查询NTD65N03R-35G供应商

专业PCB打样工厂 ,24小时加急出货

NTD65N03R

Power MOSFET 25 V, 65 A, Single N–Channel, DPAK

Features

- Low R_{DS(on)}
- Ultra Low Gate Charge
- Low Reverse Recovery Charge
- WWW.DZSC.CON • Pb–Free Packages are Available

Applications

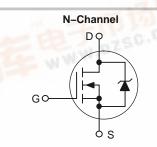
- Desktop CPU Power
- DC–DC Converters
- High and Low Side Switch

MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	25	V		
Gate-to-Source Voltag	Gate-to-Source Voltage			±20	V
Continuous Drain		$T_{C} = 25^{\circ}C$	۱ _D	65	А
Current ($R_{\theta JC}$) Limited by Die	22	$T_{\rm C} = 85^{\circ}{\rm C}$		45	
$\frac{\text{Continuous Drain}}{\text{Current (R}_{\theta JC}) \text{ Limited}}$ by Wire	Steady State	T _C = 25°C	Ι _D	32	A
Power Dissipation $(R_{\theta JC})$		$T_C = 25^{\circ}C$	PD	50	W
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	11.4	А
Current (Note 1)		$T_A = 85^{\circ}C$		8.9	3
Power Dissipation (Note 1)	State	T _A = 25°C	PD	1.88	W
Continuous Drain	1	$T_A = 25^{\circ}C$	ا _D	9.5	А
Current (Note 2)	Steady	T _A = 85°C		7.4	1
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	PD	1.3	W
Pulsed Drain Current	t _p =	: 10 μs	I _{DM}	130	А
Operating Junction and Temperature	T _J , T _{stg}	–55 to 175	°C		
Drain-to-Source (dv/dt	dv/dt	2.0	V/ns		
Source Current (Body D	IS	2.1	А		
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 24 V, V_{GS} = 10 V, I _L = 12 A, L = 1.0 mH, R _G = 25 Ω)			E _{AS}	71.7	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ТL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1.


Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces). Surface-mounted on FR4 board using the minimum recommended pad size (Cuarea = 0.15 in sq) [1 oz] including traces.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
25 V	6.5 mΩ @ 10 V	65 A
	9.7 mΩ @ 4.5 V	03 A

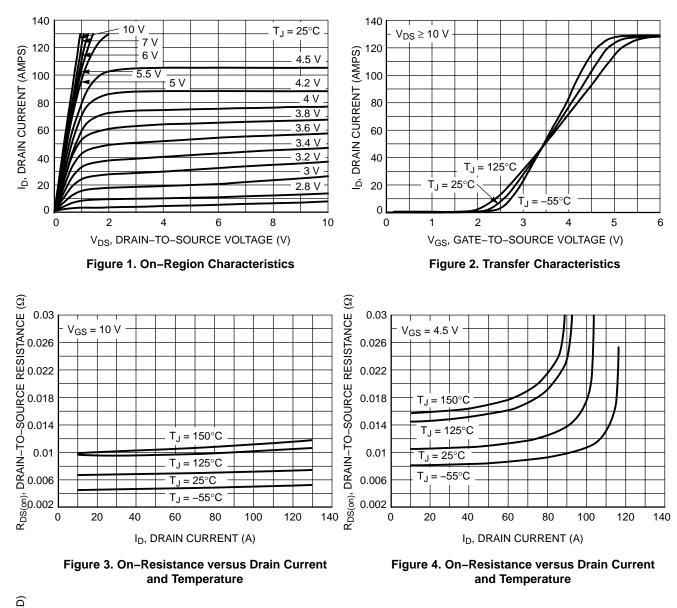
MARKING DIAGRAMS & PIN ASSIGNMENTS 4 Drain 4 Drain 65 MWV N03 35 3 2 Gate Source Source 2 1 Drain Gate Drain Υ = Year WW

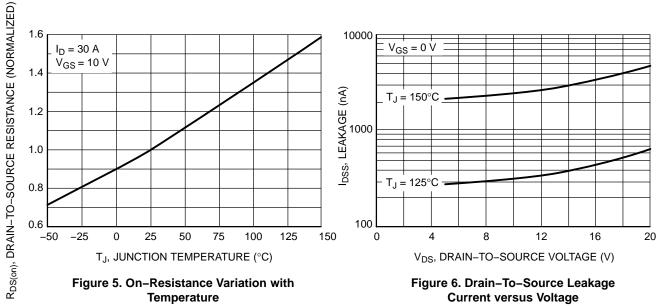
= Work Week 65N03 = Device Code = Pb-Free Package G

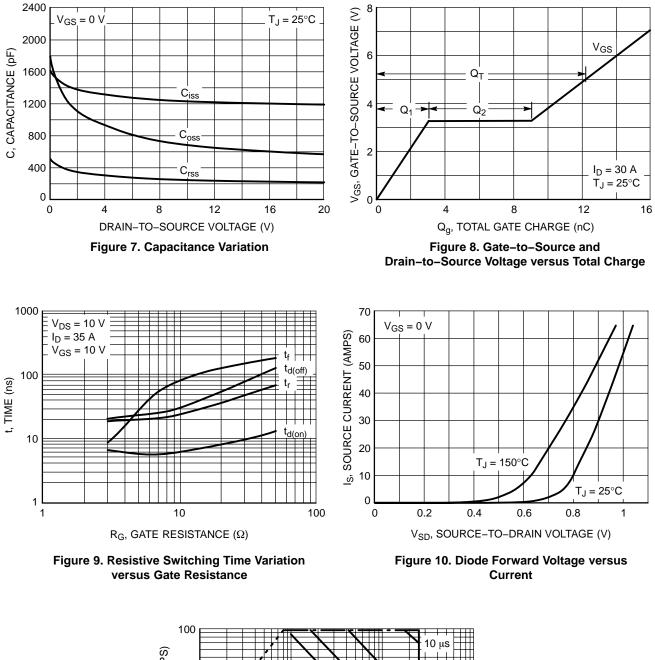
ORDERING INFORMATION

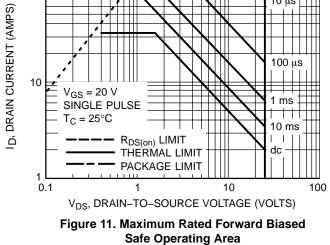
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

f.dzsc.com

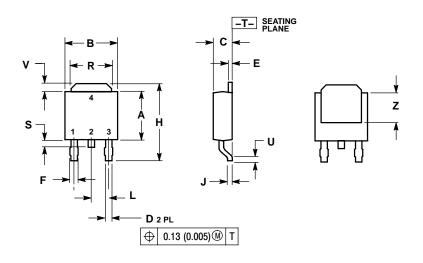

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	2.5	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	80	
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	115	


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Cor	ndition	Min	Тур	Мах	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		25	29.5		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				19.2		mV/°0
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			1.5 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V ₀	$_{SS} = \pm 20 \text{ V}$			±100	nA
ON CHARACTERISTICS (Note 5)		1					
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	1.0	1.74	2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°0
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 V,$	-		6.5	8.4	mΩ
Ferryard Transconductors	-	$V_{GS} = 4.5 V_{SS}$	-		9.7	14.6	
Forward Transconductance	9FS	V _{DS} = 15 V,	I _D = 15 A		27		mHos
HARGES, CAPACITANCES AND GATE RE			<u> </u>		4477	4.400	
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz,			1177	1400	pF
Output Capacitance	C _{oss}	$V_{DS} =$		555		_	
Reverse Transfer Capacitance	C _{rss}	<u>↓</u>			218	40	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V},$ $I_D = 30 \text{ A}$			12.2	16	nC
Threshold Gate Charge	Q _{G(TH)}				1.5		-
Gate-to-Source Charge	Q _{GS}				2.95		
Gate-to-Drain Charge	Q_{GD}				6.08		
WITCHING CHARACTERISTICS (Note 6)	i	1	i				1
Turn–On Delay Time	t _{d(on)}	-	_		6.3		ns
Rise Time	t _r	V _{GS} = 10 V, V			18.6		
Turn-Off Delay Time	t _{d(off)}	I _D = 30 A, R	$R_{\rm G} = 3.0 \ \Omega$		20.3		_
Fall Time	t _f				8.8		
PRAIN-SOURCE DIODE CHARACTERISTIC		•					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	T _J = 25°C		0.85	1.1	V
		I _S = 20 A	T _J = 125°C		0.72		
Reverse Recovery Time	t _{RR}				28.8		ns
Charge Time	t _a	$V_{GS} = 0 V, dI_S/d$			12.8		
Discharge Time	t _b	I _S = 20 A			16		
Reverse Recovery Time	Q _{RR}				20		nC
ACKAGE PARASITIC VALUES			·				
Source Inductance	LS	T _A = 25°C			2.49		
Drain Inductance	LD				0.02		nH
Gate Inductance	L _G				3.46		1
Gate Resistance	R _G				1.75		Ω

5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

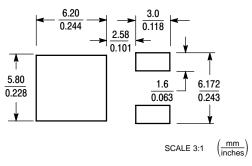

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD65N03R	DPAK-3	75 Units / Rail
NTD65N03RG	DPAK-3 (Pb-Free)	75 Units / Rail
NTD65N03RT4	DPAK-3	2500 / Tape & Reel
NTD65N03RT4G	DPAK-3 (Pb-Free)	2500 / Tape & Reel
NTD65N03R-1	DPAK-3 Straight Lead	75 Units / Rail
NTD65N03R-1G	DPAK-3 Straight Lead (Pb-Free)	75 Units / Rail
NTD65N03R-35	DPAK Straight Lead Trimmed (3.5 ± 0.15 mm)	75 Units / Rail
NTD65N03R-35G	DPAK Straight Lead Trimmed (3.5 ± 0.15 mm) (Pb-Free)	75 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

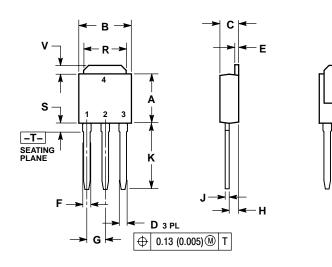
DPAK (SINGLE GUAGE) CASE 369AA-01 **ISSUE A**



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.025	0.035	0.63	0.89
Е	0.018	0.024	0.46	0.61
F	0.030	0.045	0.77	1.14
н	0.386	0.410	9.80	10.40
J	0.018	0.023	0.46	0.58
L	0.090	BSC	2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.024	0.040	0.60	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

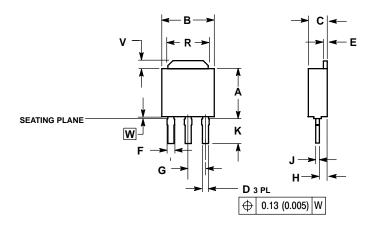
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK CASE 369D-01 **ISSUE B**

¥

z


DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		

PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

3 IPAK, STRAIGHT LEAD CASE 369AC-01 ISSUE O

NOTES: 1... DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2... CONTROLLING DIMENSION: INCH. 3. SEATING PLANE IS ON TOP OF DAMBAR POSITION. 4. DIMENSION A DOES NOT INCLUDE DAMBAR POSITION OR MOLD GATE.

	INC	HES	MILLIM	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.043	0.94	1.09
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.134	0.142	3.40	3.60
R	0.180	0.215	4.57	5.46
V	0.035	0.050	0.89	1.27
W	0.000	0.010	0.000	0.25

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and sensing per and be design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative