

74ALVC16721 Low Voltage 20-Bit D-Type Flip-Flops with 3.6V Tolerant Inputs and Outputs

General Description

Features

- 1.8V-3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n)
- 4.0 ns max for 3.0V to 3.6V V_{CC}
 - 4.9 ns max for 2.3V to 2.7V V_{CC}
- 8.8 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V

Ordering Code:

		Inputs and	Features	
General Description The ALVC16721 contains twenty non-inverting D-type fip-flops with 3-STATE outputs and is intended for bus ori- ented applications. The 74ALVC16721 is designed for low voltage (1.65V to 3.6V) V _{CC} applications with I/O compatibility up to 3.6V. The 74ALVC16721 is fabricated with an advanced CMOS technology to achieve high speed operation while maintain- ing low CMOS power dissipation.		 Features 1.8V–3.6V V_{CC} supply operation 3.6V tolerant inputs and outputs tp_D (CLK to O_n) 4.0 ns max for 3.0V to 3.6V V_{CC} 4.9 ns max for 2.3V to 2.7V V_{CC} 8.8 ns max for 1.65V to 1.95V V_{CC} Power-off high impedance inputs and outputs Supports live insertion and withdrawal (Note 1) Uses patented noise/EMI reduction circuitry Latchup conforms to JEDEC JED78 SDD performance: Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or power dyno, of the resistor is determined by the current-sourcing capability of the driver. 		
Order Number	Package Number		Packa	ge Description
ALVC16721MT	_	56-Lead Thin Shrink		ckage (TSSOP), JEDEC MO-153, 6.1mm Wide
Logic Sym		y appending suffix letter "X"	to the ordering code. Pin Desc Pin Names	Description
	0 ₅ 0 ₆ 0 ₇ 0 ₈ 0 ₉ 0 ₁₀ 0 ₁₁ 0 ₁₂ 0 ₁	CE Q -	\overline{OE} CLK D_0-D_{19} O_0-O_{19} \overline{CE}	Output Enable Input (Active LOW) Clock Input Inputs Outputs Clock Enable Input (Active LOW)

Connection Diagram							
Connection D	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	56 CLK 55 D0 54 D1 52 D2 51 D4 50 Vcc 49 D4 48 D5 45 D7 44 D8 43 D9 44 D11 40 D12 38 D13 37 D14 36 D15 33 D17 34 D18 33 D17 34 D15 33 D15 33 D17 32 GND 33 D17 32 D18					

CLK CE

ŌĒ

Truth Table

CLK	CE	OE	D ₀ –D ₁₉	0 ₀ –0 ₁₉
Х	Х	Н	Х	Z
х	н	L	х	O ₀
~	L	L	L	L
~	L	L	н	н
L or H	L	L	х	O ₀

H = HIGH Voltage Level

D₀ - D₁₉

D

Q CLK

00-019

 $\label{eq:constraint} \begin{array}{l} \mathsf{H} = \mathsf{HIGH} \mbox{ Voltage Level} \\ \mathsf{L} = \mathsf{LOW} \mbox{ Voltage Level} \\ \mathsf{X} = \mathsf{Immaterial} \mbox{ (HIGH or LOW, inputs may not float)} \\ \mathsf{Z} = \mathsf{High} \mbox{ Impedance} \\ \mathsf{O}_0 = \mathsf{Previous} \mbox{ O}_0 \mbox{ before LOW-to-HIGH transition of Clock} \end{array}$

Functional Description

The 74ALVC16721 contains twenty D-type flip-flops with 3-STATE standard outputs. The twenty flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-HIGH Clock (CLK) transition, when the Clock-Enable (CE) is LOW. The S-STATE standard outputs are controlled by the Output Enable (\overline{OE}). When \overline{OE} is HIGH, the standard outputs are in high impedance mode but this does not interfere with entering new data into the flip-flops.

Logic Diagram

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
$V_{I} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Free Air Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V
Note 2: The Absolute Maximum Ratings are those the safety of the device cannot be guaranteed. The	

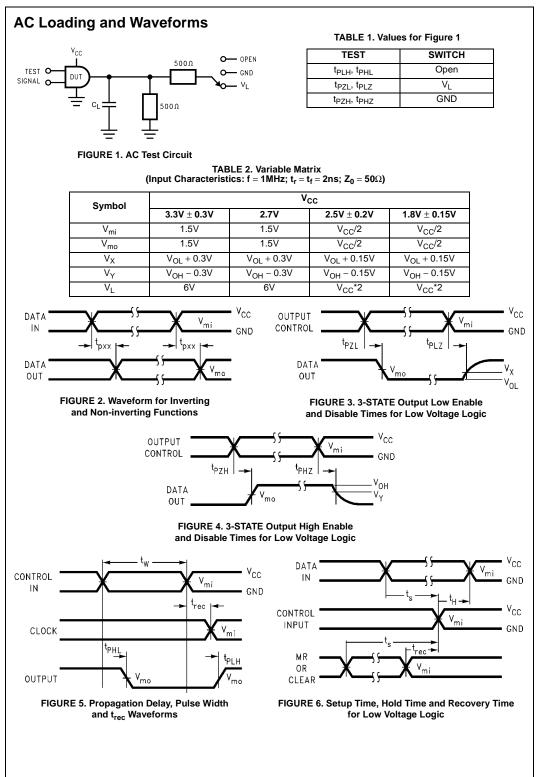
the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

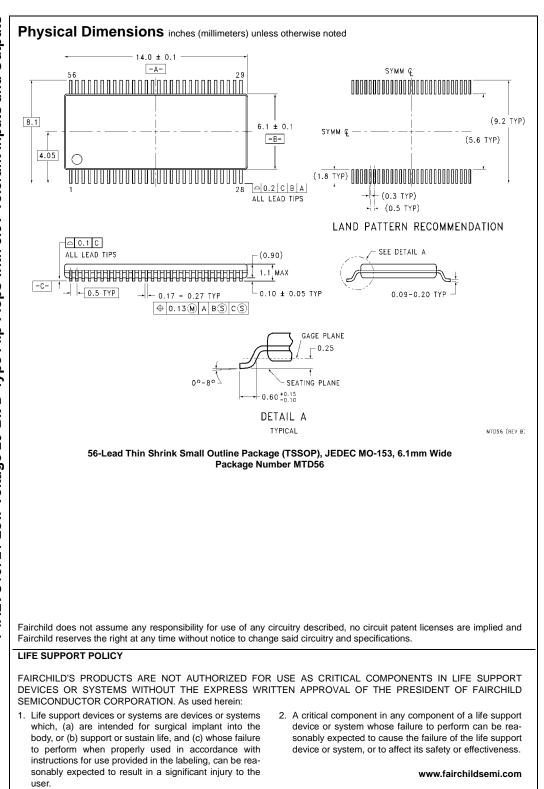
Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	Min	Max	Units
-,			(V)			
V _{IH}	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		I _{OH} = -4 mA	1.65	1.2		
		I _{OH} = -6 mA	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6	1	0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	v
		$I_{OL} = 12mA$	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
I _I	Input Leakage Current	$0 \le V_1 \le 3.6V$	3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μA


2
~
9
—
C
5
1
7
স

-


Symbol		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
	Parameter	C _L = 50 pF			C _L = 30 pF			Units		
	Parameter	V $_{CC}$ = 3.3V \pm 0.3V		V _{CC} = 2.7V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		ns
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	1.3	4.0	1.5	4.9	1.0	4.4	1.5	8.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.3	1.5	5.4	1.0	4.9	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	1.5		1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		1.0		ns

Capacitance

Symbol	Parameter		Conditions	TA = -	Units	
Symbol Parameter		Conditions	V _{CC}	Typical	Units	
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	20	рF
				2.5	20	Ы

74ALVC16721

