Power MOSFET 32 Amps, 60 Volts, Logic Level

N-Channel DPAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Smaller Package than MTB30N06VL
- Lower R_{DS(on)}, V_{DS(on)}, and Total Gate Charge
- Lower and Tighter V_{SD}
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge

Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

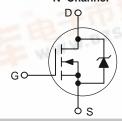
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain–to–Gate Voltage (R_{GS} = 10 MΩ)	V_{DGR}	60	Vdc
Gate–to–Source Voltage – Continuous – Non–Repetitive (t _p ≤10 ms)	V _{GS} V _{GS}	±20 ±30	Vdc
Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Continuous @ $T_A = 100^{\circ}C$ - Single Pulse $(t_p \le 10 \ \mu s)$	I _D I _D I _{DM}	32 22 90	Adc Apk
Total Power Dissipation @ T _A = 25°C Derate above 25°C Total Power Dissipation @ T _A = 25°C (Note 1) Total Power Dissipation @ T _A = 25°C (Note 2)	P _D	93.75 0.625 2.88 1.5	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ (Note 3) ($V_{DD} = 50$ Vdc, $V_{GS} = 5$ Vdc, $L = 1.0$ mH, $I_{L(pk)} = 25$ A, $V_{DS} = 60$ Vdc, $R_G = 25$ Ω)	E _{AS}	313	mJ
Thermal Resistance – Junction–to–Case – Junction–to–Ambient (Note 1) – Junction–to–Ambient (Note 2)	R _θ JC R _θ JA R _θ JA	1.6 52 100	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- When surface mounted to FR4 board using 0.5" pad size.
- When surface mounted to FR4 board using minimum recommended pad
- Repetitive rating; pulse width limited by maximum junction temperature.

dzsc.com



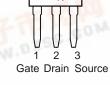
ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
60 V	23.7 m Ω	32 A

N-Channel

DPAK
CASE 369C
(Surface Mount)
Style 2

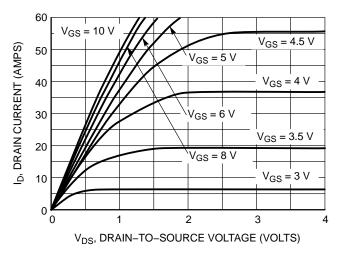

DPAK
CASE 369D
(Straight Lead)
Style 2

32N06L Device Code Y = Year

Y = Year WW = Work Week

MARKING DIAGRAMS

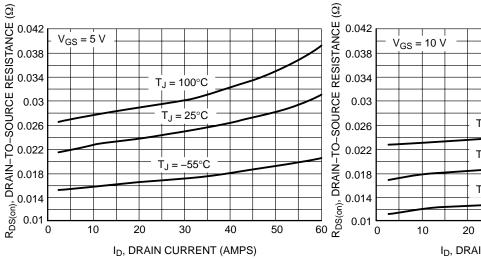
ORDERING INFORMATION


Device	Package	Shipping [†]			
NTD32N06L	DPAK	75 Units/Rail			
NTD32N06L-1	DPAK Straight Lead	75 Units/Rail			
NTD32N06LT4	DPAK	2500/Tape & Reel			

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS				•	1	
Drain-to-Source Breakdown ($V_{GS} = 0$ Vdc, $I_{D} = 250$ μ Adc) Temperature Coefficient (Pos	V _{(BR)DSS}	60 -	70 62	_ _	Vdc mV/°C	
Zero Gate Voltage Drain Curr ($V_{DS} = 60 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 60 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$,	I _{DSS}	_ _	- -	1.0 10	μAdc	
Gate-Body Leakage Current	$(V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	_	-	±100	nAdc
ON CHARACTERISTICS (No	te 4)					
Gate Threshold Voltage (Note ($V_{DS} = V_{GS}$, $I_{D} = 250 \mu Adc$) Threshold Temperature Coeff	,	V _{GS(th)}	1.0	1.7 4.8	2.0	Vdc mV/°C
Static Drain-to-Source On-F (V _{GS} = 5 Vdc, I _D = 16 Adc)	Resistance (Note 4)	R _{DS(on)}	_	23.7	28	mΩ
$ \begin{array}{l} \textbf{Static Drain-to-Source On-F} \\ \textbf{($V_{GS}=5$ Vdc, $I_{D}=20$ Adc)} \\ \textbf{($V_{GS}=5$ Vdc, $I_{D}=32$ Adc)} \\ \textbf{($V_{GS}=5$ Vdc, $I_{D}=16$ Adc, $T_{CS}=16$ Adc, T_{CS}	V _{DS(on)}	- - -	0.48 0.78 0.61	0.67 - -	Vdc	
Forward Transconductance (I	Note 4) (V _{DS} = 6 Vdc, I _D = 16 Adc)	9FS	_	27	_	mhos
DYNAMIC CHARACTERISTI	cs	•	•	-	•	•
Input Capacitance		C _{iss}	_	1214	1700	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	343	480	
Transfer Capacitance		C _{rss}	_	87	180	
SWITCHING CHARACTERIS	STICS (Note 5)		-		_	-
Turn-On Delay Time		t _{d(on)}	_	12.8	30	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 32 \text{ Adc}, V_{GS} = 5 \text{ Vdc},$	t _r	_	221	450	
Turn-Off Delay Time	$R_G = 9.1 \Omega$) (Note 4)	t _{d(off)}	_	37	80	
Fall Time		t _f	_	128	260	
Gate Charge		Q _T	_	23	50	nC
	(V _{DS} = 48 Vdc, I _D = 32 Adc, V _{GS} = 5 Vdc) (Note 4)	Q ₁	_	4.5	-	
	1 65 2 1 25, (1111 1,	Q ₂	_	14	-	
SOURCE-DRAIN DIODE CH	ARACTERISTICS					
Forward On-Voltage		V _{SD}	- - -	0.89 0.95 0.74	1.0 - -	Vdc
Reverse Recovery Time		t _{rr}	_	56	_	ns
	$(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 4)}$	t _a	_	31	_]
		t _b	_	25	_	
Reverse Recovery Stored Ch	Q _{RR}	-	0.093	-	μC	


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

60 ID, DRAIN CURRENT (AMPS) 50 40 30 20 $T_J = 25^{\circ}C$ 10 100°C 0 1.8 2.2 3 3.4 3.8 4.2 4.6 5 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

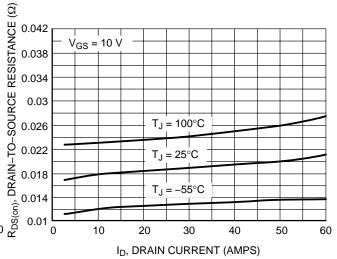
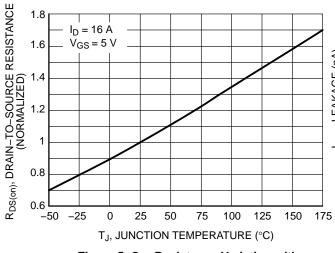



Figure 3. On-Resistance vs. Drain Current

Figure 4. On-Resistance vs. Drain Current

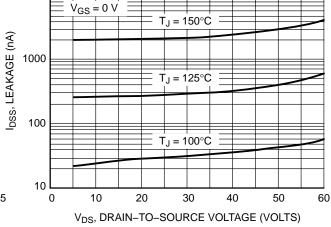


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

10000

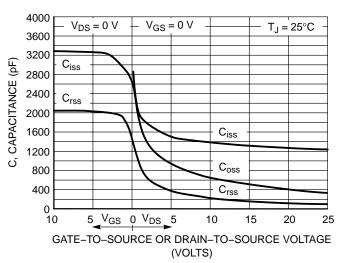


Figure 7. Capacitance Variation

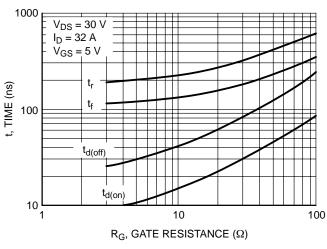


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

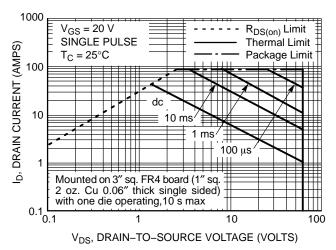


Figure 11. Maximum Rated Forward Biased Safe Operating Area

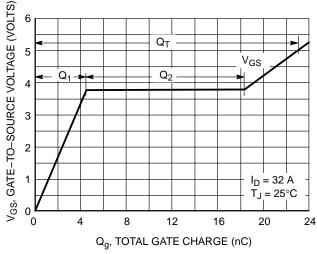


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

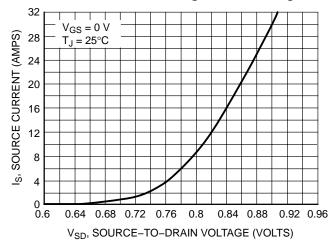


Figure 10. Diode Forward Voltage vs. Current

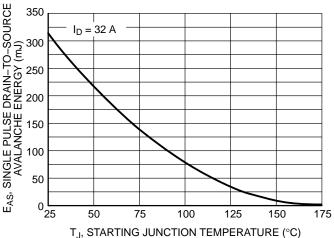


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

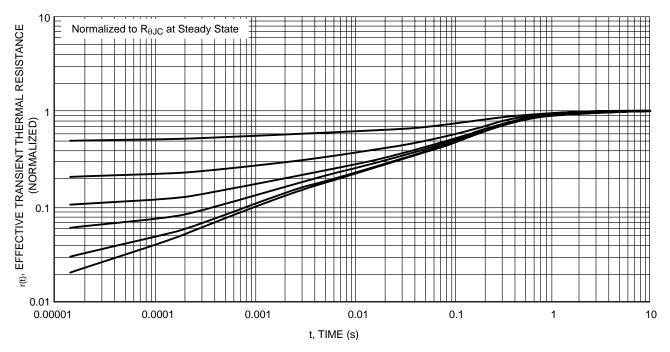


Figure 13. Thermal Response

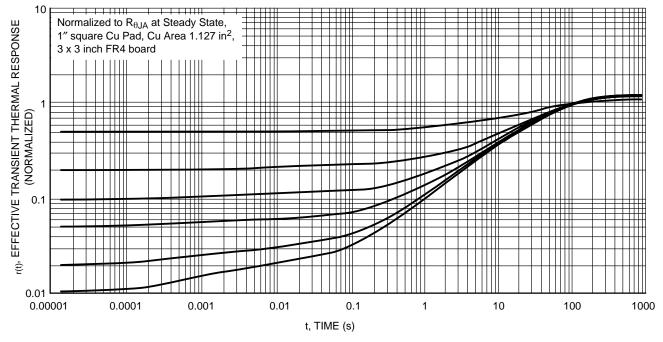
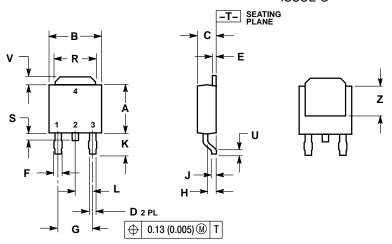
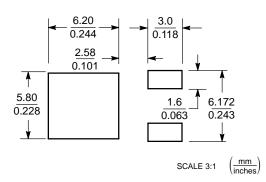
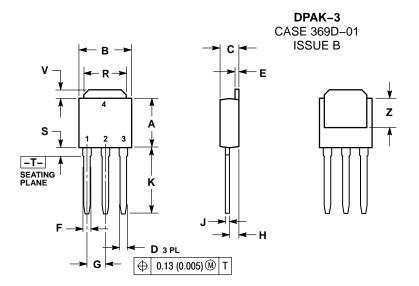



Figure 14. Thermal Response

PACKAGE DIMENSIONS


DPAK-3 CASE 369C-01 ISSUE O


	INCHES		MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.235	0.245	5.97	6.22		
В	0.250	0.265	6.35	6.73		
С	0.086	0.094	2.19	2.38		
D	0.027	0.035	0.69	0.88		
E	0.018	0.023	0.46	0.58		
F	0.037	0.045	0.94	1.14		
G	0.180	BSC	4.58 BSC			
Н	0.034	0.040	0.87 1.0			
J	0.018	0.023	0.46	0.58		
K	0.102	0.114	2.60	2.89		
L	0.090 BSC		2.29	2.29 BSC		
R	0.180	0.215	4.57	5.45		
S	0.025	0.040	0.63	1.01		
U	0.020		0.51			
٧	0.035	0.050	0.89	1.27		
Z	0.155		3.93			

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

- **SOLDERING FOOTPRINT**

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.