable count clock: 0.125 μs, 0.5 μ	table toggle output, one-shot output) .s, or 2.0 μs for a 16 MHz machine cycle) nction, 5 internal channels			
Chip select function	8 ou	tputs			
DTP/external interrupts	8 inputs External interrupt mode (Interrupts can be generated from four different types of request signal)				
PLL function	Selectable multiplier: 1/2/3/4 (Set a multiplier that does not exceed the assured operation frequency range.)				
External bus terminal control circuit	Multiplex and non-multiplex between the	adress pin and the data pin is selectable.			

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin	no.	D:	Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function	
80, 81	82, 83	X0, X1	Α	Crystal oscillator pins	
47 to 49	49 to 51	MD0 to MD2	E (CMOS)	Input pins for specifying an opration mode. Use these pins by directly connecting Vcc or Vss.	
75	77	RST	G (CMOS/H)	External reset request input pin	
50	52	HST	F (CMOS/H)	Hardware standby input pin	
83 to 90	85 to 92	P00 to P07	J (TTL)	General purpose I/O ports This applies in single-chip mode with an external data bus in 8-bit mode.	
		D00 to D07		In non-multiplex mode, the I/O pins for the lower 8 bits of the external data bus.	
		AD00 to AD07		In multiplexed mode, the I/O pins for the lower 8 bits of the external address/data bus.	
91 to 98	93 to 100	P10 to P17	J (TTL)	General purpose I/O ports This applies in non-multiplexed mode with an 8-bit external data bus and in single-chip mode.	
		P08 to D15		In non-multiplexed mode with a 16-bit external data bus, the I/O pins for the upper 8 bits of the external data bus.	
		AD08 to AD15		In multiplexed mode, the I/O pins for the upper 8 bits of the external address/data bus.	
99, 100, 1 to 6	1, 2, 3 to 8	P20, P21, P22 to P27	B (CMOS)	General purpose I/O ports This applies in multiplexed mode.	
		A00, A01, A02 to A07		In non-multiplexed mode, the output pins for the lower 8 bits of the external address bus.	
7, 8, 10 to 15	9, 10, 12 to 17	P30, P31, P32 to P37	B (CMOS)	General purpose I/O ports This applies in multiplexed mode.	
		A08, A09, A10 to A15		In non-multiplexed mode, the output pins for the upper 8 bits of the external address bus.	
16 to 20, 22 to 24	18 to 22, 24 to 26		B (CMOS)	General purpose I/O ports This applies when the upper address control register specifies port operation.	
		A16 to A20, A21 to A23		Output pins for A16 to A23 of the external address bus This applies when the upper address control register specifies address operation.	

*1: FPT-100P-M05

*2: FPT-100P-M06

Pin	no.	D'	Circuit	F	
LQFP*1	QFP*2	- Pin name	type	Function General purpose I/O port	
70	72	P50	(CMOS)	General purpose I/O port This applies when CLK output is disabled.	
		CLK		CLK output pin This applies when CLK output is enabled.	
71	73	P51	K (TTL)	General purpose I/O port This applies when the external ready function is disabled.	
		RDY		Ready input pin This applies when the external ready function is enabled.	
72	74	P52	(CMOS)	General purpose I/O port This applies when the hold function is disabled.	
		HAK		Hold acknowledge output pin This applies when the hold function is enabled.	
73	75	P53	K (TTL)	General purpose I/O port This applies when the hold function is disabled.	
		HRQ	_	Hold request input pin This applies when the hold function is enabled.	
74	76	P54	(CMOS)	General purpose I/O port This applies in 8-bit external bus mode or when output is disabled for the WRH pin.	
		WRH		Write strobe output pin for the upper 8 bits of the data bus This applies in 16-bit external bus mode and when output is enabled for the WRH pin.	
76	78	P55	(CMOS)	General purpose I/O port This applies when output is disabled for the WRL pin.	
		WRL	_	Write strobe output pin for the lower 8 bits of the data bus This applies when output is enabled for the WRL pin.	
77	79	P56	(CMOS)	General-purpose I/O port This port is available in the single-chip mode.	
		RD		Read strobe output pin for the data bus	
78	80	P57	(CMOS)	General-purpose I/O port This port is available in the single-chip mode.	
		ALE		Address latch enable output pin	
36 to 39, 41 to 44	38 to 41, 43 to 46	P60 to P67	С	Open-drain output ports	

*1: FPT-100P-M05

*2: FPT-100P-M06

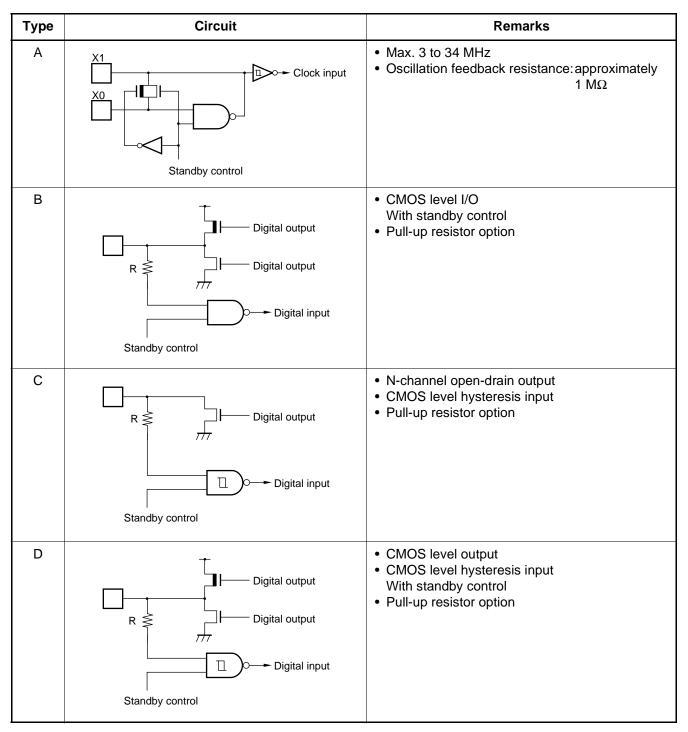
Pin	no.	Din nama	Circuit	Function
LQFP*1	QFP*2	Pin name	type	Function
26, 27	28, 29	P71, P72	H (CMOS/H)	General purpose I/O ports This applies in all cases.
		INT1, INT2		External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.
28	30	P73	H (CMOS/H)	General purpose I/O ports This applies when output is disabled for reload timers.
	11			External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.
		TIM4		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.
29, 30	31, 32	P74, P75	H (CMOS/H)	General purpose I/O ports This applies when the waveform outputs for PPG timers 0, 1 are disabled.
		INT4, INT5		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.
		PPG0, PPG1		Output pins for PPG timers This applies when the waveform outputs for PPG timers 0, 1 are enabled.
31	33	P76	H (CMOS/H)	General purpose I/O port This applies in all cases.
		INT6		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05 (Continued)

*2: FPT-100P-M06

Pin	no.	D'	Circuit	Eunotion		
LQFP*1	QFP*2	Pin name	type	Function		
45, 47, 46 48		P80, P81	H (CMOS/H)	General purpose I/O ports This applies when output is disabled for reload timers.		
		INT7, INT0		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.		
		TIMO, TIM1		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.		
51, 52	53, 54	P82, P83	D (CMOS/H)	General purpose I/O ports This applies when output is disabled for reload timers.		
		TIM2, TIM3		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.		
53	55	P84	D (CMOS/H)	General purpose I/O port This applies in all cases.		
		SIN0		Serial data input pin for UART0 As the input operates continuously when UART0 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.		
54	56	P85	D (CMOS/H)	General purpose I/O port This applies when serial data output is disabled for UARTO.		
	SOT0			Serial data output pin for UART0 This applies when serial data output is enabled for UART0		
55	57	P86	D (CMOS/H)	General purpose I/O port This applies when the UART0 clock output is disabled.		
		SCK0		Clock I/O pin for UART0 This applies when the UART0 clock output is enabled. As the input operates continuously when UART0 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.		
56	58	P90	D (CMOS/H)	General purpose I/O port This applies in all cases.		
		SIN1		Serial data input pin for UART1 As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.		

*1: FPT-100P-M05

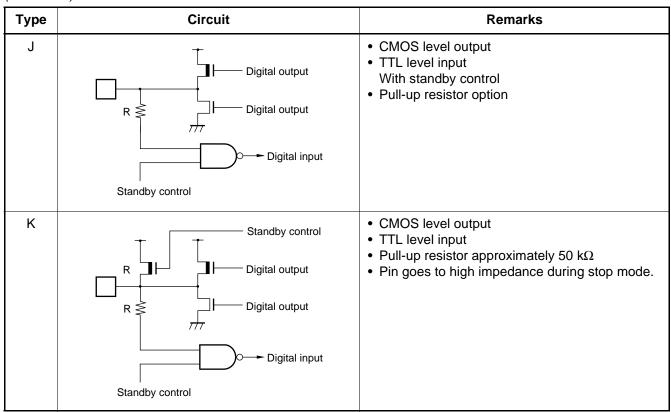

*2: FPT-100P-M06

(Continued)

Pin	no.	Din nama	Circuit	Formation		
LQFP*1	QFP*2	Pin name	type	Function		
57	59	P91	D (CMOS/H)	General purpose I/O port This applies when serial data output is disabled for UART1.		
		SOT1		Serial data output pin for UART1 This applies when serial data output is enabled for UART1.		
58	60	P92	D (CMOS/H)	General purpose I/O port This applies when the UART1 clock output is disabled.		
	SCK1 Clock I/O This appli As the inp			Clock I/O pin for UART1 This applies when the UART1 clock output is enabled. As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.		
59 to 61	61 to 63	P93 to P95	D (CMOS/H)	General purpose I/O port		
25	27	С	_	Capacitor pin for stabilizing power supply Connect about 0.1 µF ceramic capacitor outside ROM. MB90P641 doesn't need to be connected the capacitor. It isn't problem even the capacitor is connected to MB90P641A.		
62 to 69	64 to 71	PA0 to PA7	(CMOS/H)	General purpose I/O ports This applies for pins with chip select output disabled by the chip select control register.		
		CS0 to CS7		Output pins for the chip select function This applies for pins with chip select output enabled by the chip select control register.		
21, 32, 33, 82	23, 34, 35, 84	Vcc	Power supply	Power supply for the digital circuits		
9, 34, 35, 40, 79	11, 36, 37, 42, 81	Vss	Power supply	Ground level for the digital circuits		

*1: FPT-100P-M05 *2: FPT-100P-M06

■ I/O CIRCUIT TYPE



Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.

Туре	Circuit	Remarks
E	R Digital input	CMOS level input No standby control Pull-up resistor option
F	R Digital input	CMOS level hysteresis input No standby control Pull-up resistor option
G	R R Digital input	CMOS level hysteresis input No standby control With pull-up resistor
Н	Digital output R Digital output Digital input	 CMOS level output CMOS level hysteresis input No standby control Pull-up resistor option
I	Standby control Digital output	 CMOS level output CMOS level hysteresis input Pull-up resistor approximately 50 kΩ Pin goes to high impedance during stop mode.

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.

(Continued)

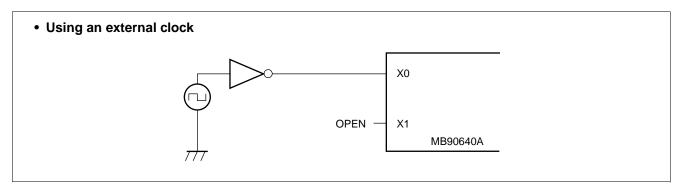
Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or less than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.


Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is truned on and off.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resister.

3. Cautions when Using an External Clock

Drive the X0 pin only when using an external clock.

4. Power Supply Pins

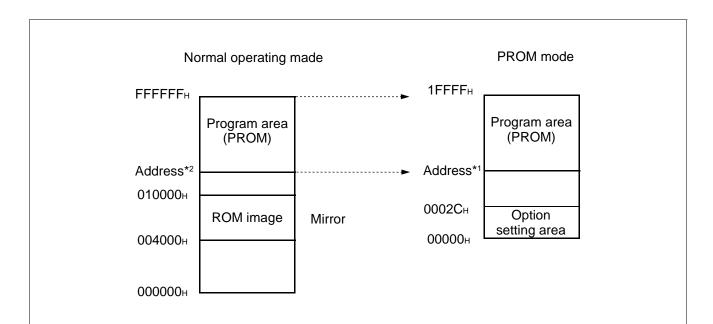
When there are several Vcc and Vss pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to Vcc and Vss with the lowest possible impedance.

Finally, it is recommended to connect a ceramic capacitor of about $0.1\,\mu\text{F}$ between V_{CC} and V_{SS} near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible, and possibly take care not to cross over the other wiring with this wiring.


In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

■ PROGRAMMING TO THE ONE-TIME PROM ON THE MB90P641A

MB90P641A has a function PROM mode function equivalent to MBM27C1000/1000A, so it can be written by general ROM writer using special adapter. But take attention it doesn't corsespond to the elctronic signature (the device identification code) mode.

1. Programming Procedure

Memory map in the PROM mode is as below. Write option data to the option setting erea refering to the 6 PROM option bit map.

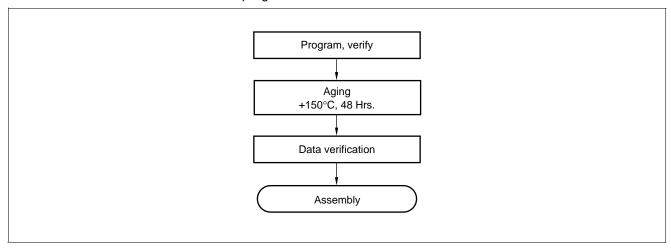
Product Address ^{*1}		Address*2	Number of bytes	
MB90P641A	10000н	FF0000н	64 Kbytes	

Note: The 00 bank ROM image is 48 Kbyes. (This is a ROM image for FF4000_H to FFFFFF_H. Only when the ROM mirror function selecting resister is enable.)

Porocedure of the programing to the one-time PROM microcomputer is as below.

- (1) Set the EPROM programmer for the MBM27C1000/1000A.
- (2) Load the program data into the EPROM programmer at address*1 to 1FFFFH. When specify the PROM option, load the option data to 00000H to 00002CH to referring to "6. PROM Option Bitmap".
- (3) Insert the device in the socket adapter, and mount the socket adapter on the EPROM programmer. Pay attention to the orientation of the device and of the socket adapter when doing so.
- (4) Program to 00000н to 1FFFFн.

Notes: • Because the mask ROM products do not have a PROM mode, they cannot read date from the EPROM programmer.


• Contact the sales department when purchasing an EPROM programmer.

2. Program Mode

In the MB90P641A, all of the bits are set to "1" when the IC is shipped from Fujitsu and after erasure. To input data, program the IC by selectively setting the desired bits to "0". Bits cannot be set to "1" electrically.

3. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked one-time PROM with microcontroller program.

4. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked one-time PROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

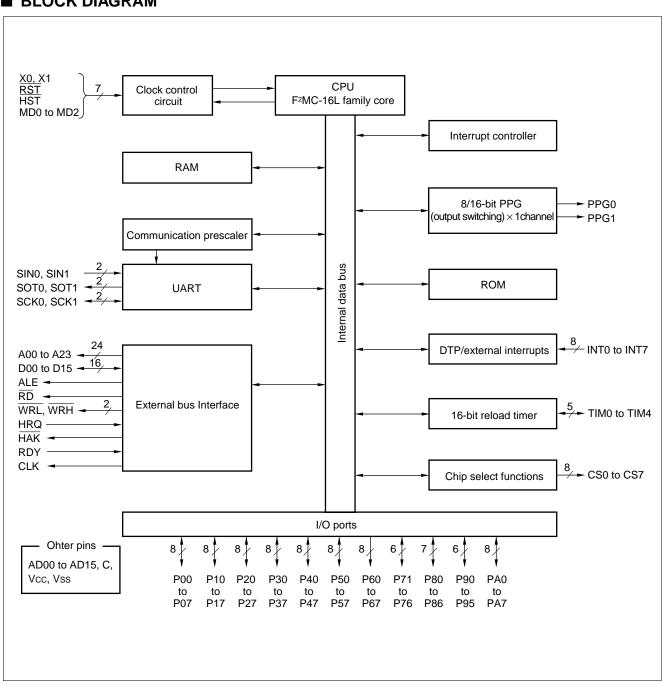
5. EPROM Programmer Socket Adapter and Recommended Programmer Manuffacturer

Part no.		MB90P641APF	MB90P641APFV	
Package		QFP-100	LQFP-100	
Compatible socket adapter Sun Hayato Co., Ltd.		ROM-100QF-32DP ROM-100SQF-32D -FFMC-16L -FFMC-16L		
Recommended	Minoto	1890A	Recommended	Recommended
programmer manufacturer	Minato Electronics Inc.	1891	Recommended	Recommended
and programmer name		1930	Recommended	Recommended

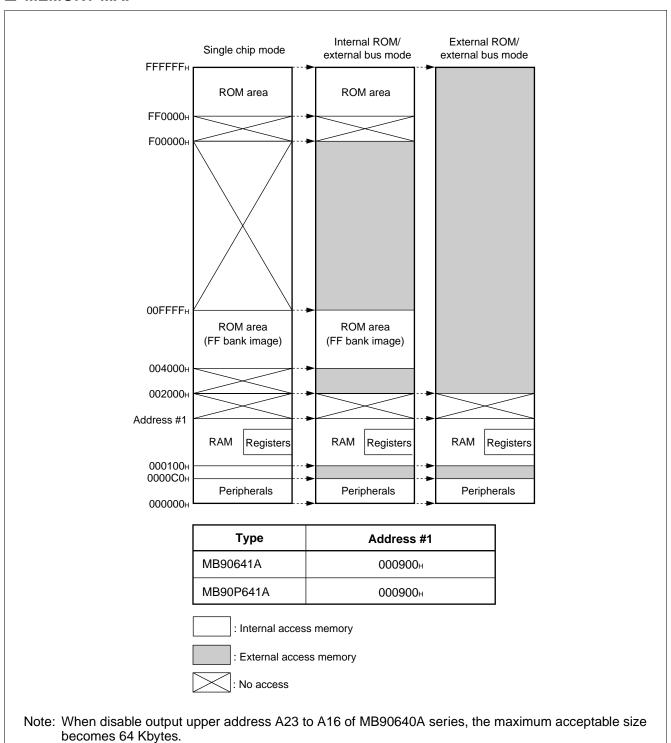
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

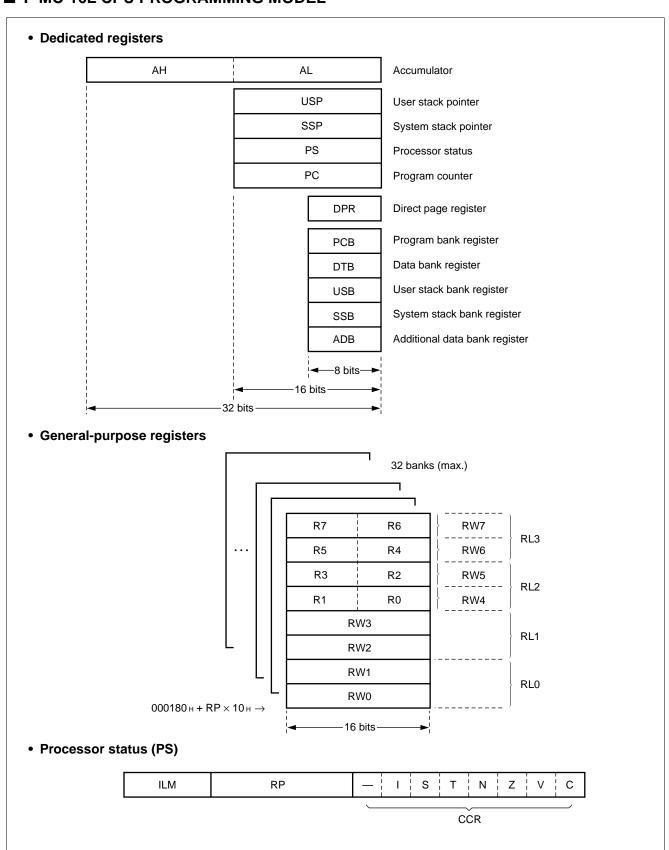
Minato Electronics Inc.: TEL: USA (1)-916-348-6066


JAPAN (81)-45-591-5611

6. PROM Option Bitmap


Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00000н	Vacancy	RST Pull-up 1: No 0: Yes	Vacancy	MD 1 Pull-up 1: No 0: Yes	MD 1 Pull-down 1: No 0: Yes	MD 0 Pull-up 1: No 0: Yes	MD 0 Pull-down 1: No 0: Yes	Vacancy
00004н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00008н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0000Сн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00010н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00014н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0001Сн	P57	P56	P55	P54	P53	P52	P51	P50
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00020н	Vacancy	P76 Pull-up 1: No 0: Yes	P75 Pull-up 1: No 0: Yes	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0: Yes	P71 Pull-up 1: No 0: Yes	Vacancy
00024н	Vacancy	P86 Pull-up 1: No 0: Yes	P85 Pull-up 1: No 0: Yes	P84 Pull-up 1: No 0: Yes	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes
00028н	Vacancy	Vacancy	P95 Pull-up 1: No 0: Yes	P94 Pull-up 1: No 0: Yes	P93 Pull-up 1: No 0: Yes	P92 Pull-up 1: No 0: Yes	P91 Pull-up 1: No 0: Yes	P90 Pull-up 1: No 0: Yes
0002Сн	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes

Note: Write data "1" to the vacant bit and the adress other than above.


■ BLOCK DIAGRAM

■ MEMORY MAP

■ F²MC-16L CPU PROGRAMMING MODEL

■ I/O MAP

Address	Name	Register	Read/ write*4,*5	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W*	Port 0*8	XXXXXXXX
000001н	PDR1	Port 1 data register	R/W*	Port 1*7	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W*	Port 2*6	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W*	Port 3*6	XXXXXXXX
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 data register	R/W	Port 5*8	XXXXXXXX
000006н	PDR6	Port 6 data register	R/W	Port 6	11111111 в
000007н	PDR7	Port 7 data register	R/W	Port 7	-XXXXXX в
000008н	PDR8	Port 8 data register	R/W	Port 8	-XXXXXX В
000009н	PDR9	Port 9 data register	R/W	Port 9	—— ХХХХХХ В
00000Ан	PDRA	Port A data register	R/W	Port A*8	XXXXXX - B
00000Вн to 0Fн	_	Vacancy	*3	_	_
000010н	DDR0	Port 0 direction register	R/W*	Port 0*8	00000000 в
000011н	DDR1	Port 1 direction register	R/W*	Port 1*7	00000000 в
000012н	DDR2	Port 2 direction register	R/W*	Port 2*6	00000000
000013н	DDR3	Port 3 direction register	R/W*	Port 3*6	00000000
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000
000015н	DDR5	Port 5 direction register	R/W	Port 5*8	00000000
000016н	DDR6	Port 6 direction register	R/W	Port 6	11111111 в
000017н	DDR7	Port 7 direction register	R/W	Port 7	-000000-в
000018н	DDR8	Port 8 direction register	R/W	Port 8	-0000000 В
000019н	DDR9	Port 9 direction register	R/W	Port 9	 000000 в
00001Ан	DDRA	Port A direction register	R/W	Port A*8	00000000
00001Вн to 1Fн	_	Vacancy	*3	_	_
000020н	SMR0	Serial mode register 0	R/W!		00000000
000021н	SCR0	Serial control register 0	R/W!		00000100в
000022н	SIDR0/ SODR0	Input data register 0/ output data register 0	R/W	UART0 (SCI)	XXXXXXXX
000023н	SSR0	Serial status register 0	R/W!		00001-00в
000024н	SMR1	Serial mode register 1	R/W!		00000000
000025н	SCR1	Serial control register 1	R/W!		00000100в
000026н	SIDR1/ SODR1	Input data register 1/ output data register 1	R/W	UART1 (SCI)	XXXXXXXX B
000027н	SSR1	Serial status register 1	R/W!		00001-00в

Address	Name	Register	Read/ write*4,*5	Resource name	Initial value
000028н	ENIR	Interrupt/DTP enable register	R/W		00000000
000029н	EIRR	Interrupt/DTP request register	R/W	DTP/external	XXXXXXXX
00002Ан	ELVR	Interrupt level actting register	R/W	interrupt	00000000
00002Вн	ELVK	Interrupt level setting register	K/VV		00000000
00002Сн to 2Fн	_	Vacancy	*3	_	_
000030н	PPGC0	PPG0 operation mode control register	R/W	8/16-bit PPG0	0-000001 в
000031н	PPGC1	PPG1 operation mode control register	R/W	8/16-bit PPG1	0000001в
000032н, 33н	_	Vacancy	*3	_	_
000034н	PRLL0/	DDC0 relead register	R/W	8/16-bit PPG0	XXXXXXXX
000035н	PRLH0	PPG0 reload register	K/VV	6/10-DIL PPGU	XXXXXXXX
000036н	PRLL1/	PPG1 reload register	R/W	8/16-bit PPG1	XXXXXXXX
000037н	PRLH1	FFGT Telload Tegister	IX/VV	6/10-DILFFG1	XXXXXXXX
000038н	TMCSR0	Timer control status register	R/W!		00000000
000039н	TIVICSINO	vicorto Timer control status register	IX/VV:	16-bit reload	 0000 В
00003Ан	TMR0/	16-bit timer register/	R/W	timer 0	XXXXXXXX
00003Вн	TMRLR0	16-bit reload register	17,77		XXXXXXXX
00003Сн	TMCSR1	imer control status register	R/W!		00000000
00003Dн	TWOORT	Timer control status register	14/ 77:	16-bit reload	 0000 В
00003Ен	TMR1/	16-bit timer register/	R/W	timer 1	XXXXXXXX
00003Fн	TMRLR1	16-bit reload register	17,77		XXXXXXX
000040н to 47н	_	Vacancy	*3	_	1
000048н	CSCR0	Chip select control register 0	R/W		 0000 в
000049н	CSCR1	Chip select control register 1	R/W		 0000 В
00004Ан	CSCR2	Chip select control register 2	R/W		 0000 В
00004Вн	CSCR3	Chip select control register 3	R/W	Chip select	 0000 В
00004Сн	CSCR4	Chip select control register 4	R/W	function	 0000 В
00004Dн	CSCR5	Chip select control register 5	R/W		 0000 В
00004Ен	CSCR6	Chip select control register 6	R/W		 0000 В
00004Fн	CSCR7	Chip select control register 7	R/W		0 0 0 0 в
000050н	_	Vacancy	*3	_	_
000051н	CDCR0	UART0 (SCI) machine clock division control register	W	UARTO (SCI)	1111 _в

Address	Name	Register	Read/ write*4,*5	Resource name	Initial value	
000052н	_	Vacancy	*3	_	_	
000053н	CDCR1	UART1 (SCI) machine clock division control register	W	UART1 (SCI)	1111 в	
000054н to 57н	_	Vacancy *3 —		_		
000058н	TMCSR2	Timer control status register	R/W!		00000000	
000059н	TIVICSKZ	Timer control status register	IX/VV:	16-bit reload	 0000 В	
00005Ан	TMR2/	16-bit timer register/	R/W	timer 2	XXXXXXXX	
00005Вн	TMRLR2	16-bit reload register			XXXXXXXX	
00005Сн	TMCSR3	Timer control status register	R/W!		00000000	
00005Дн	TIVICORS	Timer control status register		16-bit reload	 0000 В	
00005Ен	TMR3/	16-bit timer register/	R/W	timer 3	XXXXXXXX	
00005Fн	TMRLR3	16-bit reload register	IN/ V V		XXXXXXXX	
000060н	TMCSR4	Timer central status register	R/W!		00000000	
000061н	TIVICSK4	Timer control status register		16-bit reload	 0000 В	
000062н	TMR4/	16-bit timer register/ 16-bit reload register	R/W	timer 4	XXXXXXXX	
000063н	TMRLR4				XXXXXXXX	
000064н		Timer pin control register	R/W		00010000в	
000065н	TPCR			16-bit reload timer	00110010в	
000066н					 0100в	
000067н to 6Ен	_	Vacancy	*3	_	_	
00006Fн	ROMM	ROM mirror functional selection module	W	ROM mirror function*9	* в	
000070н to 8Fн	_	Vacancy	*3	_	_	
000090н to 9Ен	_	Reserved system area	*1	_	_	
00009Fн	DIRR	Delayed interrupt generation/ release register	R/W	Delayed interrupt generation module	0 в	
0000А0н	LPMCR	Low power consumption mode control register	R/W!	Low power consumption	00011000в	
0000А1н	CKSCR	Clock selection register	R/W!	controller circuits	11111100в	
0000A2н to A4н	_	Vacancy *3 —		_	_	
0000А5н	ARSR	Auto-ready function selection register	W	External bus pin controller circuits	001100в	

(Continued)

Address	Name	Register	Read/ write*4,*5	Resource name	Initial value		
0000А6н	HACR	External address output control register	W	External bus pin controller circuits	00000000		
0000А7н	ECSR	Bus control signal selection register	W	- controller circuits	-00 * 0000 в		
0000А8н	WDTC	Watchdog timer control register	R/W!	Watchdog timer	ХХХХХ111в		
0000А9н	TBTC	Timebase timer control register	R/W!	Timebase timer	100100в		
0000AAн to AFн	_	Vacancy	*3	_	_		
0000В0н	ICR00	Interrupt control register 00	R/W!		00000111 в		
0000В1н	ICR01	Interrupt control register 01	R/W!		00000111 в		
0000В2н	ICR02	Interrupt control register 02	R/W!		00000111 в		
0000ВЗн	ICR03	Interrupt control register 03	R/W!		00000111в		
0000В4н	ICR04	Interrupt control register 04	R/W!		00000111в		
0000В5н	ICR05	Interrupt control register 05	R/W!		00000111 в		
0000В6н	ICR06	Interrupt control register 06	R/W!		00000111 в		
0000В7н	ICR07	Interrupt control register 07	R/W!	Interrupt	00000111 в		
0000В8н	ICR08	Interrupt control register 08	R/W!	controller	00000111 в		
0000В9н	ICR09	Interrupt control register 09	R/W!		00000111 в		
0000ВАн	_	Vacancy	*3		_		
0000ВВн	ICR11	Interrupt control register 11	R/W!		00000111 в		
0000ВСн	_	Vacancy	*3		_		
0000ВДн	ICR13	Interrupt control register 13	R/W!		00000111 в		
0000ВЕн	ICR14	Interrupt control register 14	R/W!		00000111в		
0000ВFн	ICR15	Interrupt control register 15	R/W!		00000111 в		
0000С0н to FFн	(External area)*2						

Initial values

- 0: The initial value for this bit is "0".
- 1: The initial value for this bit is "1".
- *: The initial value for this bit is "1" or "0". (Determined by the level of the MD0 to MD2 pins.)
- X: The initial value for this bit is undefined.
- -: This bit is not used. The initial value is undefined.
- *1: Access prohibited.
- *2: This is the only external access area in the area below address 0000FF_H. Access this address as an external I/O area.
- *3: Areas marked as "Vacancy" in the I/O map are reserved areas. These areas are accessed by internal access. No access signals are output on the external bus.
- *4: The R/W! symbol in the read/write column indicates that some bits are read-only or write-only. See the resource's register list for details.

- *5: Using a read-modify-write instruction (such as the bit set instruction) to access one of the registers indicated by R/W!, R/W*, or W in the read/write column sets the specified bit to the desired value. However, this can cause misoperation if the other register bits include write-only bits. Therefore, do not use read-modify-write instructions to access these registers.
- *6: This register is only available when the address/data bus is in multiplex mode and in single-chip mode. Access to the register is prohibited in non-multiplex mode.
- *7: This register is only available when the external data bus is in 8-bit mode and in single-chip mode. Access to the register is prohibited in 16-bit mode.
- *8: All bits of DDR0/PDR0, 6-bit/7-bit of DDR5/PDR5 and 0-bit of DDRA/PDRA are available only in single-chip mode.
- *9: The initial value of this register in MB90V640A is "0" and that of in MB90P641A, MB90641A is "1".
- Note: The initial values listed for write-only bits are the initial values set by a reset. Take attention that they are not the values returned by a read.
 - Also, LPMCR/CKSCR/WDTC are sometimes initialized and sometimes not initialized, depending on the reset type. The listed initial values are for when these registers are initialized.

■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

Intervient course	I ² OS	I	nterrupt	vector	Interrupt control register	
Interrupt source	support	Number		Address	ICR	Address
Reset	×	#08	08н	FFFFDCH	_	_
INT 9 instruction	×	#09	09н	FFFFD8 _H	_	_
Exception	×	#10	0Ан	FFFFD4 _H	_	_
DTP/external interrupt #0	\circ	#11	0Вн	FFFFD0 _H	ICR00	0000В0н
DTP/external interrupt #1	0	#13	0Дн	FFFFC8 _H	ICR01	0000В1н
DTP/external interrupt #2	0	#15	0Fн	FFFFC0 _H	ICR02	0000В2н
DTP/external interrupt #3	0	#17	11н	FFFFB8 _H	ICDO2	000000
16-bit reload timer #2	0	#18	12н	FFFFB4 _H	ICR03	0000ВЗн
DTP/external interrupt #4	0	#19	13н	FFFFB0 _H	ICR04	0000В4н
16-bit reload timer #3	0	#20	14н	FFFACH	ICKU4	
DTP/external interrupt #5	0	#21	15н	FFFFA8 _H	ICR05	0000В5н
16-bit reload timer #4	0	#22	16н	FFFFA4 _H	- ICKUS	
DTP/external interrupt #6	0	#23	17н	FFFFA0 _H	ICR06	0000В6н
UART0 • send complete	0	#24	18н	FFFF9C _H	ICKUU	ООООВОН
DTP/external interrupt #7	0	#25	19н	FFFF98 _H	ICR07	0000В7н
UART1 • send complete	0	#26	1Ан	FFFF94 _H		
8/16-bit PPG #0	×	#27	1Вн	FFFF90 _H	ICR08	0000В8н
8/16-bit PPG #1	×	#28	1Сн	FFFF8C _H	ICIXUO	ООООВОН
16-bit reload timer #0		#29	1Dн	FFFF88 _H	ICR09	0000В9н
16-bit reload timer #1	0	#30	1Ен	FFFF84 _H	- ICKU9	
Vacancy	0	#31	1F _H	FFFF80 _H	ICR10	0000ВАн
Timebase timer interval interrupt	×	#34	22н	FFFF74 _H	ICR11	0000ВВн
Vacancy	_	#35	23н	FFFF70 _H	ICR12	0000ВСн
UART1 • receive complete	0	#37	25н	FFFF68 _H	ICR13	0000ВDн
UART0 • receive complete	(#39	27н	FFFF60 _H	ICR14	0000ВЕн
Delayed interrupt generation module	×	#42	2Ан	FFFF54 _H	ICR15	0000ВГн

^{○ :} indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal (no stop request).

Note: Do not specify I²OS activation in interrupt control registers that do not support I²OS.

①: indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (with stop request).

 $[\]times$: indicates that the interrupt request flag is not cleared by the I²OS interrupt clear signal.

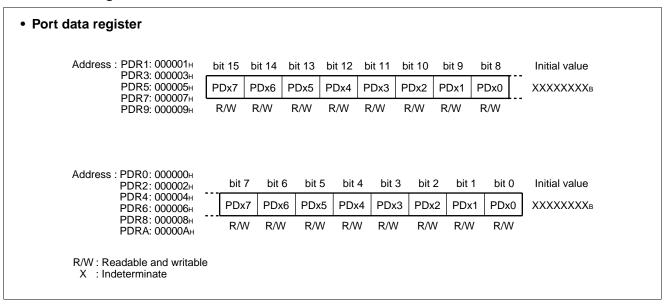
■ PERIPHERAL RESOURCES

1. Parallel Port

The MB90640A series has 75 I/O pins, and 8 open-drain output pins.

Ports 0 to 5 and ports 7 to 9 and A are I/O ports. The ports are inputs when the corresponding direction register bit is "0" and outputs when the corresponding bit is "1".

Port 0 is only available in single-chip mode.


Port 1 is only available when in data bus 8-bit mode of non-multiplex mode or in single-chip mode.

Ports 2 and 3 are only available when the address/data bus is in multiplex mode and single-chip mode.

Port 6 is an open-drain port.

(1) Register Details

· Port data registers

Note: No register bit is provided for bits 0, 7 of port 7.

No register bit is provided for bit 7 of port 8.

No register bits are provided for bits 7, 6 of port 9.

Port 0 is only available in single-chip mode.

Bits 7, 6 of port 5 and bit 0 of port A are only available in single-chip mode.

Port 1 is only available when the external data bus is in 8-bit mode and single-chip mode.

Ports 2, 3 are only available in multiplex mode and single-chip mode.

Each port pin except port 6 can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.

When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Notes: • If read-modify-write instructions (bit set instruction, etc.) are used to access this register, the bit that is the focus of the instruction is set to the prescribed value, but the contents of the output register corresponding to any other bits for which the input setting has been made are overwritten with the current input value of the corresponding pin. Therefore, when switching a pin that was being used for input over to output, first write the desired value to PDR, and then set the data DDR as output direction.

• Reading and writing an I/O port differs from reading and writing memory as follows:

Input mode

Reads: The read data is the level of the corresponding pin.

Writes: The write data is stored in the output latch. The data is not output to the pin.

Output mode

Reads: The read data is the value stored in the PDR.

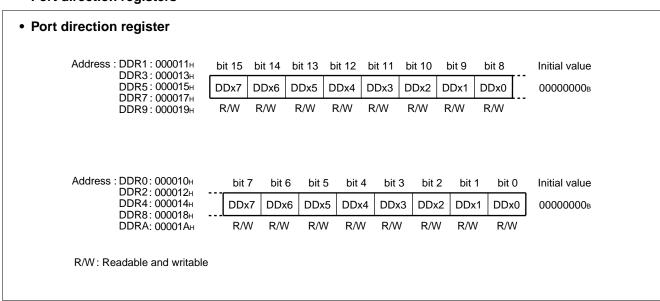
Writes: The write data is both stored in the output latch and output to the pin.

Take attention that the operation of R/W in port 6 is different from that of in other port.

Port 6 (P67 to P60) is an general-purpose I/O port with an open-drain output. When port 6 is used as a general-purpose port, always be sure to set the corresponding bits in DDR6 to "0".

When port 6 is used as an input port, it is necessary set the output port data register value to "1" in order to turn off the open-drain output transistor; it is also necessary to connect a pull-up resistor to the external pins.

In addition, depending on the instruction used to read these bits, one of the following two different operations is performed:


- When read by a read-modify-write instruction:

 The contents of the output port data register are read. Even if pins are forcibly set to "0" externally, the contents of the bits not specified by the instruction do not change.
- When read by any other instruction: The pin level can be read.

When used as output ports, the pin values can be changed by writing the desired value to the corresponding output port data register.

In addition, the pin which corresponds to the bit of which port 6 direction register is set to "1" can be read "0".

Port direction registers

Note: No register bit is provided for bits 0, 7 of port 7.

No register bit is provided for bit 7 of port 8.

No register bits are provided for bits 6, 7 of port 9.

Port 1 is only available in single-chip mode.

Port 1 is only available when the external data bus is in 8-bit mode and single-chip mode.

Ports 2, 3 are only available in multiplex mode and single-chip mode.

When pins are used as ports, the register bits control the corresponding pins as follows.

0: Input mode

1: Output mode

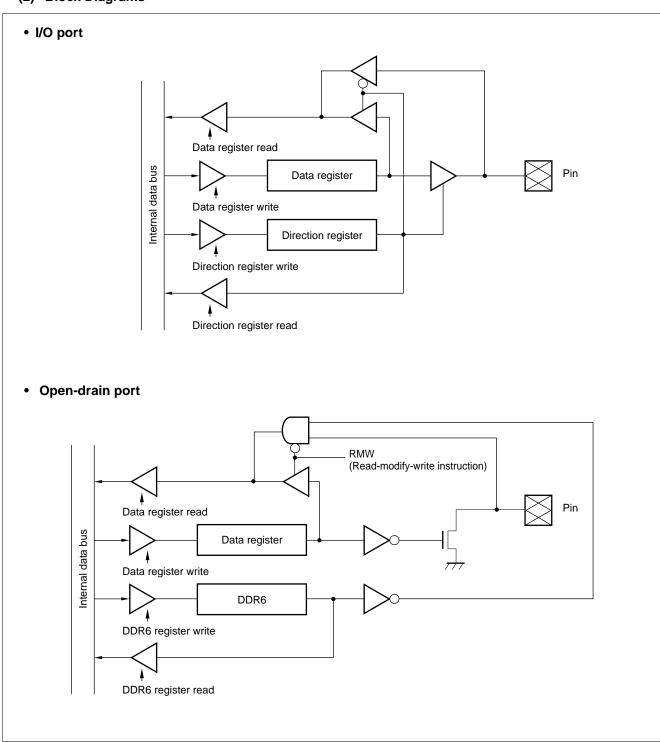
Bits are set to "0" by a reset.

• Port 6 direction register

• Port 6 direction register

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address : DDR6: 000016H DD67 DD66 DD65 DD64 DD63 DD62 DD61 **DD60** 11111111B R/W R/W R/W R/W R/W R/W R/W R/W

R/W: Readable and writable


Controls each pin of port 6 as follows.

0: Port input mode

1: Analog input mode

Bits are set to "1" by a reset.

(2) Block Diagrams

(3) Port Pin Allocation

Ports 1, 4, and 5 on the MB90640A series share pins with the external bus. The pin functions are determined

by the bus mode and register settings.

by the bac	mode and register settings. Function								
Pin name	Non-multiplex mode				Multiplex mode				
	External address control				External address control				
	Enable (address)		Disable (port)		Enable (address)		Disable (port)		
	External bus width		External bus width		External bus width		External bus width		
	8 bits	16 bits	8 bits	16 bits	8 bits	16 bits	8 bits	16 bits	
D07 to D00/ AD07 to AD00		D07 to	D07 to D00			AD07 to AD00			
P17 to P10/ D15 to D08/ AD15 to AD08	Port	D15 to D08	Port	D15 to D08	A15 to A08	AD15 to AD08	A15 to A08	AD15 to AD08	
P27 to P20/ A07 to A00	A07 to A00				Port				
P37 to P30/ A15 to A08	A15 to A08				Port				
P47 to P40/ A23 to A16	A23 to A16		Port		A23 to A16		F	Port	
P57/ALE	ALE			ALE					
RD	RD				RD				
P55/WRL	WRL			WRL					
P54/WRH	Port	WRH	Port	WRH	Port	WRH	Port	WRH	
P53/HRQ		HR	RQ		HRQ				
P52/HAK	HAK			HAK					
P51/RDY	RDY			RDY					
P50/CLK	CLK				CLK				

Notes: • The upper address, WRL, WRH, HAK, HRQ, RDY, and CLK can be set for use as ports by function selection.

[•] The pins mentioned above can be used as a port in single-chip mode.

2. UARTO, 1 (SCI)

UARTO, 1 are serial I/O ports that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous (I/O expansion serial) data transfer. The ports have the following features.

- Full duplex, double buffered
- Supports CLK asynchronous (start-stop synchronization) and CLK synchronous (I/O expansion serial) data transfer
- Multi-processor mode support
- Built-in dedicated baud rate generator

CLK asynchronous: 62500 bps/31250 bps/19230 bps/9615 bps/4808 bps/2404 bps/1202 bps CLK synchronous: 2 Mbps/1 Mbps/500 kbps/250 kbps

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

(1) Register Configuration

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value Address: SMR0: 000020H MD1 M_D0 CS2 CS1 CS₀ SCKE SOE 00000-00в SMR1: 000024H R/W R/W W W W R/W R/W

Serial control register 0, 1

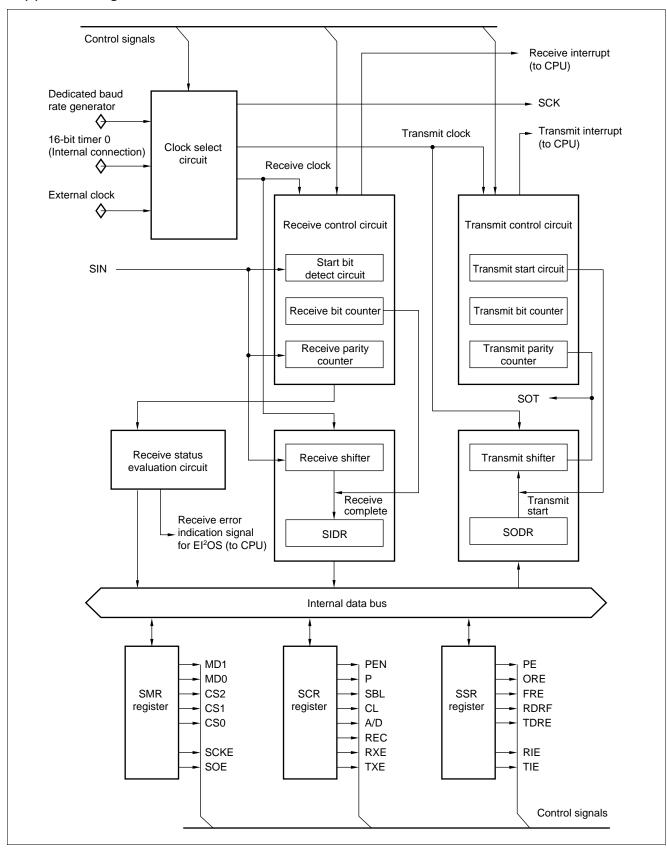
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address: SCR0: 000021H 00000100в PFN Р SBL CI A/D REC **RXE** TXF SCR1: 000025H R/W R/W R/W R/W R/W R/W R/W R/W

Input data register 0, 1/output data register 0, 1

Address: SIDR0 (read) / bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value SODR0 (write) XXXXXXXXB D7 D6 D5 D4 D3 D2 D1 D0 : 000022H SIDR1 (read) / R/W R/W R/W R/W R/W R/W R/W R/W SODR1 (write) : 000026H

• Serial status register 0, 1

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address: SSR0: 000023H PΕ ORE **FRE RDRF TDRE** RIE TIE 00001-00в SSR1: 000027H R R R R R R/W R/W

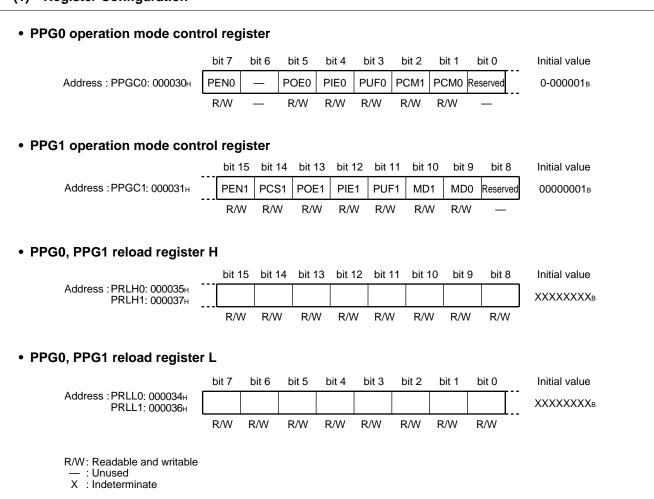

• Machine clock division control register for UART0, 1 (SCI)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address: CDCR0: 000051H DIV3 DIV2 DIV1 DIV0 ----1111в CDCR1: 000053H W W W W

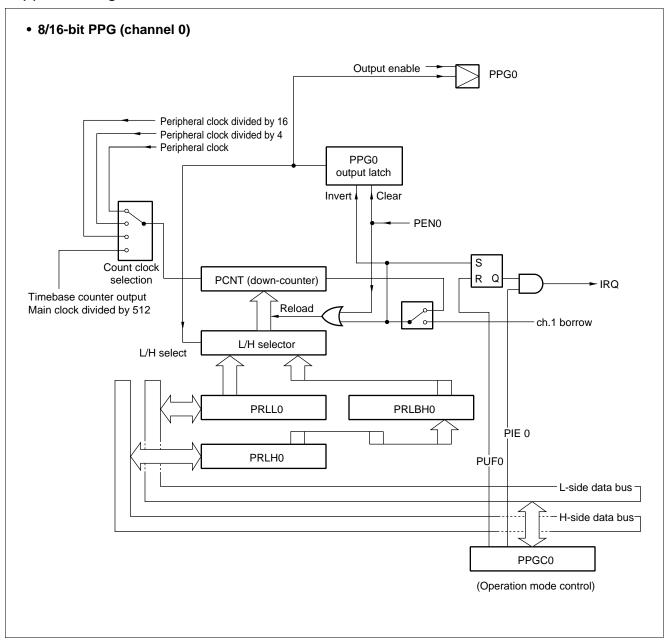
R/W: Readable and writable

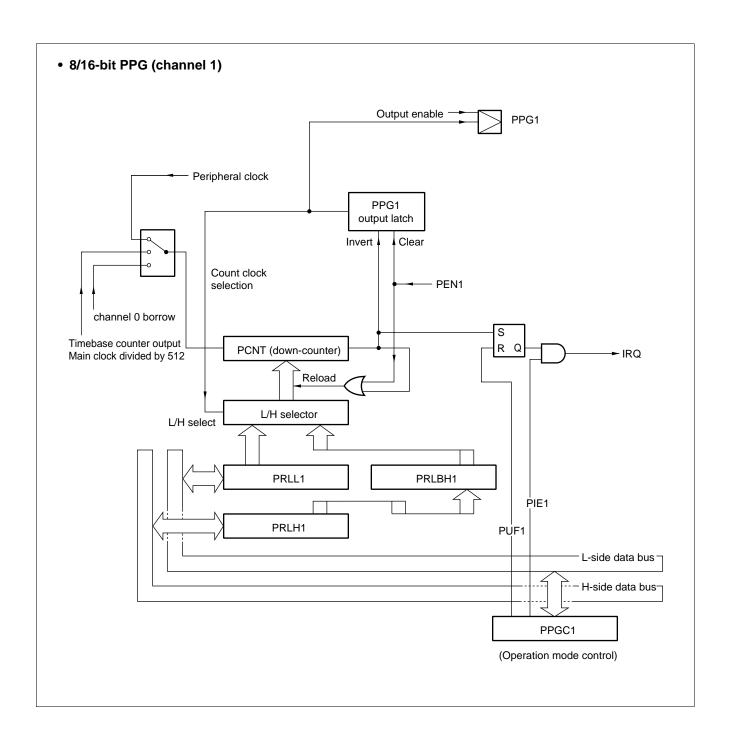
R : Read only
W : Write only
— : Unused
X : Indeterminate

(2) Block Diagram


3. 8/16-bit PPG

8/16-bit PPG contains the 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.


The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

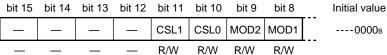

- 8-bit PPG output in 2-channel independent operation mode: Two independent PPG output channels are available.
- 16-bit PPG output operation mode: One 16-bit PPG output channel is available.
- 8+8-bit PPG output operation mode: Variable-period 8-bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation: Outputs pulse waveforms with variable period and duty ratio.
 Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

(2) Block Diagram

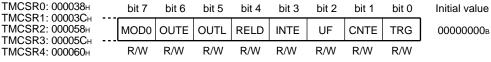
4. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timers consists of a 16-bit down-counter, a 16-bit reload register, input pin (TIN), output pin (TOT), and a control register. The input clock can be selected from one external clock and three types of internal clock. The output (TOT) outputs a toggle waveform in reload mode and a rectangular waveform during counting in one-shot mode. The input (TIN) functions as the event input in event count mode and as the trigger input or gate input in internal clock mode.

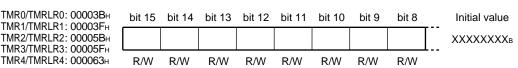

Input and output of timer pin TIM0 to TIM4 are set by way of the timer pin control register.

This product has five internal 16-bit reload timer channels.

(1) Register Configuration

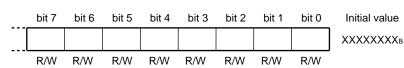


TMCSR1: 00003DH TMCSR2: 000059H TMCSR3: 00005DH TMCSR4: 000061H


• Timer control status register lower

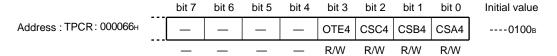
Address: TMCSR0: 000038H TMCSR1: 00003CH TMCSR2: 000058H TMCSR3: 00005CH

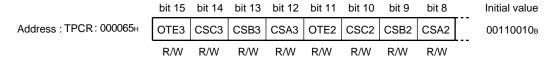
16-bit timer register upper/16-bit reload register upper


Address: TMR0/TMRLR0: 00003BH TMR1/TMRLR1: 00003FH TMR2/TMRLR2: 00005BH TMR3/TMRLR3: 00005FH

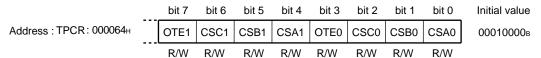
• 16-bit timer register lower/16-bit reload register lower

Address: TMR0/TMRLR0: 00003AH TMR1/TMRLR1: 00003EH

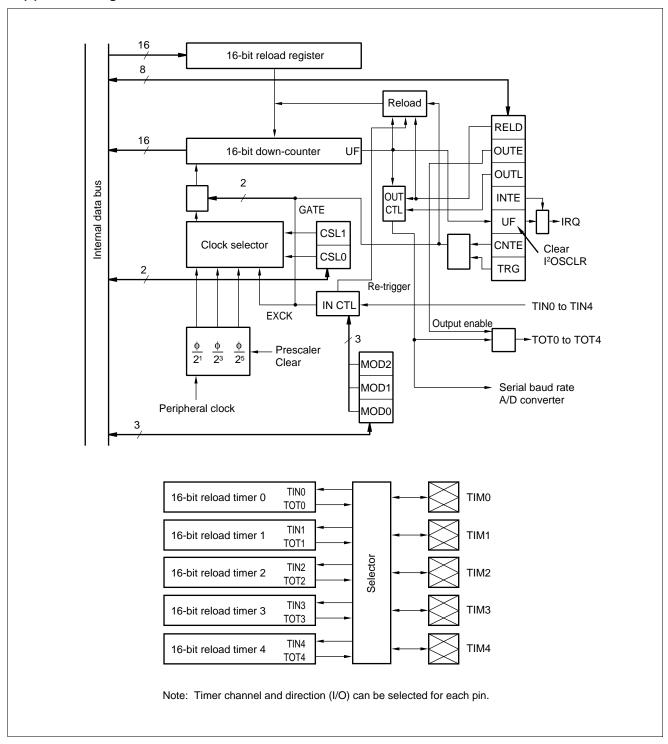

TMR2/TMRLR2: 00005AH TMR3/TMRLR3: 00005EH TMR4/TMRLR4: 000062H


R/W: Readable and writable

Unused X: Indeterminate


• Timer pin control register upper

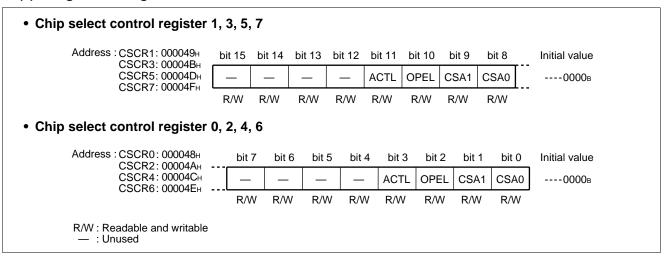
• Timer pin control register middle



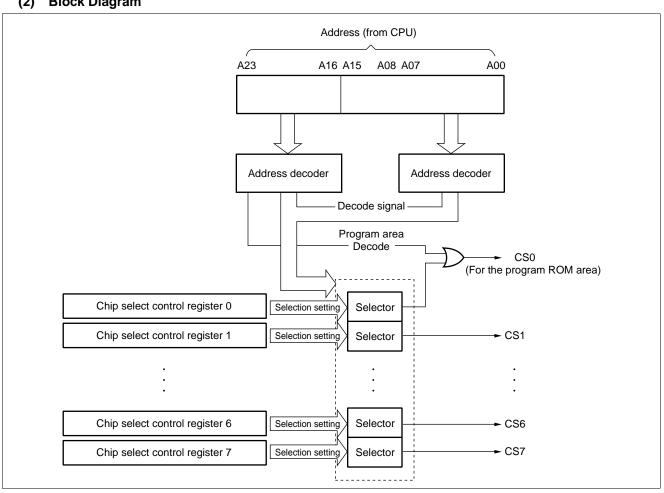
• Timer pin control register lower

R/W: Readable and writable

— : UnusedX : Indeterminate

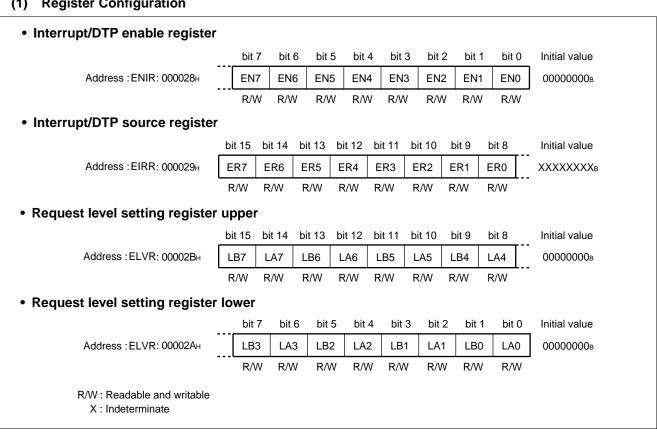


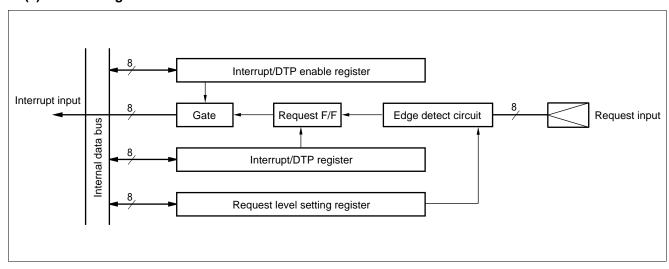
5. Chip Select Function


This module generates chip select signals to simplify connection of memory or I/O devices.

The module has 8 chip select output pins. The hardware outputs the chip select signals from the pins when it detects access of an address in the areas specified in the pin registers.

(1) Register Configuration

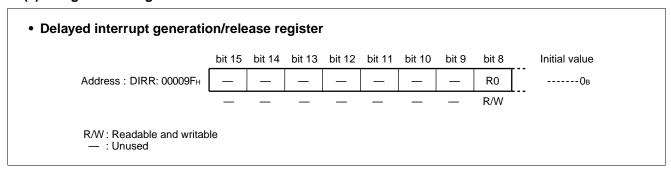

Block Diagram

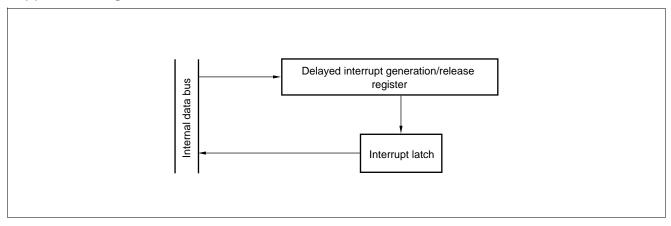


6. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F²MC-16L CPU to activate the extended intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for extended intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on "H", "L" levels can be selected, giving a total of four types.

(1) Register Configuration

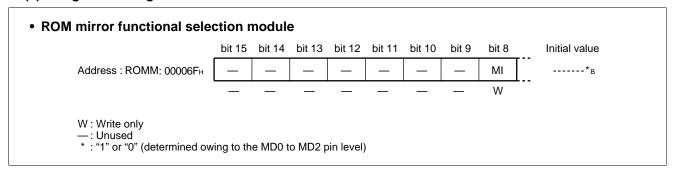




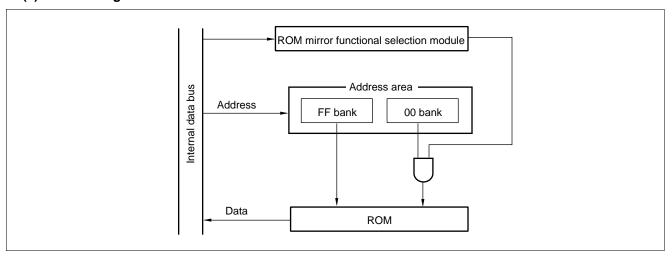
7. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F²MC-16L CPU can be generated and cleared by software using this module.

(1) Register Configuration



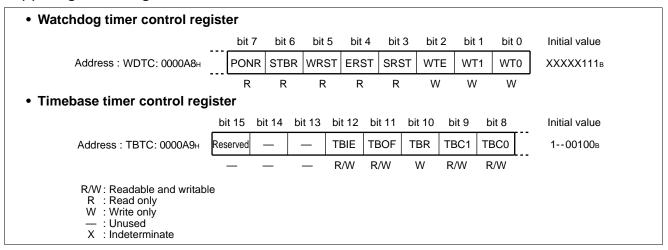
8. ROM Mirror Functional Selection Module

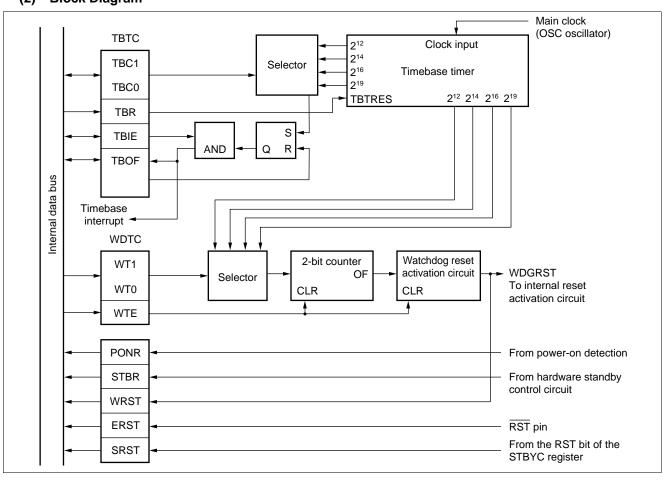

ROM mirror function selecting module can be referred to the upper 48 Kbytes of FF bank which is wired ROM at 00 bank by selecting the resister setting.

(1) Register Configuration

Notes: • The initial value of MB90V640A is "0" and that of MB90P641A, MB90641A is "1".

• Not to access to this register while address 04000H to 00FFFFH are in operation.




9. Watchdog Timer and Timebase Timer

The watchdog timer consists of a 2-bit watchdog counter, a control register, and a watchdog reset controller. The watchdog counter uses the carry-up signal from the 18-bit timebase timer as its clock source.

In addition to the 18-bit timer, the timebase timer contains an interval interrupt control circuit. The timebase timer uses the main clock, regardless of the value of the MCS bit in the CKSCR register.

(1) Register Configuration

10. Low-power Control Circuits (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, and Clock Multiplier Function)

The following operation modes are available: PLL clock mode, PLL sleep mode, timer mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Operation modes other than PLL clock mode are classified as low-power consumption modes.

In main clock mode and main sleep mode, the device operates on the main clock only (OSC oscillator clock). The PLL clock (VCO oscillator clock) is stopped in these modes and the main clock divided by 2 is used as the operating clock.

In PLL sleep mode and main sleep mode, the CPU's operating clock only is stopped and other elements continue to operate.

In timer mode, only the timebase timer operates.

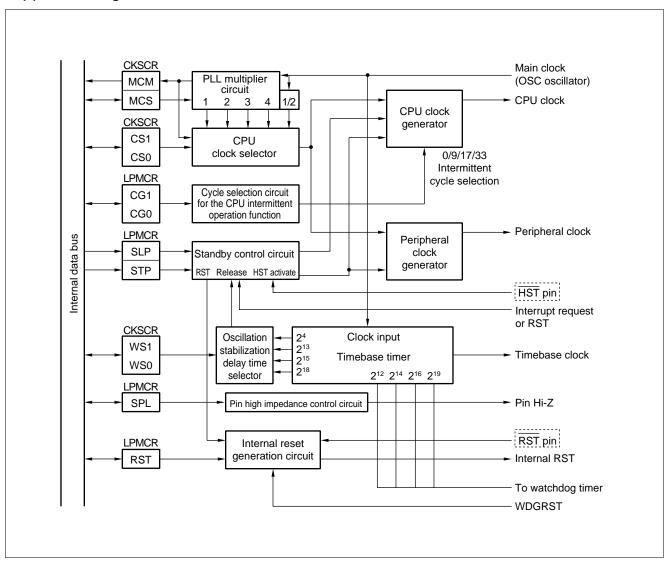
Stop mode and hardware standby mode stop the oscillator. These modes maintain existing data with minimum power consumption.

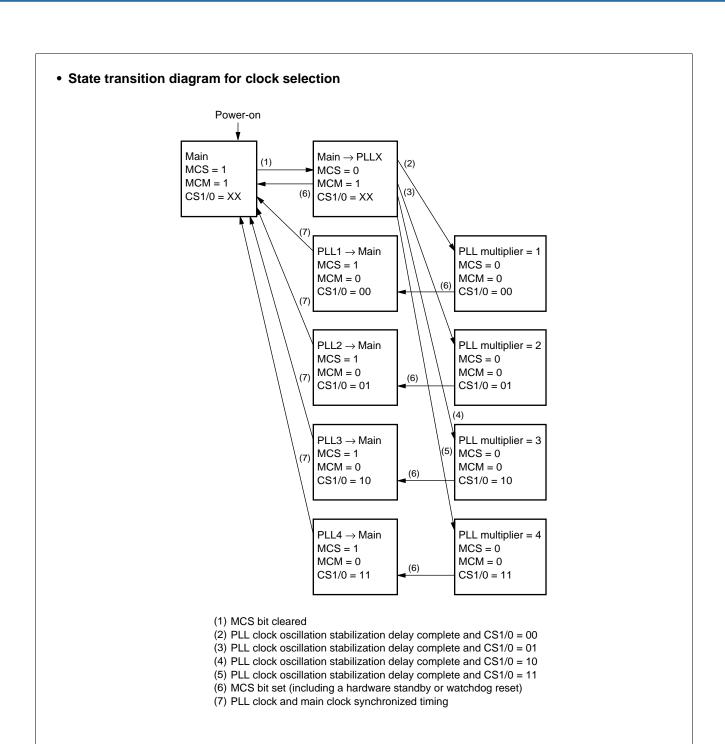
The CPU intermittent operation function provides an intermittent clock to the CPU when register, internal memory, internal resource, or external bus access is performed. This function reduces power consumption by lowering the CPU execution speed while still providing a high-speed clock to internal resources.

The PLL clock multiplier ratio can be set to 1, 2, 3, 4 by the CS1, CS0 bits.

The WS1, WS0 bits set the delay time to wait for the main clock oscillation to stabilize when recovering from stop mode or hardware standby mode.

(1) Register Configuration

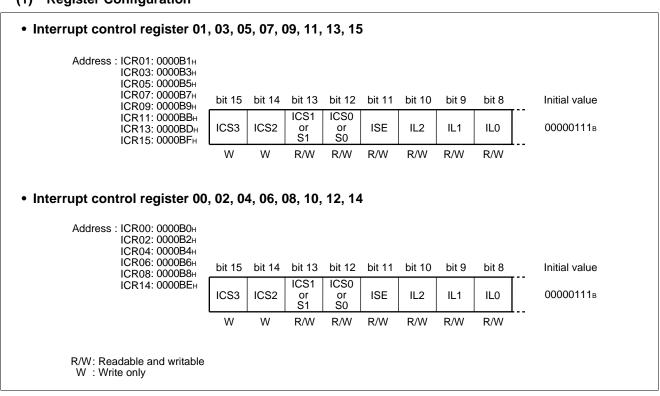

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value Address: LPMCR: 0000A0H STP SLP SPL RST Reserved CG1 CG0 Reserved 00011000в R/W W W R/W W R/W


· Clock select register

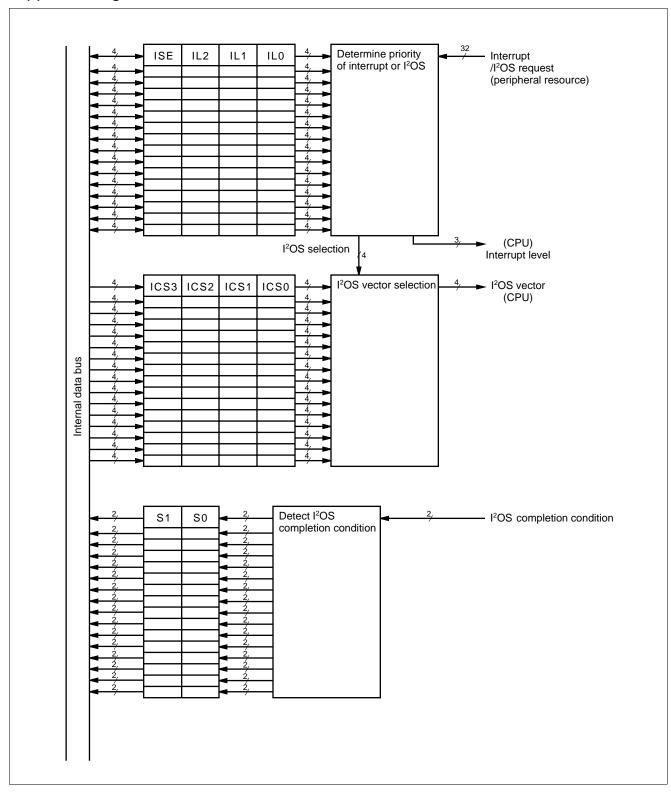
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address: CKSCR: 0000A1H Reserved MCM WS1 WS0 Reserved MCS CS1 CS₀ 11111100в R/W R/W R/W R/W R/W

R/W: Readable and writable

R : Read only W : Write only

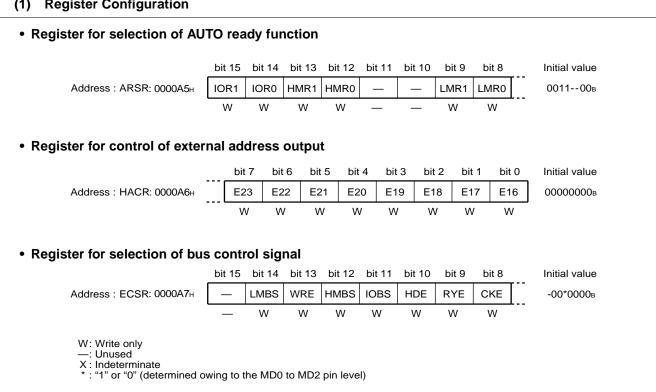


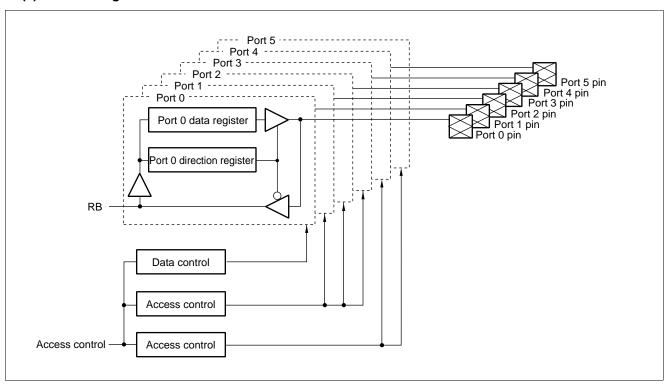
11. Interrupt Controller


The interrupt control registers are located in the interrupt controller. An interrupt control register is provided for each I/O with an interrupt function. The registers have the following three functions.

- Set the interrupt level of the corresponding peripheral.
- Select whether to treat interrupts from the corresponding peripheral as standard interrupts or activate the extended intelligent I/O service.
- Select the extended intelligent I/O service channel.

(1) Register Configuration


Note: Do not access these registers using read-modify-write instructions as this can cause misoperation.


12. External Bus Terminal Control Circuit

This circuit controls the external bus terminals intended to extend outwardly the CPU's address/data bus.

(1) Register Configuration

Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 6.0	V	
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage*1	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level maximum output current*2	loL	_	15	mA	
"L" level average output current*3	lolav	_	4	mA	
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current*4	Σ lolav	_	50	mA	
"H" level maximum output current*2	Іон	_	-15	mA	
"H" level average output current*3	Іонач	_	-4	mA	
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current*4	ΣΙομαν	_	-50	mA	
Down consumation	Ъ	_	+150	mW	MB90641A
Power consumption	P _D	_	+400	mW	MB90P641A
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1:} V_I and V_O must not exceed V_{CC} + 0.3 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} The maximum output current must not be exceeded at any individual pin.

^{*3:} The average output current is the operating current running through an appropriate pin \times the operating rate.

^{*4:} The average total output current is the operating current running through all the appropriate pins × the operating rate.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Oilit	Kemarks
Dower cumply voltage	Vcc	4.5	5.5	V	For normal operation
Power supply voltage	Vcc	3.5	5.5	V	To maintain statuses in stop mode
	VIH	2.2	Vcc + 0.3	V	TTL level input pins
"L" lovel input voltage	VIHC	0.7 Vcc	Vcc + 0.3	V	CMOS level input pins
"H" level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins*
	Vінм	Vcc - 0.3	Vcc + 0.3	V	MD input pin
	VIL	Vss - 0.3	0.8	V	TTL level input pins
"L" level input voltage	VILC	Vss - 0.3	0.3 Vcc	V	CMOS level input pins
L level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins*
	VILM	Vss - 0.3	Vss + 0.3	V	MD input pin
Smoothing capacitor	Cs	0.1	1.0	μF	Use the ceramic capacitor or the capacitor which has the similar frequency characteristic as ceramic capacitor. When attach the smoothing capacitor to Vcc, use the capacitor whose capacitance is larger than Cs.
Operating temperature	TA	-40	+85	ç	

^{*:} Target pins are P60 to P67, P71 to P76, P80 to P86, P90 to P95, HST, and RST. (When used as general purpose pins)

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

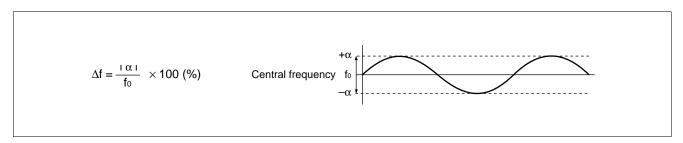
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

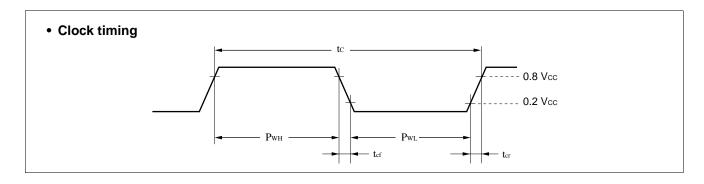
3. DC Characteristics

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Devementer	Cramb al	Din nama			Value	,		Demonts
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level output voltage	Vон	Other than P60 to P67	Vcc = 4.5 V, Io _H = -4.0 mA	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V, lo _L = 4.0 mA	_	_	0.4	V	
Input leakage current	lı∟	Other than P60 to P67	Vcc = 5.5 V, Vss < V ₁ < Vcc	- 5	_	5	μΑ	
Open-drain output leakage current	lleak	P60 to P67	_	_	0.1	5	μА	
Pull-up resistance	Rup	_	_	15	50	100	kΩ	
Pull-down resistance	RDOWN	_	_	15	50	200	kΩ	
	Icc	36	Internal 16 MHz operation	_	50	70	mA	MB90V640A/ P641A
			Normal operation	_	15	20	mA	MB90641A
Power supply	Iccs	Vcc = 5.0 V	Internal 16 MHz operation	_	25	30	mA	MB90V640A/ P641A
current*			Sleep mode	_	5	10	mA	MB90641A
	Іссн		T _A = +25°C	_	0.1	10	μΑ	MB90V640A/ P641A
			Stop mode	_	5	20	μΑ	MB90641A
Input capacitance	Cin	Other than Vcc, Vss, C	_	_	10	_	pF	

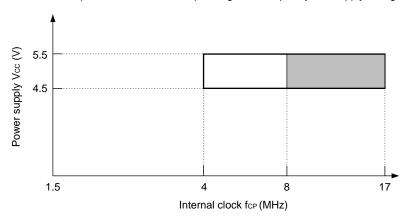
^{* :} Because the current values are tentative values, they are subject to change without notice due to our efforts to improve the characteristics of these devices.

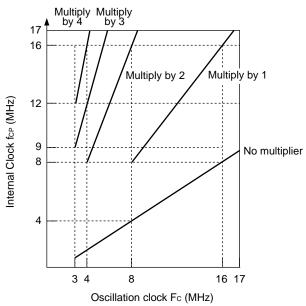

4. AC Characteristics


(1) Clock Timing

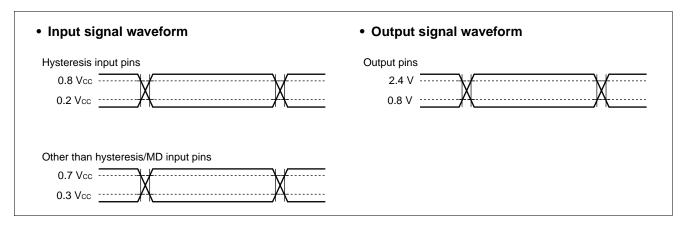
 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol	riii iidiiie	Conditions	Min.	Max.	Unit	Remarks
Source oscillation frequency	Fc	X0, X1	_	3	17	MHz	
Source oscillation cycle time	t c	X0, X1	_	58.8	333	ns	
Frequency variation ratio* (when locked)	Δf	_	_	_	5	%	
Input clock pulse width	P _{WH} P _{WL}	X0	_	10	_	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	t _{cr}	X0	_	_	5	ns	
Internal operating clock frequency	f CP	_	_	1.5	17	MHz	
Internal operating clock cycle time	tcp	_	_	58.8	666	ns	


*: The frequency variation ratio is the maximum variation from the specified central frequency when the multiplier PLL is locked. The value is expressed as a proportion.


• PLL operation assurance range

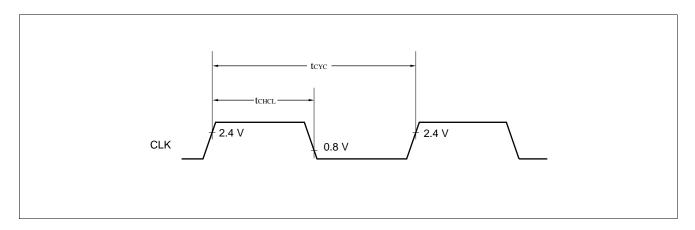
Relationship between the internal operating clock frequency and supply voltage



: Normal operation assurance range : PLL operation assurance range

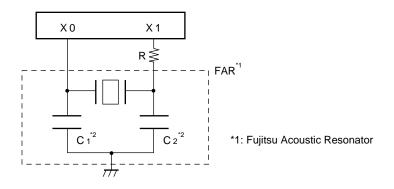
Relationship between the oscillation frequency and internal operating clock frequency

The AC characteristics are for the following measurement reference voltages.



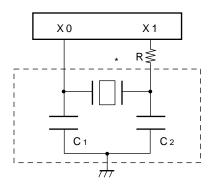
(2) Clock Output Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$


Parameter	Symbol Pin name		Conditions	Va	lue	Unit	Remarks
raiametei	Syllibol	1 III IIailie	Conditions	Min.	Max.	Oilit	Remarks
Cycle time	tcyc	CLK		t CP	_	ns	
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK	_	tcp/2 - 20	tcp/2 + 20	ns	

tcp: See " (1) Clock Timing."

(3) Recommended Resonator Manufacturers


• Sample application of piezoelectric resonator (FAR family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Loading capacitors*2
FAR-C4CC-02000-L20	2.00	1 kΩ	±0.5%	±0.5%	
FAR-C4CA-04000-M01	4.00	_	±0.5%	±0.5%	
FAR-C4CB-08000-M02	8.00	_	±0.5%	±0.5%	Built-in
FAR-C4CB-10000-M02	10.00	_	±0.5%	±0.5%	
FAR-C4CB-16000-M02	16.00	_	±0.5%	±0.5%	

Inquiry: FUJITSU LIMITED

• Sample application of ceramic resonator

Resonator manufacturer*	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	KBR-2.0MS	2.00	150	150	Not required
	PBRC2.00A	2.00	150	150	Not required
	KBR-4.0MSA		33	33	680 Ω
	KBR-4.0MKS	4.00	Built-in	Built-in	680 Ω
	PBRC4.00A	4.00	33	33	680 Ω
	PBRC4.00B		Built-in	Built-in	680 Ω
	KBR-6.0MSA		33	33	Not required
17	KBR-6.0MKS	6.00	Built-in	Built-in	Not required
Kyocera Corporation	PBRC6.00A	6.00	33	33	Not required
Corporation	PBRC6.00B		Built-in	Built-in	Not required
	KBR-8.0M		33	33	560 Ω
	PBRC8.00A	8.00	33	33	Not required
	PBRC8.00B		Built-in	Built-in	Not required
	KBR-10.0M	10.00	33	33	330 Ω
	PBRC10.00B	10.00	Built-in	Built-in	680 Ω
	KBR-12.0M	12.00	33	33	330 Ω
	PBRC12.00B	12.00	Built-in	Built-in	680 Ω

(Continued)

(Continued)

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040	2.00	Built-in	Built-in	Not required
	CSA4.00MG040	4.00	100	100	Not required
	CST4.00MGW040	4.00	Built-in	Built-in	Not required
	CSA6.00MG	6.00	30	30	Not required
	CST6.00MGW	6.00	Built-in	Built-in	Not required
	CSA8.00MTZ	8.00	30	30	Not required
M (M . O .	CST8.00MTW	6.00	Built-in	Built-in	Not required
Murata Mfg. Co., Ltd.	CSA10.00MTZ	10.00	30	30	Not required
Liu.	CST10.00MTW	10.00	Built-in	Built-in	Not required
	CSA12.00MTZ	12.00	30	30	Not required
	CST12.00MTW	12.00	Built-in	Built-in	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
	CST16.00MXW0C3	16.00	Built-in	Built-in	Not required
	CSA20.00MXZ040	20.00	10	10	Not required
	CSA24.00MXZ040	24.00	5	5	Not required
	CSA32.00MXZ040	32.00	5	5	Not required

Inquiry: Kyocera Corporation

AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

• AVX Limited

European Sales Headquarters: TEL 44-1252-770000

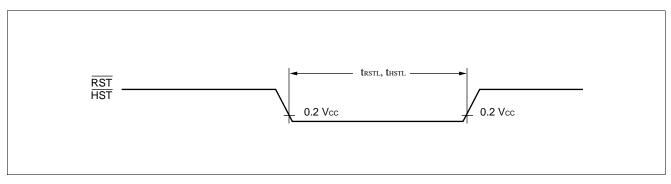
• AVX/Kyocera H.K. Ltd.

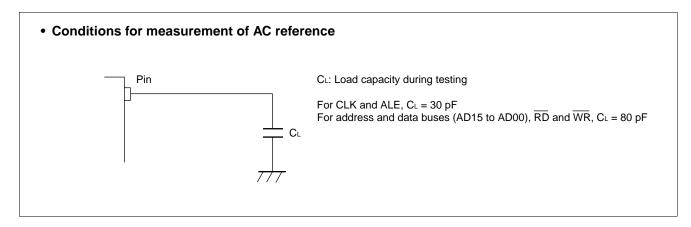
Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

• Murata Electronics North America, Inc.: TEL 1-404-436-1300

• Murata Europe Management GmbH: TEL 49-911-66870


• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

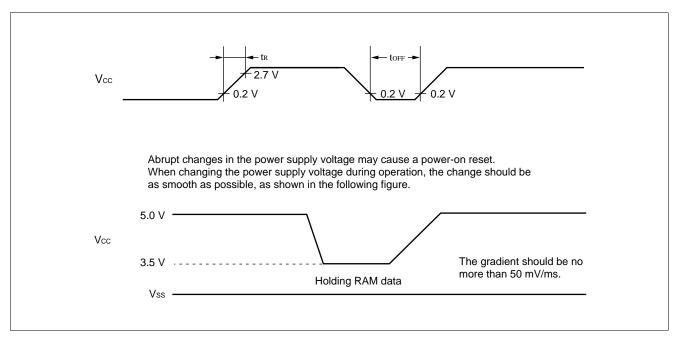

(4) Reset and Hardware Standby Inputs

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
	Syllibol			Min.	Max.		Nemarks
Reset input time	t RSTL	RST	_	16 tcp	_	ns	
Hardware standby input time	t HSTL	HST	_	16 tcp	_	ns	

tcp: See " (1) Clock Timing."

(5) Power on Supply Specifications (Power-on Reset)

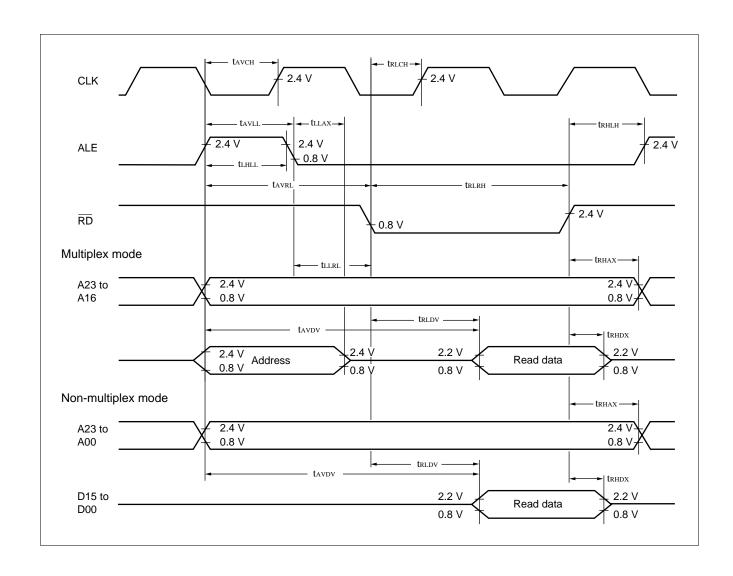

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
				Min.	Max.		
Power supply rise time	t R	Vcc	_	0.05	30	ms	
Power supply cut-off time	toff	Vcc	_	50	_	ms	For repetition of the operation

^{*:} Vcc should be lower than 0.2 V before power supply rise.

Notes: • The above values are the values required for a power-on reset.

- When $\overline{\text{HST}}$ = "L", this standard must be followed to turn on power supply for power-on reset whether or not necessary.
- The device has built-in registers which are initialized only by power-on reset. For possible initialization of these registers, turn on power supply according to this standard.

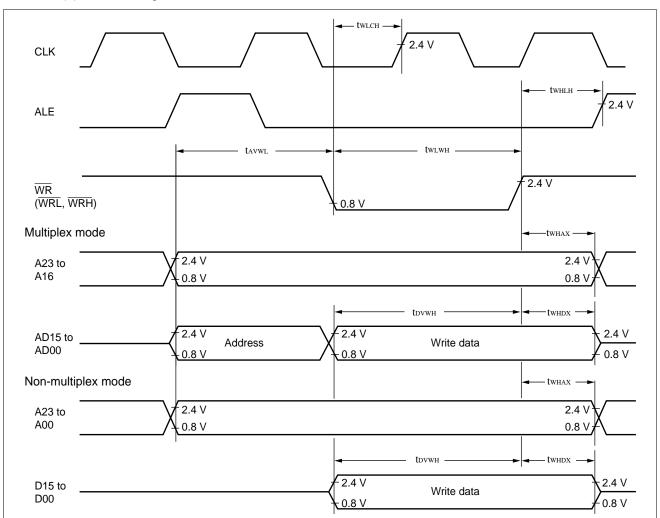


(6) Bus Timing (Read)

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	I		(• 0.	3 = 4.5 V = 3.5	0 0 10 100 07		
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
i didilicici	Symbol	1 III IIaiiie	Conditions	Min.	Max.	5111	Remarks
ALE pulse width	t LHLL	ALE	_	tcp/2 - 20	_	ns	
Valid address \rightarrow ALE \downarrow time	tavll	Address	_	tcp/2 - 20	_	ns	
ALE $\downarrow \rightarrow$ address valid time	tLLAX	Address	_	tcp/2 - 15	_	ns	
Valid address \rightarrow \overline{RD} ↓ time	tavrl	Address	_	tcp - 15	_	ns	
Valid address → valid data input	tavdv	Address/ data	_	_	5 tcp/2 - 60	ns	
RD pulse width	t rlrh	RD	_	3 tcp/2 - 20		ns	
$\overline{RD} \downarrow \to valid \; data \; input$	t RLDV	Data	_	_	3 tcp/2 - 60	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	Data	_	0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	_	tcp/2 - 15	_	ns	
$\overline{RD} \uparrow \to address \ valid \ time$	t RHAX	Address, RD	_	tcp/2 - 10	_	ns	
Valid address → CLK ↑ time	t avch	Address, CLK	_	tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK	_	tcp/2 - 20	_	ns	
$ALE \downarrow \to \overline{RD} \downarrow time$	t llrl	ALE, RD		tcp/2 - 15		ns	

tcp: See " (1) Clock Timing."

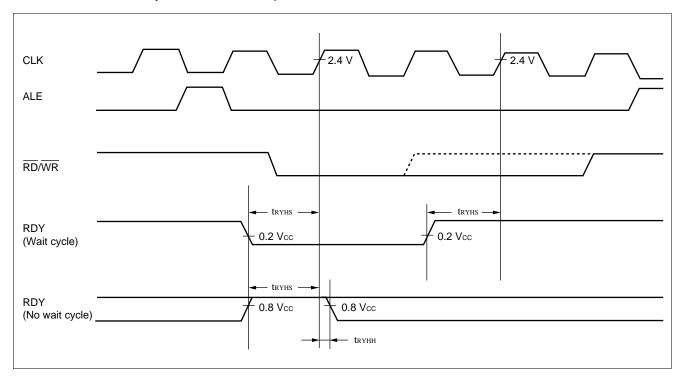


(7) Bus Timing (Write)

 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
Parameter	Syllibol	Pili liaille	Conditions	Min.	Max.	Ullit	Remarks
Valid address $ ightarrow \overline{WR} \downarrow$ time	tavwl	Address	_	tcp - 15	_	ns	
WR pulse width	twwh	WRL, WRH	_	3 tcp/2 - 20	_	ns	
Valid data output \rightarrow $\overline{\text{WR}}$ \uparrow time	tovwh	Data	_	3 tcp/2 - 20	_	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow data \; hold \; time$	twnpx	Data		20	_	ns	Multiplex mode
WK 1 → data floid time	LWHDX	Data	_	30	_	ns	Non-multiplex mode
$\overline{ m WR} \uparrow ightarrow$ address valid time	twhax	Address		tcp/2 - 10	_	ns	
$\overline{ m WR} \uparrow ightarrow m ALE \uparrow time$	twhlh	WRL, WRH, ALE	_	tcp/2 - 15	_	ns	
$\overline{\mathbb{WR}}\downarrow o CLK\uparrow time$	twlch	WRL, WRH, CLK		tcp/2 - 20	_	ns	

tcp: See " (1) Clock Timing."

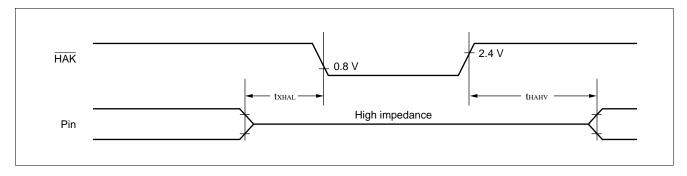


(8) Ready Input Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
	Syllibol	Fili lialile	Conditions	Min.	Max.	Unit	I/Cilial K2
RDY setup time	t RYHS	RDY	Vcc = 5.0 V ±10%	45	_	ns	
RDY hold time	t RYHH		_	0	_	ns	

Note: Use the auto-ready function if the setup time at fall of the RDY is too short.

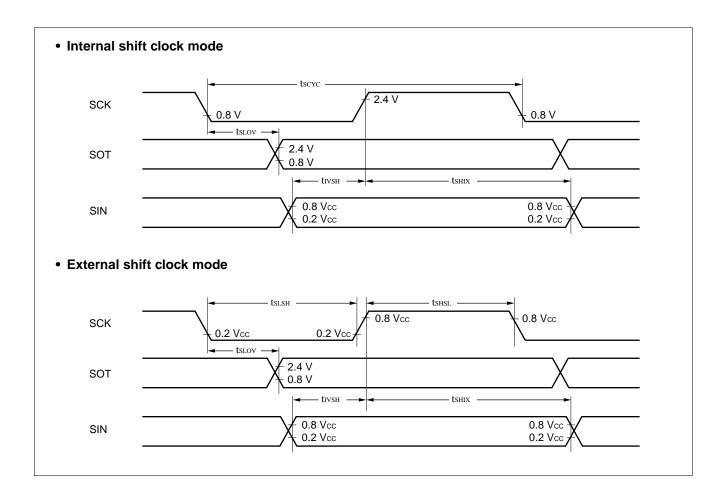

(9) Hold Timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
	Syllibol	riii iiaiiie	Conditions	Min.	Max.	Offic	Remarks
Pin floating \rightarrow HAK \downarrow time	txhal	HAK	_	30	t CP	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t hahv	HAK	_	t CP	2 tcp	ns	

tcp: See " (1) Clock Timing."

Note: After reading HRQ, more than one cycle is required before changing HAK.

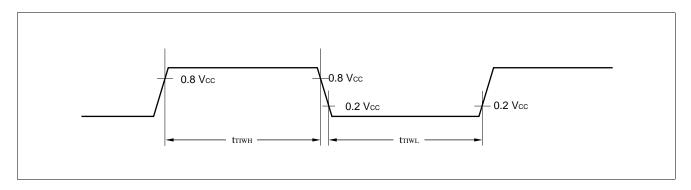

(10) I/O Extended Serial Timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Symbol	Din nome	Canditions	Va	lue	I Imit	Domorko
Parameter	Symbol	Pin name	Conditions	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK0, SCK1		8 tcp	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0, SCK1 SOT0, SOT1	C _L = 80 pF + 1 TTL for the internal shift	-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0, SCK1 SIN0, SIN1	clock mode output pin.	100	_	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0, SCK1 SIN0, SIN1		60	_	ns	
Serial clock "H" pulse width	tshsl	SCK0, SCK1		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0, SCK1		4 tcp	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0, SCK1 SOT0, SOT1	C _L = 80 pF + 1 TTL for the external shift	_	150	ns	
Valid SIN → SCK ↑	tıvsн	SCK0, SCK1 SIN0, SIN1	clock mode output pin.	60	_	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SCK0, SCK1 SIN0, SIN1		60	_	ns	

Notes: • These are the AC characteristics for CLK synchronous mode.

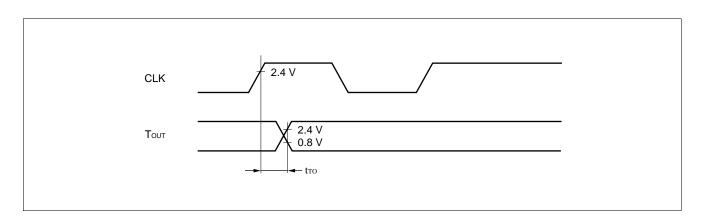
- C_L is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- The values in the upper table are targets.



(11) Timer Input Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

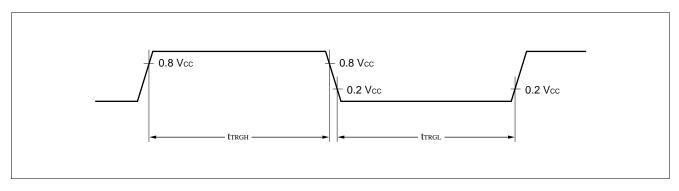
Parameter	Symbol	I Pin name Conditions	Va	lue	Unit	Remarks	
	Syllibol	Fill Hallie	Conditions	Min.	Max.	Oilit	iveillai və
Input pulse width	tтіwн tтіwL	TIM0 to TIM4	_	4 tcp	_	ns	


tcp: See " (1) Clock Timing."

(12) Timer Output Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Va	ue Unit	Unit	Remarks	
	Symbol	i iii iiaiiie	Conditions	Min.	Max.	Unit	Nemarks	
CLK ↑ → Touт change timing	t то	TIM0 to TIM4	_	30	_	ns		

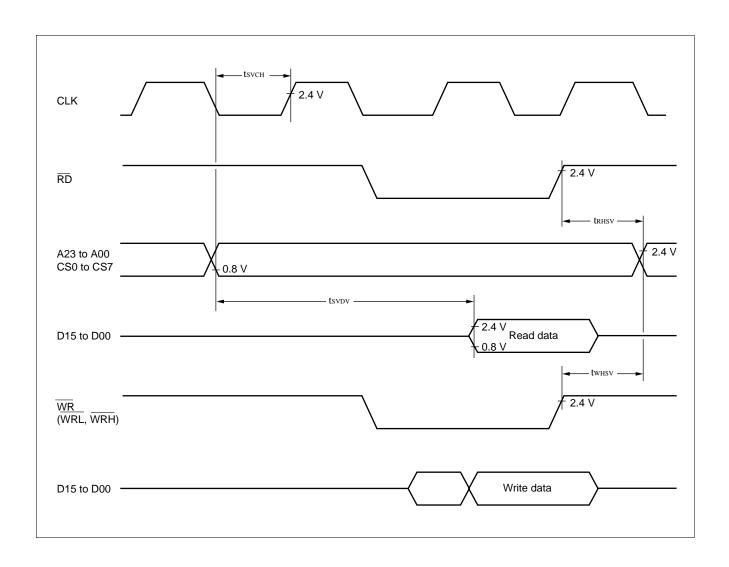


(13) Trigger Input Timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
raiailletei	Symbol	Fill Hallie	Conditions	Min.	Max.		
Input pulse width	t TRGL	INT0 to INT7	_	5 t cp	1	ns	

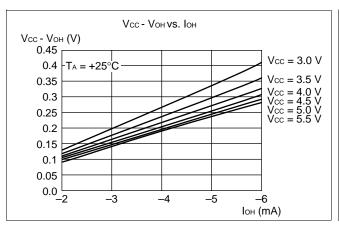
tcp: See " (1) Clock Timing."

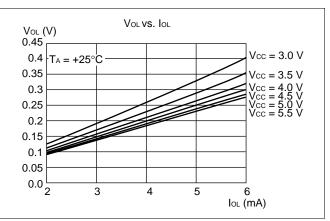


(14) Chip Select Output Timing

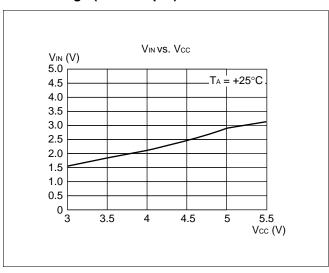
 $(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

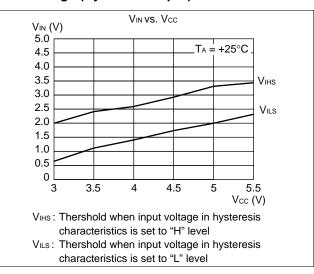
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
	Symbol	riii iiaiiie	Conditions	Min.	Max.	ns ns ns	Remarks
Chip select enabled → Valid data input time	tsvov	CS0 to CS7 D15 to D00	_	_	5 tcp/2 - 60	ns	
$\overline{\overline{\text{RD}}} \uparrow \rightarrow$ Chip select enabled time	trhsv	CS0 to CS7	_	tcp/2 - 10	_	ns	
$\overline{ m WR} \uparrow \rightarrow$ Chip select enabled time	twnsv	CS0 to CS7 WR	_	tcp/2 - 10	_	ns	
Enabled chip select \rightarrow CLK \uparrow time	tsvcн	CS0 to CS7 CLK	_	tcp/2 - 20	_	ns	

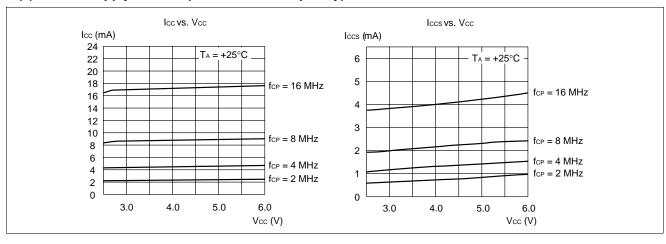

tcp: See " (1) Clock Timing."


■ EXAMPLES CHARACTERISTICS

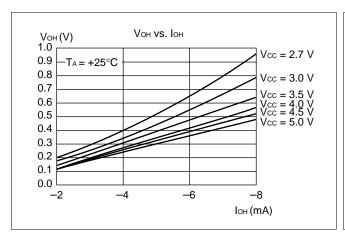
1. MB90641A


(1) "H" Level Output Voltage

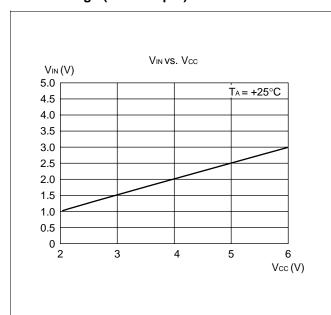

(2) "L" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

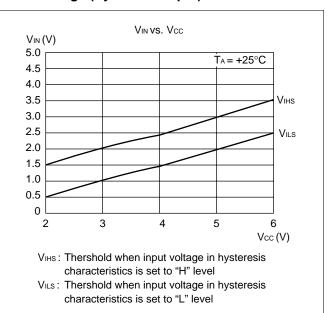


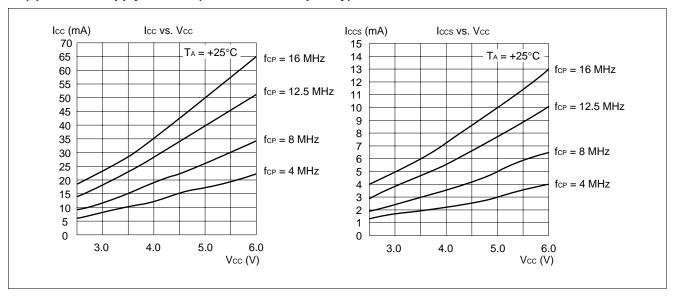
(5) Power Supply Current (fcp = Internal Frequency)

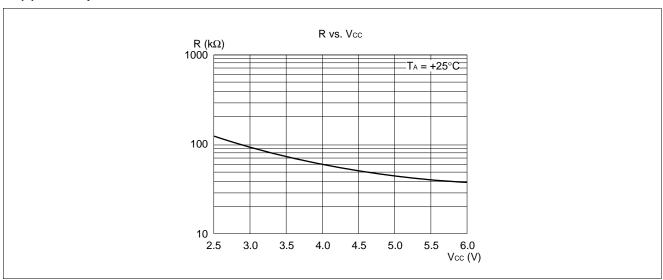


2. MB90P641A

(1) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(2) "L" Level Output Voltage


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (fcp = internal frequency)

(6) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. — : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
T	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	No	otation		Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R1 R2 R3 R4 R5 R6	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@RW @RW @RW @RW	/1 /2		Register indirect	0
0C 0D 0E 0F	@RW @RW @RW @RW	/1 + /2 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@ RW @ RW @ RW @ RW @ RW @ RW	/0 + dis /1 + dis /2 + dis /3 + dis /4 + dis /5 + dis /6 + dis /7 + dis	p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW @RW	/0 + dis /1 + dis /2 + dis /3 + dis	p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@RW	/0 + RW /1 + RW + disp1 6	<i>1</i> 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) l	byte	(c) v	vord	(d) long			
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access		
Internal register	+0	1	+0	1	+0	2		
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4		
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4		
External data bus (8 bits)	+1	1	+4	2	+8	4		

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

n.	Inomonio	#		D.C	D	Operation		ΛU	_		_	N	7	V	_	DMM
	Inemonic	#	~	RG	В	Operation	LH	AH	I	S	Т	N	Z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z	*	-	_	-	*	*	_	-	_
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2 2	1	0	byte (A) \leftarrow (Ri)	Z Z	*	_	_	_	*	*	_	_	_
MOV MOV	A, ear	2		1	(b)	byte (A) \leftarrow (ear)	Z	*	_	_	_	*	*	_	_	_
MOV	A, eam A, io	2+ 2	3+ (a)	0	(b) (b)	byte (A) \leftarrow (eam) byte (A) \leftarrow (io)	Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	0	byte (A) \leftarrow (io)	Z	*	_	_	_	*	*		_	_
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	7	_	_	_	_	*	*		_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	Z Z	*	_	_	_	*	*	_	_	_
MOVN	A, #imm4	1	1	ō	0	byte (A) \leftarrow imm4	Z	*	_	-	_	R	*	-	_	_
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Х	*	_	_	_	*	*	-	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	Χ	*	_	_	_	*	*	_	-	_
MOVX	A, ear	2	2	1	0	byte (A) ← (ear)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	X	*	-	_	-	*	*	_	-	_
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_	-	_
MOVX	A, #imm8	2	2	0	0	byte (A) \leftarrow imm8	X		-	_	-	*	*	_	-	_
MOVX	A, @A	2	3	0	(b)	byte (A) \leftarrow ((A))	X	*	_	_	_	*	*	_	_	_
MOVX MOVX	A,@RWi+disp8	2	5 10	1	(b)	byte (A) \leftarrow ((RWi)+disp8) byte (A) \leftarrow ((RLi)+disp8)	X	*	_	_	_	*	*	_	_	_
IVIOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((KLI)+dispo)	^		_	_	_			-	_	_
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	byte (addr16) \leftarrow (A)	_	_	-	_	-	*	*	_	-	_
MOV	Ri, A	1	2	1	0	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOV	ear, A	2	2	1	0	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	0	(b)	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV MOV	io, A @RLi+disp8, A	2	3 10	0	(b) (b)	byte (io) \leftarrow (A) byte ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)						*	*			_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOV	ear, Ri	2	4 (a)	2	0	byte (ear) ← (Ri)	_	_	_	_	_	*	*	_	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, #imm8	2	2	1	0	byte (Ri) ← imm8	_	_	_	_	_	*	*	_	_	_
MOV	io, #imm8	3	5	0	(b)	byte (io) ← imm8	_	_	_	_	_	_	_	_	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8	_	_	_	_	_	_	_	_	_	_
MOV	ear, #imm8	3	2	1	0	byte (ear) ← imm8	_	_	_	_	_	*	*	_	_	_
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	_	_	_	_	_	_	-	_	_	_
MOV	@AL, AH	2	3	0	(b)	byte $((A)) \leftarrow (AH)$	_	_	-	-	-	*	*	_	_	_
/MOV	@A, T															
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	_	-	-	-	_	-	_	_	_
XCH	A, eam	2+	5+ (a)	0	_ ` /	byte (A) \leftrightarrow (eam)	Z	_	-	-	-	_	_	_	_	_
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCH	Ri, eam	2+	9+ (a)	2	2× (b)	byte (Ri) \leftrightarrow (eam)	_	_	_	_	_	_	_	_	_	_

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(c)	word (A) ← (addr16)	_	*	_	_	_	*	*	_	_	_
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	_	*	_	_	_	*	*	_	_	_
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow (RWi)$	_	*	_	_	_	*	*	_	_	_
MOVW A, ear	2	2	1	0	word (A) ← (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	_	*	_	_	_	*	*	_	_	_
MOVW A, io	2	3 ′	0	(c)	word $(A) \leftarrow (io)$	_	*	_	_	_	*	*	_	_	_
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow ((A))$	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	0	0	word (A) \leftarrow imm16	_	*	_	_	_	*	*	_	_	_
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	_	*	_	_	_	*	*	_	_	_
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	_	*	-	_	_	*	*	_	_	_
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW SP, A	1	1	0	0	word (SP) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW ear, A	2	2	1	0	word (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW eam, A	2+	3+ (a)	0	(c)	word (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, ear	2	3	2	(0)	word (RWi) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) ← (eam)	_	_	_	_	_	*	*	_	_	_
MOVW ear, RWi	2	4	2	0	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2	1	0	word (RWi) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	5	0	(c)	word (io) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	1	O´	word (ear) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW eam, #imm16	4+	4+ (a)	0	(c)	word (eam) ← imm16	_	_	-	_	_	_	-	_	_	_
MOVW AL, AH /MOVW @A, T	2	3	0	(c)	word $((A)) \leftarrow (AH)$	_	_	-	_	_	*	*	_	_	_
- ,															
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)	word (A) \leftrightarrow (eam)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	7	4	0	word (RWi) ↔ (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	word (RWi) ↔ (eam)	_	_	_	_	_	_	_	_	_	_
MOVL A, ear	2	4	2	0	long (A) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVL A, eam	2+	5+ (a)	0	(d)	$long(A) \leftarrow (ean)$	_	_	_	_	_	*	*	_	_	_
MOVL A, #imm32	5	3+ (a)	0	0	$long(A) \leftarrow (ean)$ $long(A) \leftarrow imm32$	_	_	_	_	_	*	*	_	_	_
											*	*			
MOVL ear, A	2	4	2	0	long (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	$long (eam) \leftarrow (A)$	_	_	_	_	_			_	_	_

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mne	monic	#	~	RG	В	Operation	LH	ΑН	ı	s	Т	N	Z	٧	С	RMW
ADD	A.#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Z	_				*	*	*	*	
ADD	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) +inino byte (A) \leftarrow (A) +(dir)	Z	_	_	_	_	*	*	*	*	_
ADD	A, un A, ear	2	3	1	0	byte (A) \leftarrow (A) $+$ (air)	Z	_	_	_		*	*	*	*	_
ADD	A, ean	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $+$ (ean)	Z	_	_			*	*	*	*	_
ADD	ear, A	2	3	2	0	byte (A) \leftarrow (A) $+$ (earl)	_	_	_	_		*	*	*	*	_
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (ear) \leftarrow (ear) + (A)	Z	_	_	_	_	*	*	*	*	*
ADDC	A	1	2 2	Ö	0	byte (A) \leftarrow (AH) + (AL) + (C)	Z	_	_	_	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	_	_	_	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	Ö	(b)	byte $(A) \leftarrow (A) + (ean) + (C)$	Z	_	_	_	_	*	*	*	*	_
ADDDC		1	3	ő	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	ő	Ö	byte (A) \leftarrow (A) $-$ imm8	Z	_	_	_	_	*	*	*	*	_
SUB	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) $-$ (dir)	Z	_	_	_	_	*	*	*	*	_
SUB	A, ear	2	3	1	0	byte (A) \leftarrow (A) $-$ (ear)	Z	_	_	_	_	*	*	*	*	_
SUB	A, eam	2+	4+ (a)	Ö	(b)	byte (A) \leftarrow (A) $-$ (eam)	Z	_	_	_	_	*	*	*	*	_
SUB	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) $-$ (A)	_	_	_	_	_	*	*	*	*	_
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBC	Α	1	2	Ö	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C)	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, ear	2	3	1	0	byte (A) \leftarrow (A) $-$ (ear) $-$ (C)	Z	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	Ö	(b)	byte (A) \leftarrow (A) $-$ (eam) $-$ (C)	Z	_	_	_	_	*	*	*	*	_
SUBDC		1	3	0	0	byte (A) \leftarrow (AH) – (AL) – (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
				_									*	*	*	
ADDW	A	1	2	0	0	word (A) \leftarrow (AH) + (AL)	_	_	_	_	_	*	*	*	*	_
ADDW	A, ear	2	3	1	0	word (A) \leftarrow (A) $+$ (ear)	_	_	_	-	_	*	*	*	*	_
ADDW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	_	_	-	_	_	*	*	*	*	_
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	_	_	_	_	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	_	_	-	_	_	*	*	*	*	<u>-</u>
ADDW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	_	_	-	_	_	*	*	*	*	
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	-	_	_	*	*	*	*	_
ADDCW		2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	_	-	_	_	*	*	*	*	_
SUBW	Α	1	2	0	0	word (A) \leftarrow (AH) $-$ (AL)	_	_	_	_	_	*	*	*	*	_
	A, ear	2	3	1	0	word (A) \leftarrow (A) $-$ (ear)	_	_	_	_	_	*	*	*	*	_
SUBW	A, eam A, #imm16	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam)	_	_	_	_	_	*	*	*	*	_
SUBW	*	3	2	0	0	word (A) \leftarrow (A) $-imm16$	_	_	_	_	_	*	*	*	*	_
	ear, A	2	3	2	0	word (ear) \leftarrow (ear) $-$ (A)	_	_	_	_	_	*	*	*	*	<u>-</u>
	eam, A	2+	5+ (a)	0	2×(c)	word (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	
SUBCW		2	_	1	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_	_	*	*	*	*	_
SUBCW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam) $-$ (C)	_	-	_	_	_					_
ADDL	A, ear	2	6	2	0	long (A) \leftarrow (A) + (ear)	_	_	_	-	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, #imm32	5	4	0)O	$long(A) \leftarrow (A) + lmm32$	_	_	_	_	_	*	*	*	*	_
SUBL	A, ear	2	6	2	0	$long(A) \leftarrow (A) - (ear)$	_		_	_	_	*	*	*	*	_
SUBL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) - (eam)$	_	_	_	_	_	*	*	*	*	-
SUBL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) $-imm32$	_	-	_	_	_	*	*	*	*	-

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mr	nemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_	_	-	_	_	*	*	*	-	*
DEC DEC	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	_ _	_ _		_	_ _	*	*	*		_ *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	_	1 1	_	_	*	*	*	1 1	*
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	_ _	_ _		_	_ _	*	*	*		- *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	$\begin{array}{l} \text{long (ear)} \leftarrow \text{(ear) +1} \\ \text{long (eam)} \leftarrow \text{(eam) +1} \end{array}$	_ _	_ _		_	_ _	*	*	*		*
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	_ _	_ _	_ _	_	_ _	*	*	*	-	- *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2	0	O´	byte (A) ← imm8	_	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	-	-	-	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) \leftarrow (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word (A) \leftarrow imm16	-	_	_	_	_	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) \leftarrow (eam)	_	_	_	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	_	_	_	_	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	nonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	-	_	-	-	_	_	-	*	*	_
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient → byte (A) Remainder → byte (ear)	-	_	_	_	_	_	-	*	*	_
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient → byte (A) Remainder → byte (eam)	-	-	_	_	_	_	-	*	*	_
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	-	-	_	_	_	_	-	*	*	_
DIVUW	A, eam	2+	*5	0	*7	$\begin{array}{l} \text{long (A)/word (eam)} \\ \text{Quotient} \rightarrow \text{word (A) Remainder} \rightarrow \text{word (eam)} \end{array}$	_	1	_	_	_	_	-	*	*	_
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) → word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	_	_	_	_	_	-	-	_	_
MULUW	Α	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) → long (A)	_	_	_	_	_	-	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word $(eam) \rightarrow long(A)$	-	-	_	_	_	_	ı	-	-	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)			 - - -	_ _ _ _	- - - -	* * * * *	* * * *	R R R R R		_ _ _ _ *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	 - - -			_ _ _ _	- - - -	* * * * *	* * * * *	R R R R R		_ _ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	1 1 1 1 1			_ _ _ _	- - - -	* * * * *	* * * * *	R R R R R		_ _ _ _ *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- -			_ _ _	- - -	* *	* *	R R R		_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	11111		11111			* * * * * *	* * * * * *	RRRRRR	11111	_ _ _ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	11111		11111	- - - -	- - - -	* * * * * *	* * * * * *	R R R R R R		- - - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)				_ _ _ _	- - - -	* * * * * *	* * * * * *	R R R R R		_ _ _ _ _ *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* *	* *	R R R	- - -	_ _ *

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	-	_ _	-	_	*	*	R R	_	_
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_	1 1	_	1 1	_ _	*	*	R R	_	_
XORL XORL	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A) xor (ear)} \\ \text{long (A)} \leftarrow \text{(A) xor (eam)} \end{array}$		1 1	_ _	1 1	_ _	*	*	R R	_	_ _

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	1	-	_	-	*	*	*	*	-
NEG NEG	ear eam	2 2+	3 5+ (a)	2		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	1		_ _	_	*	*	*	*	*
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	1	-	_	_	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2		word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _		_ _	_ _	_	*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
NRML A, R0	2	*1	1	0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift until first digit is "1"} \\ \text{byte (R0)} \leftarrow \text{Current shift count} \end{array}$	-	-	-	-	-	1	*	1	-	_

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
RORC	Α	2	2	0	0	byte (A) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC	Α	2	2	0	0	byte (A) ← Left rotation with carry	_	-	-	-	-	*	*	_	*	-
RORC	ear	2	3	2	0	byte (ear) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
RORC	eam	2+	5+ (a)	0	2× (b)		_	_	_	_	_	*	*	_	*	*
ROLC	ear	2	3	2	o`´	byte (ear) ← Left rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC	eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Left rotation with carry	_	-	-	-	-	*	*	_	*	*
ASR	A, R0	2	*1	1	0	byte (A) ← Arithmetic right barrel shift (A, R0)	_	-	-	-	*	*	*	-	*	_
LSR	A, R0	2	*1	1	0	byte (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSL	A, R0	2	*1	1	0	byte (A) ← Logical left barrel shift (A, R0)	_	_	_	_	-	*	*	_	*	_
ASRW	Α	1	2	0	0	word (A) ← Arithmetic right shift (A, 1 bit)	_	-	-	-	*	*	*	-	*	_
LSRW	A/SHRW A	1	2	0	0	word (A) ← Logical right shift (A, 1 bit)	_	_	_	_	*	R	*	_	*	_
LSLW	A/SHLW A	1	2	0	0	word (A) ← Logical left shift (A, 1 bit)	_	-	-	-	-	*	*	_	*	_
ASRW	A, R0	2	*1	1	0	word (A) ← Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRW	A, R0	2	*1	1	0	word (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSLW	A, R0	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	_	_	_	_	-	*	*	_	*	_
ASRL	A, R0	2	*2	1	0	long (A) ← Arithmetic right shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRL	A, R0	2	*2	1	0	long (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSLL	A, R0	2	*2	1	0	long (A) ← Logical left barrel shift (A, R0)	_	_	_	_	_	*	*	_	*	_

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 18 Branch 1 Instructions [31 Instructions]

BZ/BEQ		#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
	rel	2	*1	0	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BNI		2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLO	rel	2	*1	0	0	Branch when (C) = 1	_	_	_	_	_	_	_	_	_	_
BNC/BH	S rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN r	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP r	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV r	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV r	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT r	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT r	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT r	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE r	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE r	rel	2	*1	0	0	Branch when $((V) \text{ xor } (N)) \text{ or } (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT r	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS r	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI r	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA r	rel	2	*1	0	0	Branch unconditionally	_	-	_	_	_	_	_	_	_	-
JMP (@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
	addr16	3	3	0	Ö	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
	@ear	2	3	1	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
_	@eam	2+	4+ (a)	0	(c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
	@ear *3	2	5	2	0	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
-	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
	addr24	4	4	0	0	word (PC) ← ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
OWN	addi 24	•		Ŭ		(PCB) ← ad24 16 to 23										
CALL	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
CALL (@eam *4	2+	7+ (a)	0	2× (c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
CALL a	addr16 *5	3	6	0	(c)	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
CALLV #	#vct4 *5	1	7	0		Vector call instruction	_	_	_	_	_	_	_	_	_	_
CALLP	@ear *6	2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15	_	-	_	-	_	_	_	_	-	-
CALLP	@eam *6	2+	11+ (a)	0	*2	(PCB) ← (ear) 16 to 23 word (PC) ← (eam) 0 to 15	_	_	_	_	_	_	_	_	_	_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ Juiii		\ \			(PCB) ← (eam) 16 to 23										
CALLP a	addr24 *7	4	10	0	2× (c)	word (PC) ← addr0 to 15, (PCB) ← addr16 to 23	_	-	-	-	_	_	_	_	_	-

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

N	Inemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
CBNE	A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE	A, #imm16, rel	4	*1	0	0	Branch when word (A) ≠ imm16	-	_	-	-	_	*	*	*	*	-
CBNE	ear, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE	eam, #imm8, rel*9	4+	*3	0	(b)	Branch when byte (eam) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE	ear, #imm16, rel	5	*4	1	0	Branch when word (ear) ≠ imm16	_	_	_	_	_	*	*	*	*	_
CWBNE	eam, #imm16, rel*9	5+	*3	0	(c)	Branch when word (eam) ≠ imm16	-	_	-	-	_	*	*	*	*	_
DBNZ	ear, rel	3	*5	2	0	Branch when byte (ear) = $(ear) - 1$, and $(ear) \neq 0$	ı	_	-	_	_	*	*	*	ı	-
DBNZ	eam, rel	3+	*6	2	2× (b)		-	_	-	-	_	*	*	*	-	*
DWBNZ	Z ear, rel	3	*5	2	0	Branch when word (ear) =	-	_	-	-	_	*	*	*	-	_
DWBNZ	Z eam, rel	3+	*6	2	2× (c)	(ear) -1 , and (ear) $\neq 0$ Branch when word (eam) = (eam) -1 , and (eam) $\neq 0$	-	_	-	-	_	*	*	*	-	*
INT	#vct8	2	20	0		Software interrupt	-	_	R	S	_	_	-	_	-	_
INT	addr16	3	16	0		Software interrupt	_	_	R	S	_	_	_	_	_	_
INTP	addr24	4	17	0		Software interrupt	_	_	R	S	_	_	_	_	_	_
INT9		1	20	0		Software interrupt	_	_	R	S	_	_ *	-	- *	- *	_
RETI		1	15	0	6× (c)	Return from interrupt	-	_	*	*	*	*	*	*	*	_
LINK	#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	ı	_	-	1	_	_	ı	1	ı	_
UNLIN	<	1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	_	_	-	-	_	_	_	_	_	-
RET *7		1	4	0	(c)	Return from subroutine	_	_	_	_	_	_	_	_	_	_
RETP *	8	1	6	0	(d)	Return from subroutine	_	_	_	_	_	_	_	_	_	_
L			_		` '											

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(c) (c) (c) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP)} \leftarrow (\text{SP}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$	- - -	_ _ _ _	- - -		_ _ _ _	1 1 1 1		_ _ _ _	- - -	- - -
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) +2n	_ _ _ _	* - -	- * -	- * -	- * -	*	- * -	- * -	- * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	-
AND CCR, #imm8 OR CCR, #imm8	2 2	3	0	0 0	byte (CCR) ← (CCR) and imm8 byte (CCR) ← (CCR) or imm8	<u>-</u>	_	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	- -	_	- -	_	_	I I	_	_	_	_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word (A) ←ear word (A) ←eam	_ _ _ _	_ - * *	_ _ _ _		_ _ _ _	1 1 1 1		_ _ _ _	- - -	- - -
ADDSP #imm8 ADDSP #imm16	2	3	0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_	_	_	_ _	_	1 1	_	_	_	- -
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	<u>-</u>	_	_	*	*	_	<u>-</u>	_ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank						111111	1 1 1 1 1 1	- - - - -		- - - -

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 21 Bit Manipulation Instructions [21 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	_ _ _	_ _ _	- - -	* *	* *	_ _ _	- - -	_ _ _
MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	7 7 6	0 0 0		bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	- - -	_ _ _		_ _ _	_ _ _	* *	* *	_ _ _	- - -	* * *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0		bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _		_ _ _	_ _ _	* *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	- - -	_ _ _		_ _ _	_ _ _	_ _ _		_ _ _	- - -	* *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _	* *	_ _ _	- - -	- - -
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _	* *	_ _ _	- - -	- - -
SBBS	addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	_	_	_	_	*	_	_	*
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	_
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	_	_	-	_	_	_	-	_	_	_

^{*1: 8} when branching, 7 when not branching

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

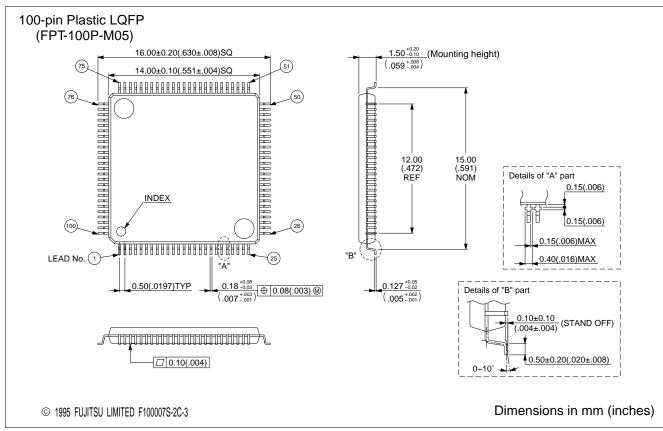
Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

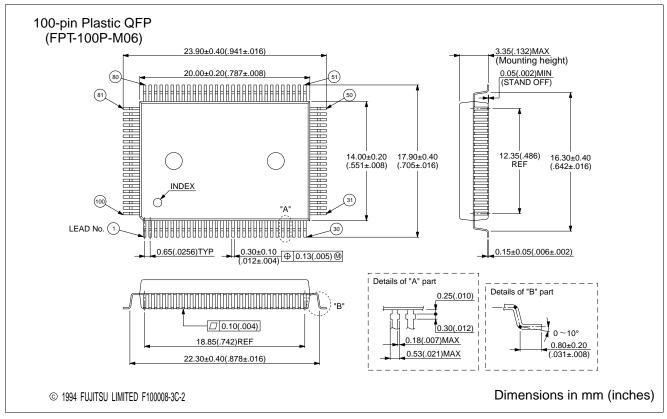
Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_	_	_	_	_	_	_	_	_	_
SWAPW/XCHW AL, AH	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Χ	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	_	Z	1	_	_	R	*	_	_	_

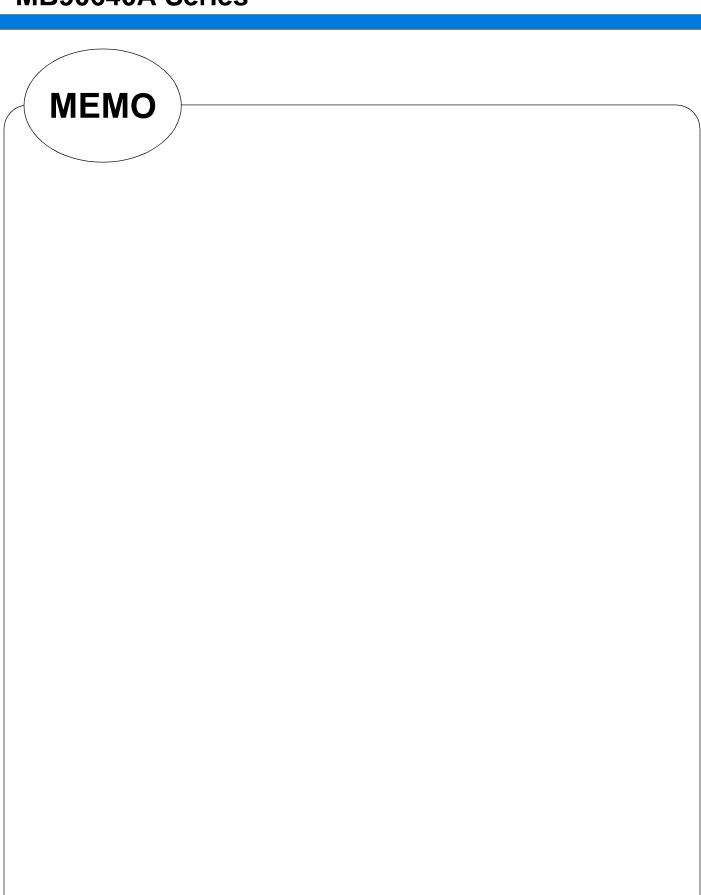
Table 23 String Instructions [10 Instructions]

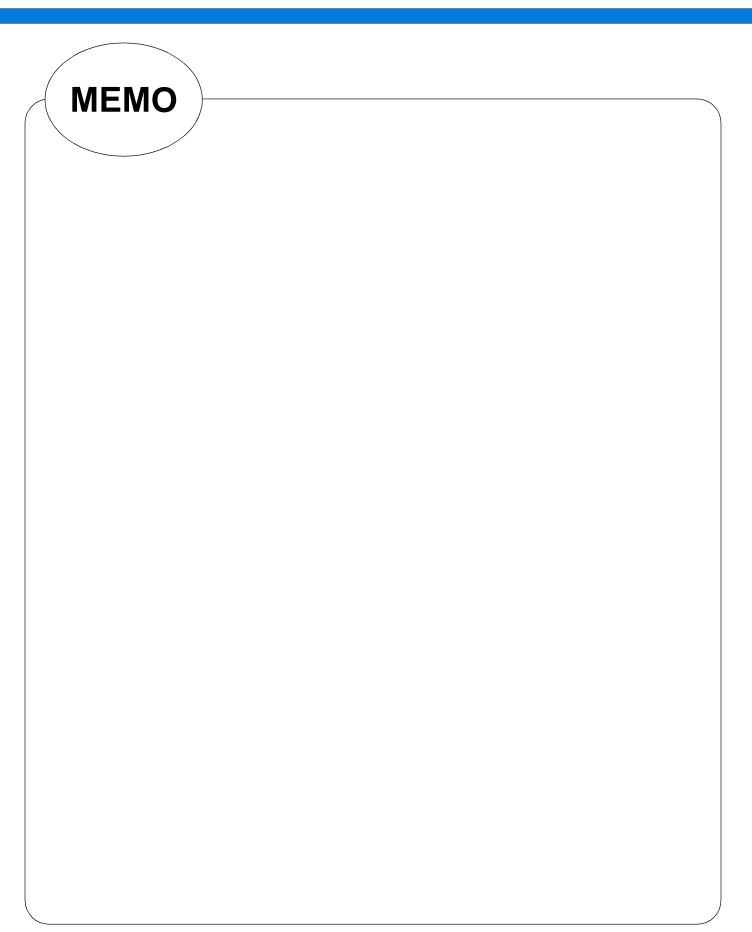
Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer @AH– ← @AL–, counter = RW0	_	-	-	-	_	_	-	-	-	_
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	_	-	-	-	_	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte filling @AH+ ← AL, counter = RW0	_	-	-	_	_	*	*	-	_	_
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSWD	2	*2	*8	*6	Word transfer $@AH-\leftarrow @AL-$, counter = RW0	_	-	-	-	_	_	-	-	-	_
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	_	-	-	_	_	*	*	*	*	_
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ ← AL, counter = RW0	_	_	-	_	_	*	*	-	_	_

m: RW0 value (counter value)


n: Loop count


- *1: 5 when RW0 is 0, 4 + 7 \times (RW0) for count out, and 7 \times n + 5 when match occurs
- *2: 5 when RW0 is 0, $4 + 8 \times (RW0)$ in any other case
- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) \times n
- *5: 2 × (RW0)
- *6: $(c) \times (RW0) + (c) \times (RW0)$ when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) \times n
- *8: 2 × (RW0)


■ ORDERING INFORMATION


Part number	Package	Remarks
MB90641APFV MB90P641APFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90641APF MB90P641APF	100-pin Plastic QFP (FPT-100P-M06)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9803

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

