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MICROELECTRONICS 2 FS68000

HMOS 16/32-BIT MICROPROCESSOR

PRELIMINARY INFORMATION

The TS68000 is the first implementation of the
68000 16/32 microprocessor architecture. The
TS68000 has a 16-bit data bus and 24-bit address
bus while the full architecture provides for 32-bit ad-
dress and data buses. It is completely code-compa-
tible with the TS68008 8-bit data bus implementa-
tion of the 68000 and is downward code-compatible
with the TS68020 32-bitimplementation of the archi-
tecture. Any user-mode programs written using the
TS68000 instruction set will run unchanged on the
TS68008 and TS68020. This is possible because
the user programming model is identical for all three
processors and the instruction sets are proper sub-
sets of the complete architecture.
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SECTION 1

INTRODUCTION

The TS68000 is the first implementation of the
68000 16/32 microprocessor architecture. The
TS68000 has a 16-bit data bus and 24-bit address
bus while the full architecture provides for 32-bit ad-
dress an data buses. It is completely code-compa-
tible with the TS68008 8-bit data bus implementa-
tion of the 68000 and is downward code-compatible
with the TS68020 32-bitimplementation of the archi-
tecture. Any user-mode programs written using the
TS68000 instruction set will run unchanged on the
TS68008 and TS68020. This is possible because
the user programming model is identical for all four
processors and the instruction sets are proper sub-
sets of the complete architecture.

The resources available to the TS68000 user
consist of the following :

« 17 32-Bit Data and Address Registers

16 Megabyte Direct Addressing Range

56 Powerful Instruction Types

Operations on Five Main Data Types

Memory Mapped /O

14 Addressing Modes

As shown in the user programming model (figure 1-
1), the TS68000 offers 16 32-bit registers and a 32-
bit program counter. The first eight registers (D0-D7)
are used as data registers for byte (8-bit), word (16-
bit), and long word (32-bit) operations. The second

Figure 1.1 : User Programming Model.

set of seven registers (A0-A6) and the user stack
pointer (USP) may be used as software stack poin-
ters and base address registers. In addition, the re-
gisters may be used for word and long word opera-
tions. All of the 16 registers may be used as index
registers.

In supervisor mode, the upper byte of the status re-
gister and the supervisor stack pointer (SSP) are al-
so available to the programmer. These registers are
shown in figure 1-2.

The status register (figure 1-3) contains the interrupt
mask (eight levels available) as well as the condi-
tion codes : extend (X), negative (N), zero (Z), over-
flow (V), and carry (C). Additional status bits indicate
that the processor is in a trace (T) mode and in a su-
pervisor (S) or user state.

1.1. DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data
types are :

= Bits

= BCD Digits (4 bits)

» Bytes (8 bits)

= Words (16 bits)

» Long Words (32 bits)

In addition, operations on other data types such as
memory addresses, status word data, etc., are pro-
vided in the instruction set.
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Figure 1.2 : Supervisor Programming Mode!

Figure 1.3 : Status Register.
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Table 1.1 : Addressing Modes. The 14 address modes, shown in table 1.1, include
- six basic types :
Addressing Modes Syntax « Register Direct
Register Direct Addressing s Register indirect
Data Register Direct Dn a Absolute
Address Register Direct An » Program Counter Relative
Absolute Data Addressing = Immediate
Absolute Short xxx W = Implied
Absolute Long xxx L Included in the register indirect addressing modes
Program Counter Reiative is the capability to do postincrementing, predecre-
Addressing d15(PC) menting, offsetting, and indexing. The program
Relative with Offset dg{(PC, Xn) counter relative mode can also be modified via in-
Relative with Index Offset dexing and offsetting.
F,?g;;f;J“,ﬁg;ig;{“’d“"ssmg (an) 1.2. INSTRUCTION SET OVERVIEW
Postincrement Register Indirect | (An) + The TS68000 instruction set is shown in table 1-2.
Predecrement Register Indirect | - (An) Some additional instructions are variations, or sub-
Register Indirect with Offset d1s(An) sets, of these and they appear in table 1-3. Special
Indexed Register Indirect with dg(An, Xn) emphasis has been given to the instruction set's
Offset support of structured high-level languages to facili-
Immediate Data Addressing tate ease of programming. Each instruction, with
Immediate #XXX few exceptions, operates on bytes, words, and long
Quick Immediate #1-48 words and most instructions can use any of the 14
Implied Addressing addressing modes. Combining instruction types,
Implied Register SR USP SP PG data types, and addressing modes, over 1000 use-

Notes :

Dn = Data Register

An = Address Register

Xn = Address or Data Register used as Index Register
SR = Status Register

PC = Program Counter

SP = Stack Pointer

USP = User Stack Pointer

() = Effective Address

ds = 8-Bit Offset (displacement)
die = 16-Bit Offset (displacement)
#XXX = Immediate Data

ful instructions are provided. These instructions in-
clude signed and unsigned, multiply and divide,
"quick” arithmetic operations, BCD arithmetic, and
expanded operations (through traps).
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Table 1.2 : Instruction Set Summary.

Table 1.3 : Variations of Instruction Types.

Mnemonic Description Instruction Variation Description
ABCD Add Decimal with Extend Type
238 ﬁdd' | And ADD ADD Add
ogica: An ADDA Add Add
ASL Arithmetic Shift Left ADDQ N s
ASR Arithmetic Shift Right ADDI Add Immediate
Bcc Branch Conditionally ADDX Add with Extend
BCHG Bit Test and Change -
BCLR Bit Test and Clear AND AND Logical And
BRA Branch a|ways ANDI And Immediate
BSET Bit Test and Set ANDI to CCR| And Immediate to
BSR Branch to Subroutine Condition Codes
BTST Bit Test ANDI to SR | And Immediate to
CHK Check Register against Bounds Status Register
CLR Clear Operand CMP CMP Com
pare
cMpP Compare CMPA Compare Address
DBcc Test Condition, Decrement and CMPM Compare Memory
Branch CMPI Compare Immediate
DIVS Signed Divide -
DIVU Unsigned Divide EOR EOR Exclusive Or
EOR Exclusive OF EORI Exclusive Or Immediate
EXG Exchange Registers EORI to CCR Excluswlel Or Immediate
EXT Sign Extend to Condition Codes
P Jump EORI to SR | Exclusive Or Immediate
u .
JSR Jump to Subroutine 0 Status Register
LEA Load Effective Address MOVE MOVE Mave
h MOVEA Move Address
LINK Link Stack ) )
LSL Logical Shift Left MOVEM Move MqupIe Registers
LSR Logical Shift Right Left MOVEP Move Peripheral Data
MOVE Move MOVEQ Move Quick
MULS Signed Multiply MOVE from Movg from Status
MULU Unsigned Mulitply SR Register ,
- MOVE to SR | Move to Status Register
NBCD Negate Decimal with Extend MOVE to Move to Condition
NEG Negate
mg? go C‘)pgratiorlw t ceR I\CA%?/eesUser Stack
nes vompremen MOVE USP | Pointer
OR Logical Or NEG NEG Negate
PEA Push Effective Address NEGX Negate with Extend
RESET Reset External Devices OR OR Logical Or
ROL Rotate Left without Extend ORI Or Immediate
ROR Rotate Right without Extend ORI to CCR | Or Immediate to
ROXL Rotate Left with Extend .
- Condition Codes
ROXR Rotate Right with Extend :
RTE Return from Exception ORI to SR Or Immedlate to Status
RTR Return and Restore Register
RTS Return from Subroutine SUB sSuB Subtract
SBCD Subtract Decimal with Extend SUBA Subtract Address
Sce Set Conditional SUBI Subtract Immediate
STOP Stop SUBQ Subtract Quick
sSuB Subtract SuUBX Subtract with Extend
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST Test
UNLK Unlink
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SECTION 2

DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

This section contains a description of the registers
and the data organization of the TS68000.

2.1. OPERAND SIZE

Operand sizes are defined as follows : a byte equals
8 bits, a word equals 16 bits, and a long word equals
32 bits. The operand size for each instruction is ei-
ther explicitly encoded in the instruction or implicitly
defined by the instruction operation. Implicit instruc-
tions support some subset of all three sizes.

2.2. DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of
1, 8, 16, or 32 bits. The seven address registers to-
gether with the stack pointers support address ope-
rands of 32 bits.

2.2.1. DATA REGISTERS. Each data register is 32
bits wide. Byte operands occupy the low order 8 bits,
word operands the low order 16 bits, and long word
operands the entire 32 bits. The least significant bit
is addressed as bit zero ; the most significant bit is
addressed as bit 31.

When a data register is used as either a source or
destination operand, only the appropriate low order
portion is changed ; the remaining high order por-
tion is neither used nor changed.

2.2.2. ADDRESS REGISTERS. Each address re-
gister and the stack pointer is 32 bits wide and holds
a full 32-bit address. Address registers do not sup-
port the sized operands. Therefore, when an ad-
dress register is used as a source operand, either
the low order word or the entire long word operand
is used depending upon the operation size. When
an address register is used as the destination ope-
rand, the entire register is affected regardless of the
operation size. If the operation size is word, any

Figure 2.1 : Word Organization in Memory.

other operands are sign extended to 32 bits before
the operation is performed.

2.3. DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high or-
der byte having an even address the same as the
word, as shown in figure 2.1. The low order byte has
an odd address that is one count higher than the
word address. Instructions and multibyte data are
accessed only on word (even byte) boundaries. If a
long word datum is located at address n (n even),
then the second word of that datum is located at ad-
dress n + 2.

The data types supported by the TS68000 are : bit
data, integer data of 8, 16, or 32 bits, 32-bit ad-
dresses and binary coded decimal data. Each of
these data types is put in memory, as shown in fi-
gure 2.2. The numbers indicate the order in which
the data would be accessed from the processor.

2.4. ADDRESSING

Instructions for the TS68000 contain two kinds of in-
formation : the type of function to be performed and
the location of the operand(s) on which to perform
that function. The methods used to locate (address)
the operand(s) are explained in the following para-
graphs.

Instructions specify an operand location in one of
three ways :

Register Specification —the number of the regis-
ter is given in the register
field of their instruction.

Effective Address
addressing modes.

—the definition of certain
instructions implies the use
of specific registers.

Implicit Reference

15 14 13 12 " 10 9 8 6 5 4 3 2 1 0

Word 000000

Byte 000000 | Byte 000001
Word 000002

Byte 000002 i Byte 000003

4 :

Word FFFFFE

Byte FFFFFE Byte FFFFFF

—use of the different effective
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Figure 2.2 : Memory Data Organization.

Bit Data — 1 Byte =8

Bits
2 1

[¢]

(TITTILLI]

Integer Data — 1 Byte=8 Bits

15 14 13 12 1" 10 9 8 7 6 5 4 2 1 0
MSB Byte 0 LSB Byte 1
Byte 2 Byte 3
1 Word = 16 Bits
15 14 13 12 n 10 9 8 7 6 5 4 2 1 0
MSB Word 0 LsB
Word 1
Word 2
1 Long Word =32 Bits
15 14 13 12 1 10 9 8 7 6 5 4 2, 1 0
S8
High Order
— —longWord0— — — — — — — — — — — — — — — — — — — — —
Low Order LSB
— —tongWordl— =— — — — — — — — — — — — — — — — — — — =~
— —LongWod2— —— — — — — — — — — — — — — — — — — — —
Addresses — 1 Address =32 Bus
15 14 13 12 1 10 9 8 7 6 5 4 2 1 [\
M
s8 High Order
— — Address — — — — — — — — — — = — — - — — — — — — —
Low Order LSB
— — Address 1| — — — i— - — — —~ — — — — — - — s T
— — Address2 — — = —— — — — - — — — T e, T T T T
MSB = Most Significant Bit LSB = Least Significant Bit
Decimal Data — 2 Binary Coded Decimal Digits = 1 Byte
15 14 13 12 1Al 10 9 8 7 6 5 4 2 1 0
MSD
BCD O 8CD1 LSD BCD 2 8CD 3
BCD 4 BCD S BCD 6 BCD 7

MSD = Most Significant Dignt

LSD = Least Significant Digit
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2.5. INSTRUCTION FORMAT

Instructions are from one to five words in length as
shownin figure 2.3. The length of the instruction and
the operation to be performed is specified by the first
word of the instruction which is called the operation
word. The remaining words further specify the ope-
rands. These words are either immediate operands
or extensions to the effective address mode speci-
fied in the operation word.

2.6. PROGRAM/DATA REFERENCES

The TS68000 separates memory references into
two classes : program references and data refe-
rences. Program references, as the name implies,
are references to that section of memory that
contains the program being executed. Data refe-
rences refer to that section of memory that contains
data. Operands reads are from the data space ex-
cept in the case of the program counter relative ad-
dressing mode. All operand writes are to the data
space.

2.7. REGISTER SPECIFICATION

The register field within an instruction specifies the
register to be used. Other fields within the instruc-
tion specify whether the register selected is an ad-
dress or data register and how the register is to be
used.

2.8. EFFECTIVE ADDRESS

Most instructions specify the location of an operand
by using the effective address field in the operation
word. For example, figure 2.4 shows the general for-
mat of the single-effective-address instruction ope-

ration word. The effective address is composed of
two 3-bit fields : the mode field and the register field.
The value in the mode field selects the different ad-
dress modes. The register field contains the num-
ber of a register.

The effective address field may require additional
information to fuily specify the operand. This addi-
tional information, called the effective address ex-
tension, is contained in the following word or words
and is considered part of the instruction, as shown
in figure 2.3. The effective address modes are grou-
ped into three categories : register direct, memory
addressing, and special.

2.8.1. REGISTER DIRECT MODES. These effec-
tive addressing modes specify that the operand is
in one of 16 multifunction registers.

2.8.1.1. Data Register Direct.

The operand is in the data register specified by the
effective address register field.

2.8.1.2. Address Register Direct.

The operand is in the address register specified by
the effective address register field.

2.8.2. MEMORY ADDRESS MODES. These effec-
tive addressing modes specify that the operand is
in memory and provide the specific address of the
operand.

2.8.2.1. Address Register Indirect.
The address of the operand is in the address regis-
ter specified by the register field. The reference is

classified as a data reference with the exception of
the jump and jump-to-subroutine instructions.

Figure 2.3 : Instruction Operation Word General Format.

12 1 10 9

7 6 5 4 3 2 1 0

Operation Word
(First Word Specites Operation and Modes)

immediate Operand
{it Any, One or Two Words!

Source Effective Address Extension
(If Any, One or Two Words)

DOestination Effective Address Extension
{1t Any, One or Two Words)

Figure 2.4 : Single-Effective—Address Instruction Operation Word.

7 [ S 4 3 2 1 0

Effective Address
X X Mode 1 Register
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2.8. EFFECTIVE ADDRESS (continued)

2.8.2.2. Address Register Indirect with Postincre-
ment.

The address of the operand is in the address regis-
ter specified by the register field. After the operand
address is used, it is incremented by one, two, or
four depending upon whether the size of the ope-
rand is byte, word, or long word. If the address re-
gister is the stack pointer and the operand size is
byte, the address is incremented by two rather than
one to keep the stack pointer on a word boundary.
The reference is classified as a data reference.

2.8.2.3. Address Register Indirect with Predecre-
ment.

The address of the operand is in the address regis-
ter specified by the register field. Before the operand
address is used, it is decremented by one, two, or
four depending upon whether the operand size is
byte, word, or long word. If the address register is
the stack pointer and the operand size is byte, the
address is decremented by two rather than one to
keep the stack pointer on a word boundary. The re-
ference is classified as a data reference.

2.8.2.4. Address Register Indirect with Displace-
ment.

This addressing mode requires one word of exten-
sion. The address of the operand is the sum of the
address in the address register and the sign-exten-
ded 16-bit displacement integer in the extension
waord. The reference is classified as a data reference
with the exception of the jump and jump-to-subrou-
tine instructions.

2.8.2.5. Address Register Indirect with Index.

This addressing mode requires one word of exten-
sion. The address of the operand is the sum of the
address in the address register, the sign-extended
displacement integer in the low order eight bits of
the extension word, and the contents of the index
register. The reference is classified as a data refe-
rence with the exception of the jump and jump-to-
subroutine instructions.

2.8.3. SPECIAL ADDRESS MODES. The special
address modes use the effective address register
field to specify the special addressing mode instead
of a register number.

2.8.3.1. Absolute Short Address.

This addressing mode requires one word of exten-
sion. The address of the operand is the extension
word. The 16-bit address is sign extended before it
is used. The reference is classified as a data refe-
rence with the exception of the jump and jump-to-
subroutine instructions.

2.8.3.2. Absolute Long Address.

This addressing mode requires two words of exten-
sion. The address of the operand is developed by
the concatenation of the extension words. The high
order part of the address is the first extension
word ; the low order part of the address is the se-
cond extension word. The reference is classified as
a data reference with the exception of the jump and
jump-to-subroutine instructions.

2.8.3.3. Program Counter with Displacement.

This addressing mode requires one word of exten-
sion. The address of the operand is the sum of the
address in the program counter and the sign-exten-
ded 16-bit displacement integer in the extension
word. The value in the program counter is the ad-
dress of the extension word. The reference is clas-
sified as a program reference.

2.8.3.4. Program Counter with Index.

This addressing mode requires one word of exten-
sion. The address is the sum of the address in the
program counter, the sign-extended displacement
integer in the lower eight bits of the extension word,
and the contents of the index register. The value in
the program counter is the address of the extension
word. This reference is classified as a program re-
ference.

2.8.3.5. Immediate Data.

This addressing mode requires either one or two
words of extension depending on the size of the
operation.

Byte Operation —operand is low order byte

of extension word
Word Operation —operand is extension word

Long Word Operation —operand is in the two ex-
tension words, high order
16 bits are in the first ex-
tension word, low order
16 bits are in the second
extension word.

2.8.3.6. Implicit Reference.

Some instructions make implicit reference to the
program counter (PC), the system stack pointer
(8SP), the supervisor stack pointer (SSP), the user
stack pointer (USP), or the status register (SR). A
selected set of instructions may reference the sta-
tus register by means of the effective address field.
These are :

ANDIto CCR EORIto SR MOVE to CCR
ANDI to SR ORIl to CCR MOVE to SR
EORIto CCR ORito SR MOVE from SR
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2.9. EFFECTIVE ADDRESS ENCODING SUM-
MARY

Table 2.1 is a summary of the effective addressing
modes discussed in the previous paragraphs.

2.10. SYSTEM STACK

The system stack is used implicitly by many instruc-
tions ; user stacks and queues may be created and
maintained through the addressing modes. Address
register seven (A7) is the system stack pointer (SP).
The system stack pointer is either the supervisor
stack pointer (SSP) or the user stack pointer (USP),
depending on the state of the S bit in the status re-
gister. If the S bit indicates supervisor state, SSP is
the active system stack pointer and the USP cannot
be referenced as an address register. If the S bit in-
dicates user state, the USP is the active system
stack pointer, and the SSP cannot be referenced.
Each system stack fills from high memory to low me-
mory.

Table 2.1 : Effective Address Encoding
Summary.

Addressing Mode Mode Register

Data Register Direct 000 |Register Number

Address Register Direct 001 |Register Number

Address Register Indirect | 010 |Register Number

Address Register Indirect

with Postincrement 011 Register Number

Address Register Indirect

with Predecrement 100 | Register Number

Address Register Indirect

with Displacement 101 |Register Number

Address Register Indirect 110 |Register Number

with Index
Absolute Short 111 000
Absolute Long 111 001

Program Counter with

Displacement 111 010

Program Counter with

Index 111 011

Immediate 111 100

[
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SECTION 3

INSTRUCTION SET SUMMARY

This section contains an overview of the form and
structure of the TS68000 instruction set. The in-
structions form a set of tools that include all the ma-
chine functions to perform the following operations :

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities com-
bined with the flexible addressing modes described
previously provide a very flexible base for program
development.

3.1. DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and
storage) is provided by the move (MOVE) instruc-
tion. The move instruction and the effective addres-
sing modes allow both address and data manipula-
tion. Data move instructions allow byte, word, and
long word operands to be transferred from memory
to memory, memory to register, register to memory,
and register to register. Address move instructions
aliow word and long word operand transfers and en-
sure that only legal address manipulations are exe-
cuted. In addition to the general move instruction
there are several special data movement instruc-
tions : move multiple registers (MOVEM), move pe-
ripheral data (MOVEP), exchange registers (EXG),
load effective address (LEA), push effective address
(PEA), link stack (LINK), unlink stack (UNLK}, and
move quick (MOVEQ). Table 3.1 is a summary of
the data movement operations.

Table 3.1 ;: Data Movement Operations.

Table 3.1 : (continued)

Instruction Operand Operation
Size
EXG 32 Rx < Ry
LEA 32 EA « An
An - (SP)
LINK - SP — An
SP + Displacement — SP
MOVE 8, 16, 32 s->d
(EA} — An, Dn
MOVEM 16, 32 An, Dn — EA

Instruction Opselrza;nd Operation
(EA) - Dn
MOVEP 16, 32 Dn — (EA)
MOVEQ 8 #xxx — Dn
PEA 32 EA — - (SP)
SWAP 32 Dn{31:16] < Dn[15:0]
An — Sp
UNLK - (SP) + — An
Notes: s =source — () = indirect with predecrement
d = destination () + = indirect with postdecrement
[ 1= bit number # = immediate data

3.2. INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic
operations of add (ADD), subtract (SUB), multiply
(MUL), and divide (DIV) as well as arithmetic.com-
pare (CMP), clear (CLR), and negate (NEG). The
add and subtract instructions are available for both
address and data operations, with data operations
accepting all operand sizes. Address operations are
limited to legal address size operands (16 or 32 bits).
Data, address, and memory compare operations
are also available. The clear and negate instructions
may be used on all sizes of data operands.

The multiply and divide operations are available for
signed and unsigned operands using word multiply
to produce a long word product, and a long word di-
vidend with word divisor to produce a word quotient
with a word remainder.

Multiprecision and mixed size arithmetic can be ac-
complished using a set of extended instructions.
These instructions are : add extended (ADDX), sub-
tract extended (SUBX), sign extend (EXT), and ne-
gate binary with extend (NEGX).

A test operand (TST) instruction that will set the
condition codes as a result of a compare of the ope-
rand with zero is also available. Test and set (TAS)
is a synchronization instruction useful in multipro-
cessor systems. Table 3.2 is a summary of the inte-
ger arithmetic operations.

OB W TE L
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Table 3.2 : Integer Arithmetic Operations.

3.3. LOGICAL OPERATIONS
Logical operation instructions AND, OR, EOR, and

Instruction Opseirzaend Operation NOT are available for all sizes of integer data ope-
rands. A similar set of immediate instructions (AN-
8,16, 32 Dn + (EA) - Dn DI, ORI, and EORI) provide these logical operations
ADD (!(Ei?):#lz:xi(ﬁ?/i) with all sizes of immediate data. Table 3.3 is a sum-
16, 32 An + (EA) — An mary of the logical operations.
ADDX 8, 26, 32 Dx + Dy + X — Dx Table 3.3 : Logical Operations.
16,32 |- (Ax) + — (Ay)+ X -, (Ax)
CLR | 8 16,32 05 EA Instruction| ORgrand Operation
8, 16, 32 Dn — (EA) DnA(EA) - Dn
cMP ( pff)Ai - ?;’;)x AND | 8, 16,32 (EA)ADN — (EA)
- - EA
16, 32 An — (EA) (EA)A#(’::)_’ (D )
nv - Dn
DIVS 32+ 16 Dn - (EA) — Dn OR 8, 16, 32 (EA) v Dn — (EA)
DIVU 32+ 16 Dn + (EA) - Dn (EA) v #xxx — (EA)
8 16 (Dn)g — Dnyg (EA) ® Dy — (EA)
EXT
16 — 32 (DN)1s —> Dnas EOR | 816,32 | pAV® thux - (EA)
MULS |16x16 > dN x (EA) — Dn NOT 8, 16, 32 ~ (EA) - (EA)
32 Notes: ~=invert
MULU 16x 16 — dN x (EA) — Dn # =immediate data
32 A = logical AND
V = logical OR
NEG 8, 16, 32 0 — (EA) — (EA) ® = logical exclusive OR
NEGX 8, 16, 32 O - (EA) - X - (EA) 3.4. SHIFT AND ROTATE OPERATIONS
8,16, 32 On + (EA) - Dn Shift operations in both directions are provided by
suB (EA) + Dn — (EA) the arithmetic instructions ASR and ASL and logical
(BA) + #xxx — (EA) shift instructions LSR and LSL. The rotate instruc-
16, 32 An + (EA) - An tions (with and without extend) available are ROXR,
SUBX 8. 16, 32 Dx - Dy - X — Dx ROXL, ROR, and ROL. All shift and rotate opera-
- (AX) — — (Ay) - X > (Ax) tions can be performed in either registers or memo-
TAS 8 [EA] -0, 1 — EA [7] ry. Register shifts and rotates support all operand
TST 8 16 32 (EA) - 0 sizes and allow a shift count specified in a data re-
gister.
Notes:  []= bit number

— () = indirect with predecrement
() + = indirect with postdecrement
# = immediate data

Table 3.4 : Shift and Rotate Operations.

Memory shifts and rotates are for word operands
only and allow only single-bit shifts or rotates.

Table 3.4 is a summary of the shift and rotate ope-
rations.

| Instruction Operand Size Operation

T ASL 8 16, 32 [xc ] « o0
ASR 8 16 32 ‘L —] xc ]
LSL 8 16 32 [xc ]« « le— 0
LSR 8 16, 32 0 —| —{ xc ]

[
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Table 3.4 : Shift and Rotate Operations (continued).

Instruction Operand Size Operation
ROL 8 16, 32 o] .J_T < ’<J
ROR 8 16 32 L.( ‘L’—g—l
ROXL 8 16, 32 [c |,Jj | [x IJ
ROXR 8 16 32 ‘L| X ] L

3.5. BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using
the following instructions : bit test (BTST), bit test
and set (BSET), bit test and clear (BCLR), and bit
test and change (BCHG). Table 3-5 is a summary
of the bit manipulation operations (Z is bit 2 of the
status register).

Table 3.5 : Bit Manipulation Operations.

Instruction Ope:rand Operation
Size
BTST 8, 32 ~ bit of (EA) - Z
~ bit of (EA) = Z
BSET 8,32 1 = bit of EA
~ bit of (EA) — Z
BCLR 8 32 0 - bit of EA
~ bit of (EA) = Z
BCHG | 832 |\ of (EA) - bit of EA
Note : ~ = Invert

3.6. BINARY CODED DECIMAL OPERATIONS

Multtiprecision arithmetic operations on binary co-
ded decimal numbers are accomplished using the
following instructions : add decimal with extend
(ABCD), subtract decimal with extend (SBCD), and
negate decimal with extend (NBCD). Table 3.6 is a
summary of the binary coded decimal operations.

Table 3.6 : Binary Coded Decimal Operations.

Instruction Ope.rand Operation
Size
Dxqo + Dy1g + X = Dx
ABCD 8
~ (Ax)10 + = (Ay)10 + x > (AX)
Dx1p — Dy1o - X - Dx
SBCD 8
~ (Ax)10 — = (Ay)10 — X > (AX)
NBCD 8 0 - (EA)0 - X — (EA)
Note : — () = Indirect with predecrement

3.7. PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using
a series of conditional and unconditional branch in-
structions and return instructions. These instruc-
tions are summarized in table 3.7.

The conditional instructions provide setting and
branching for the following conditions :

CC - Carry Clear LS - Low or Same
CS - Carry Set LT - Less Than

EQ - Equal MI - Minus
F - Never True NE - Not Equal
GE - Greater or Equal PL - Plus

GT - Greater Than
HI - High
LE - Less or Equal

T - Always True
VC - no Overflow
VS - Overflow
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Table 3.7 : Program Control Operations.

Instruction Operation
Conditional
Bee Branch Conditionally (14 conditions)
8- and 16-bit Displacement
DBcc Test Condition, Decrement, and Branch
16-bit Displacement
Sce Set Byte Conditionally (16 condtions)
Unconditional
BRA Branch always
8- and 16-bit Displacement
BSR Branch to Subroutine
8- and 16-bit Displacement
JMP Jump
JSR Jump to Subroutine
Returns
RTR Return and Restore Condition Codes
RTS Return from Subroutine

3.8. SYSTEM CONTROL OPERATIONS

System control operations are accomplished by
using privileged instructions, trap generating in-

Table 3.8 : System Control Operations.

structions, and instructions that use or modify the

in table 3.8.

status register. These instructions are summarized

MOVE EA to CCR
MOVE SR to EA
ORIl to CCR

Instruction Operation

Privileged

AND! to SR Logical AND to Status Register

EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register

MOVE USP Move User Stack Pointer

ORIlto SR Logical OR to Status Register

RESET Reset External Devices

RTE Return from Exception

STOP Stop Program Execution
Trap Generating

CHK Chek Data Register against Upper Bounds
TRAP Trap

TRAPV Trap on Overfiow
Status Register

ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condtion Codes

Load New Condition Codes
Store Status Register
Logical OR to Condition Codes

&
5
3
B
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SECTION 4

SIGNAL AND BUS OPERATION
DESCRIPTION

This section contains a brief description of the input
and output signals. A discussion of bus operation
during the various machine cycles and operations
is also given.

The terms assertion and negation will be used ex-
tensively. This is done to avoid confusion when dea-
ling with a mixture of "active-low" and "active-high”
signals. The term assert or assertion is used to in-
dicate that a signal is active or true, independent of
whether that level is represented by a high or low
voltage. The term negate or negation is used to in-
dicate that a signal is inactive or false.

4.1. SIGNAL DESCRIPTION

The input and output signals can be functionally or-
ganized into the groups shown in figure 4-1. The fol-
lowing paragraphs provide a brief description of the
signals and a reference (if applicable) to other pa-
ragraphs that contain more detail about the function
being performed.

4.1.1. ADDRESS BUS (A1 through A23). This 23-
bit, unidirectional, three-state bus is capable of ad-
dressing 8 megawords of data. It provides the ad-

Figure 4.1 : Input and Output Signals.

dress for bus operation during all cycles except in-
terrupt cycles. During interrupt cycles, address lines
A1, A2, and A3 provide information about what le-
vel interrupt is being serviced while address lines A4
through A23 are all set to a logic high.

4.1.2. DATA BUS (D0 through D15). This 16-bit, bi-
directional, three-state bus is the general purpose
data path. It can transfer and accept data in either
word or byte length. During an interrupt acknow-
ledge cycle, the external device supplies the vector
number on data lines DO-D7.

4.1.3. ASYNCHRONOUS BUS CONTROL. Asyn-
chronous data transfers are handled using the fol-
lowing control signals : address strobe, read/write,
upper and lower data strobes, and data transfer ac-
knowledge. These signals are explained in the fol-
lowing paragraphs.

4.1.3.1. Address Strobe (AS).

This signal indicates that there is a valid address on
the address bus.

4.1.3.2. Read/Write (R/W).

This signal defines the data bus transfer as a read
or write cycle. The R/W signal also works in conjunc-
tion with the data strobes as explained in the follo-
wing paragraph.
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GND —————{
CLK ————y
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{ FCO ——-—]
FC2 -—
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PERIPHERAL
CONTROL

VMA —
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SYSTEM
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HALT ~—————4
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DATA BUS » DO-DI5

——— AS

Bt

[————» R/
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BUS CONTROL
L » (0%

=l

%

[ DTACK

BUS ARBITRATION

CONTROL

l¢————— BR
F———» B8G

[——————— BGACK

T
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L
L
L.

|

T

INTERRUPT
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!
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4.1.3.3. Upper and Lower Data Strobe (UDS, LDS).

These signals control the flow of data on the data
bus, as shown in table 4-1. When the R/W line is
high, the processor will read from the data bus as
indicated. When the R/W line is low, the processor
will write to the data bus as shown.

4.1.3.4. Data Transfer Acknowledge (DTACK).

This input indicates that the data transfer is comple-
ted. When the processor recognizes DTACK during
a read cycle, data is latched and the bus cycle ter-
minated. When DTACK is recognized during a write
cycle, the bus cycle is terminated. (Refer to 4.4
Asynchronous Versus Synchronous Operation).

4.1.4. BUS ARBITRATION CONTROL. The three
signals, bus request, bus grant, and bus grant ac-
knowledge, form a bus arbitration circuit to deter-
mine which device will be the bus master device.

4.1.4.1. Bus Request (BR).

This input is wire ORed with all other devices that
could be bus masters. This inputindicates to the pro-
cessor that some other device desires to become
the bus master.

4.1.4.2. Bus Grant (BG).

This output indicates to all other potential bus mas-
ter devices that the processor will release bus
control at the end of the current bus cycle.

Table 4.1 : Data Strobe Control of Data Bus.

4.1.4.3. Bus Grant Acknowledge (BGACK).

This input indicates that some other device has be-
come the bus master. This signal should not be as-
serted until the following four conditions are met :
- 1.abus grant has been received,
- 2. address strobe is inactive which indicates
that the microprocessor is not using the bus,
- 3. datatransfer acknowledge isinactive which
indicates that neither memory nor peripherals
are using the bus, and
- 4. bus grant acknowledge is inactive which in-
dicates that no other device is still claiming
bus mastership.

4.1.5. INTERRUPT CONTROL (IPLO, IPL1, IPL2).
These input pins indicate the encoded priority level
of the device requesting an interrupt. Level seven is
the highest priority while level zero indicates that no
interrupts are requested. Level seven cannot be
masked. The least significant bit is given in [PLO and
the most significant bit is contained in IPL2. These
lines must remain stable until the processor signals
interrupt acknowledge (FCO-FC2 are all high) to in-
sure that the interrupt is recognized.

4.1.6. SYSTEM CONTROL. The system controf in-
puts are used to either reset or halt the processor
and to indicate to the processor that bus errors have
occurred. The three system control inputs are ex-
plained in the following paragraphs.

uDSs LDS RIW D8-D15 D0-D7
High High - No Valid Data No Valid Data
. Valid Data Bits Valid Data Bits
Low Low High 815 0-7
High Low High No Valid Data Valid g’_‘;ta Bits
Low High High Valid 8[?13;5‘ Bits No Valid Data
Valid Data Bits Valid Data Bits
Low Low Low 8-15 0-7
) Valid Data Bits Valid Data Bits
High Low Low 0-7* 0-7
. Valid Data Bits Valid Data Bits
Low High Low 815 815

" These conditions are a result of current implementation and may not appear on future devices.

[
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4.1.6.1. Bus Error (BERR)

This input informs the processor that there is a pro-

blem with the cycle currently being executed. Pro-

blems may be a result of :

- 1. nonresponding devices,

- 2.interrupt vector number acquisition failure,

- 3.illegal access request as determined by a me-
mory management unit, or

- 4. other application dependent errors.

The bus error signal interacts with the halt signal to
determine if the current bus cycle should be reexe-
cuted or if exception processing should be perfor-
med.

Refer to 4.2.4. Bus Error and Halt Operation for
additional information about the interaction of the
bus error and halt signals.

4.1.6.2. Reset (RESET)

This bidirectional signal line acts to reset (start a sys-
tem initialization sequence) the processor in
response to an external reset signal. An internally
generated reset (result of a RESET instruction)
causes all external devices to be reset and the in-
ternal state of the processor is not affected. A total
system reset (processor and external devices) is the
result of external HALT and RESET signals applied
at the same time. Refer to 4.2.5. Reset Operation
for further information.

4.1.6.3. Halt (HALT)

When this bidirectional line is driven by an external
device, it will cause the processor to stop at the com-
pletion of the current bus cycle. When the proces-
sor has been halted using this input, all control si-
gnals are inactive and all three-state lines are put in
their high-impedance state (refer to table 4.3). Re-
fer to 4.2.4. Bus Error and Halt Operation for ad-
ditional information about the interaction between
the HALT and bus error signals.

When the processor has stopped executing instruc-
tions, such as in a double bus fault condition (refer
to 4.2.4.4. Double Bus Faults), the HALT line is dri-
ven by the processor to indicate to external devices
that the processor has stopped.

4.1.7. EF6800 PERIPHERAL CONTROL. These
control signals are used to allow the interfacing of
synchronous EF6800 peripheral devices with the

asynchronous TS68000. These signals are explai-
ned in the following paragraphs.

4.1.7.1. Enable (E)

This signal is the standard enable signal common
to all EF6800 type peripheral devices. The period
for this output is ten TS68000 clock periods (six
clocks low, four clocks high). Enable is generated
by an internal ring counter which may come up in
any state (i.e., at power on, it is impossible to gua-
rantee phase relationship of E to CLK). E is a free-
running clock and runs regardless of the state of the
bus on the MPU.

4.1.7.2. Valid Peripheral Address (VPA)

This input indicates that the device or region addres-
sed is an EF6800 Family device and that data trans-
fer should be synchronized with the enable (E) si-
gnal. This input also indicates that the processor
should use automatic vectoring for an interrupt. Re-
fer to Section 6 Interface With Ef6800 Peripherals.

4.1.7.3. Valid Memory Address (VMA)

This output is used to indicate to EF6800 periphe-
ral devices that there is a valid address on the ad-
dress bus and the processor is synchronized to en-
able. This signal only responds to a valid peripheral
address (VPA) input which indicates that the peri-
pheral is an EF6800 Family device.

4.1.8. PROCESSOR STATUS (FCO, FC1, FC2).
These function code outputs indicate the state (user
or supervisor) and the cycle type currently being
executed, as shown in table 4.2. The information in-
dicated by the function code outputs is valid when-
ever address strobe (AS) is active.

Table 4.2 : Function Code Outputs.

Function Code output
FC2 FC1 FCoO
Low Low Low

Cycle Type

(undefined, reserved)

Low Low High User Data

Low High Low
Low High High
High Low Low
High Low High
High High Low
High High High

User Program

(undefined, reserved)

(undefined, reserved)

Supervisor Data

Supervisor Program

Interrupt Acknowledge
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4.1.9. CLOCK (CLK). The clock inputis a TTL-com-
patible signal that is internally buffered for develop-
ment of the internal clocks needed by the proces-
sor. The clock input should not be gated off at any
time and the clock signal must conform to minimum
and maximum pulse width times.

4.1.10. SIGNAL SUMMARY. Table 4.3 is a summa-
ry of all the signals discussed in the previous para-
graphs.

4.2. BUS OPERATION

The following paragraphs explain control signal and
bus operation during data transfers operations, bus
arbitration, bus error and hait conditions, and reset
operation.

4.2.1. DATA TRANSFER OPERATIONS. Transfer

of data between devices involves the following
leads.

Table 4.3 : Signal Summary.

- 1. address bus A1 through A23,
- 2. data bus DO through D15, and
- 3. control signals.

The address and data buses are separate paraliel
buses to transfer data using an asynchronous bus
structure. In all cycles, the bus master assumes re-
sponsibility for deskewing all signals it issues at both
the start and end of a cycle. In addition, the bus mas-
ter is responsible for deskewing the acknowledge
and data signals from the slave device.

The following paragraphs explain the read, write,
and read-modify-write cycles. The indivisible read-
modify-write cycle is the method used by the
TS68000 for interlocked multiprocessor communi-
cations.

Signal Name Nmemonic Input/output | Active State Hi-Z
On HALT | On BGACK

Address Bus A1-A23 Output High Yes Yes
Data Bus D0-D15 Input Output High Yes Yes
Address Strobe AS Output Low No Yes
Read/write RW Output w:g_';;%vh No Yes
Upper and Lower Data Strobes UDS, LDS Output Low No Yes
Data Transfer Acknowledge DTACK Input Low No No
Bus Request BR Input Low No No
Bus Grant BG Output low No No
Bus Grant Acknowledge BGACK Input Low No No
Interrupt Priority Level IPLO, IPLT, IPL2 Input Low No No
Bus Error BERR Input Low No No
Reset RESET Input Output Low No, No;
Halt HALT Input Output Low Noj Noy
Enable E Output High No No
Valid Memory Address VMA Output Low No Yes
Valid Peripheral Address VPA Input Low No No
Function Code Output FCO, FC1, FC2 Output High No Yes
Clock CLK Input High No No
Power input Vee Input - - -

Ground GND input - - -

Note : 1. Open drain

OB W TE L

[
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4.2.1.1. Read Cycle

During a read cycle, the processor receives data
from the memory or a peripheral device. The pro-
cessor reads bytes of data in all cases. If the instruc-
tion specifies a word (or double word) operation, the
processor reads both upper and lower bytes simul-
taneously by asserting both upper and lower data
strobes. When the instruction specifies byte opera-
tion, the processor uses an internal A0 bit to deter-
mine which byte to read and then issues the data

Figure 4.2 : Word Read Cycle Flowchart.

strobe required for that byte. For byte operations,
when the A0 bit equals zero, the upper data strobe
is issued. When the AO bit equals one, the lower da-
ta strobe is issued. When the data is received, the
processor correctly positions it internally.

A word read cycle flowchart is given in figure 4.2. A
byte read cycle flowchartis given in figure 4.3. Read
cycle timing is given in figure 4.4. Figure 4.5 details
word and byte read cycle operations.

BUS MASTER
Adoress the Device

1} Set R/W to Read

2} Place Function Code on FCO-FC2

3} Place Address on A1-AZ23

4) Assert Address Strobe (AS)

5) Assert Upper Data Strobe (UDS!) and
Lower Data Strobe ([DS)

SLAVE

Acquire the Data

Inpast the Data

1) Decode Address

2) Place Data on DO-D15

3) Assen Uata |ranster Acknowledge
(DTACK)

1} tatch Data
2) Negate UDS and LDS
3) Negate AS

[ Start Next Cycle

Terrminate the Cycle

1} Remove Data from DO-D1S
2) Negate DTACK
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Figure 4.3 : Byte Read Cycle Flowchart.

BUS MASTER
Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS)
(based on AD}

SLAVE

Acquire the Data -

Input the Data

1
2)

3

1) Latch Data
2} Negate UDS or D3
3} Negate AS

Decode Address

Place Data on DO-D7 or D8-D15 {based on

UDS or LDS)
Assert Data Transfer Acknowledge
(DTACK)

Terminate the Cycle

2)

[ Start Next Cycle |

1) Remove Data from DO-D7 or D8-D15

Negate DTACK

Figure 4.4 : Read and Write Cycle Timing Diagram.
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F—Read * Write ;,l: Slow Read———bl
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Figure 4.5 : Word and Byte Read Cycle Timing Diagram.

S0 S1 S2 S3 S4 S5 S6 S7 SO ST S2 S3 S4 S5 S6 S7 SO S1 52 S3 S4 S5 56 S7

FCO-FC2 x

*internal Signal Only

'4——Word Read——b‘d——— Odd Byte Read—b"t—-Even Byte Read—-b‘

4.2.1.2 Write Cycle

During a write cycle, the processor sends data to ei-
ther the memory or a peripheral device. The proces-
sor writes bytes of data in all cases. If the instruction
specifies a word operation, the processor writes
both bytes. When the instruction specifies a byte
operation, the processor uses an internal AQ bit to
determine which byte to write and then issues the

Figure 4.6 : Word Write Cycle Flowchart

data strobe required for that byte. For byte opera-
tions, when the AQ bit equals zero, the upper data
strobe is issued. When the AQ bit equals one, the
lower data strobe is issued. A word write flowchart
is given in figure 4.6. A byte write cycle flowchart is
given in figure 4.7. Write cycle timing is given in fi-
gure 4.4. Figure 4.8 details word and byte write cy-
cle operation.

BUS MASTER
Address the Device

1) Place Function Code on FCO-FC2

2) Place Address on A1-A23

3} Assert Address Strobe [AS)

4) Set R/W o Write

6} Place Data on DO-D15

6) Assert Upper Data Strobe (UDS) and
Lower Data Strobe (TDS}

SLAVE

L Input the Data

1) Decode Address
2) Store Data on DO-D15
3) Assert Data Transter Acknowledge {DTACK)

Terminate Output Transfer g
11 Negate UDS and 1D3
2} Negate AS
3) Aemove Data from DO-D5
4) Set R/W to Read

i Start Next Cycle

| ¢ 11 Negate DTACK

Terminate the Cycle
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Figure 4.7 : Byte Write Cycle Flowchart.

BUS MASTER SLAVE
Address the Device

1) Place Function Code on FCO-FC2

2} Place Address on A1-A23

3) Assert Address Strobe (AS)

4) Set R/W to Wnite

5! Place Data on DO-D? or D8-D15
taccording to AQ}

6} Assert Upper Data Strobe (UDS) or I Input the Data
| Data Strobe (LDS)
(t:a v;/:; 0: :O) ro 1) Decode Address
2) Store Data on DO-D7 if LDS is Asserted
Store Data on DB-D15 if UDS is Asserted
3) Assert Data Transter Acknowledge
{DTACK)
Terminate Output Transfer -t
1) Negate UDS and (DS
2) Negate AS

3) Remove Data from DO-D7 or D8-D15
4) Set R/W to Read

Terminate the Cycle

1} Negate DTACK

[ Start Next Cycle e

-

Figure 4.8 : Word and Byte Write Cycle Timing Diagram.
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4.2.1.3. Read-modify-write cycle

The read-modify-write cycle performs a read, modi-
fies the data in the arithmetic-logic unit, and writes
the data back to the same address. In the TS68000,
this cycle is indivisible in that the address strobe is
asserted throughout the entire cycle. The test and
set (TAS) instruction uses this cycle to provide mea-
ningful communication between processors in a

Figure 4.9 : Read—Modify-Write Cycle Flowchart.

multiple processor environment. This instruction is
the only instruction that uses the read-modify-write
cycles and since the test and set instruction only
operates on bytes, all read-modify-write cycles are
byte operations. A read-modify-write flowchart is gi-
ven in figure 4.9 and a timing diagram is given in fi-
gure 4.10.

BUS MASTER
Address the Device

1) Set R/W to Read

2) Place Function Code on FCO-FC2
3) Place Address on A1-A23

4} Assert Address Strobe (AS}

5) Assert Upper Data Strobe (UDS) or

SLAVE

Lower Data Strobe (LDS)

Input the Data

1} Decode Address
2) Place Data on DO-D7 or D8-D15
3} Assert Data Transfer Acknowledge

Acquire the Data

1} Latch Data _
2) Negate UDS or LDS
3) Stant Data Modification

{DTACK}

Terminate the Cycle

1) Remove Daia trom D0-O7 or D8-D15
2) Negate DTACK

Start Qutput Transfer -

1) Set R/W 1o Wnite

2) Place Data on DO-D7 or D8-D1S

3) Assert Upper Data Strobe (UDS) or Lower
Data Strobe (LDS}

> input the Data

11 Store Data on DO-D7 or D8-D1S
2) Assen Data Transter Acknowiedge
{DTACK)

Terminate Output Transfer -

1} Negate UD3S or LDS

2) Negate AS

3} Remove Data from DO-D7 or D8-D15
4) Set R/W to Read

Terminate the Cycle

=

Negate BTACK

Start Next Cycle

OB W TE L
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Figure 4.10 : Read-Modify-Write Cycle Timing Diagram.
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4.2.2. BUS ARBITRATION. Bus arbitration is a te-
chnique used by master-type devices to request, be
granted, and acknowledge bus mastership. In its
simplest form, it consists of the following :
- 1. asserting a bus mastership request,
- 2. receiving a grant that the bus is available
at the end of the current cycle, and
- 3. acknowledging that mastership has been
assumed

Figure 4.11 is a flowchart showing the detail invol-
ved in a request from a single device. Figure 4.12 is
a timing diagram for the same operation. This te-
chnique allows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is
negated at the time that an acknowledge is asser-
ted. This type of operation would be true for a sys-

tem consisting of the processor and one device ca-
pable of bus mastership. In systems having a num-
ber of devices capable of bus mastership, the bus
request line from each device is wire ORed to the
processor. In this system, it is easy to see that there
could be more than one bus request being made.
The timing diagram shows that the bus grant signal
is negated a few clock cycles after the transition of
the acknowledge (BGACK) signal.

However, if the bus requests are still pending, the
processor will assert another bus grant within a few
clock cycles after it was negated. This additional as-
sertion of bus grant allows external arbitration cir-
cuitry to select the next bus master before the cur-
rent bus master has completed its requirements.
The following paragraphs provide additional infor-
mation about the three steps in the arbitration pro-
cess.
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Figure 4.11 : Bus Arbitration Cycle Flowchart.
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Figure 4.12 ; Bus Arbitration Cycle Timing Diagram.
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4.2.2.1. Requesting the Bus

External devices capable of becoming bus masters
request the bus by asserting the bus request (BR)
signal. This is a wire-ORed signal (although it need
not be constructed from open-collector devices) that
indicates to the processor that some external device
requires control of the external bus. The processor
is effectively at a lower bus priority level than the ex-
ternal device and will relinquish the bus after it has
completed the last bus cycle it has started.

When no acknowledge is received before the bus
request signal goes inactive, the processor will
continue processing when it detects that the bus re-
quest is inactive. This allows ordinary processing to
continue if the arbitration circuitry responded to
noise inadvertently.

4.2.2.2 Receiving the Bus Grant

The processor asserts bus grant (BG) as soon as
possible. Normally this is immediately after internal
synchronization. The only exception to this occurs
when the processor has made an internal decision
to execute the next bus cycle but has not progres-
sed far enough into the cycle to have asserted the
address strobe (AS) signal. In this case, bus grant
will be delayed until AS is asserted to indicate to ex-
ternal devices that a bus cycle is being executed.

The bus grant signal may be routed through a dai-
sy-chained network or through a specific priority en-
coded network. The processor is not affected by the
external method of arbitration as long as the proto-
col is obeyed.

4.2.2.3. Acknowledgement of Mastership

Upon receiving a bus grant, the requesting device
waits until address strobe, data transfer acknow-
ledge, and bus grant acknowledge are negated be-
fore issuing its own BGACK. The negation of the ad-
dress strobe indicates that the previous master has
completed its cycle ; the negation of bus grant ac-
knowledge indicates that the previous master has
released the bus. (While address strobe is asserted,
no device is allowed to "break into” a cycle). The ne-
gation of data transfer acknowledge indicates the
previous slave has terminated its connection to the
previous master. Note that in some applications da-
ta transfer acknowledge might not enter into this
function. General purpose devices would then be
connected such that they were only dependent on
address strobe.

When bus grant acknowledge is issued, the device
is @ bus master until it negates bus grant acknow-
ledge. Bus grant acknowledge should not be nega-
ted until after the bus cycle(s) is (are) completed.
Bus mastership is terminated at the negation of bus
grant acknowledge.

The bus request from the granted device should be
dropped after bus grant acknowledge is asserted. If
a bus request is still pending, another bus grant will
be asserted within a few clocks of the negation of
the bus grant. Refer to 4.2.3. Bus Arbitration
Control. Note that the processor does not perform
any external bus cycles before it re-asserts bus
grant.

[
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4.2.3. BUS ARBITRATION CONTROL. The bus ar-
bitration control unit in the TS68000 is implemented
with a finite state machine. A state diagram of this
machine is shown in figure 4.13. All asynchronous
signals to the TS68000 are synchronized before
being used internally. This synchronization is ac-
complished in a maximum of one cycle of the sys-
tem clock, assuming that the asynchronous input
setup time (#47) has been met (see figure 4.14). The
input signal is sampled on the falling edge of the
clock and is valid internally after the next falling
edge.

As shown in figure 4.13, input signals labeled R and
Aare internally synchronized onthe bus requestand
bus grant acknowldege pins respectively. The bus
grantoutput s labeled G and the internal three-state
control signal T. If T is true, the address, data, and
control buses are placed in a high-impedance state
when AS is negated. All signals are shown in posi-
tive logic (active high) regardiess of their true active
voltage level. State changes (valid outputs) occur
on the next rising edge after the internal signal is va-
lid.

Atiming diagram of the bus arbitration sequence du-
ring a processor bus cycle is shown in figure 4.15.
The bus arbitration sequence while the bus is inac-
tive (i.e., executing internal operations such as a
multiply instruction) is show in figure 4.16.

If a bus request is made at a time when the MPU
has already begun a bus cycle but AS has notbeen
asserted (bus state S0), BG will not be asserted on
the next rising edge. Instead, BG will be delayed un-
til the second rising edge following its internal asser-
tion. This sequence is shown in figure 4.17.

4.2.4, BUS ERROR AND HALT OPERATION. In a
bus architecture that requires a handshake from an
external device, the possibility exists that the hands-
hake might not occur. Since different systems will
require a different maximum response time, a bus
error input is provided. External circuitry must be
used to determine the duration between address
strobe and data transfer acknowledge before is-
suing a bus error signal. When a bus error signal is
received, the processor has two options : initiate a
bus error exception sequence or try running the bus
cycle again.

Figure 4.13 : TS68000 Bus Arbitration Unit State Diagram.
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Notes : 1. State machine will not change if the bus is SO or S1. Refer to 4.2.3. Bus Arbitration Control.
2. The address bus will be placed in the high-impedance state if T is asserted and AS is negated.
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Figure 4.14 : Timing Relationship of External Asynchronous Inputs to Internal Signals.
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Figure 4.15 : Bus Arbitration Timing Diagram — Processor Active.
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Figure 4.16 : Bus Arbitration Timing Diagram — Bus Inactive.
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Figure 4.17 : Bus Arbitration Timing Diagram — Special Case.
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4.2.4.1. Bus Error Operation

When the bus error signal is asserted, the current
bus cycle is terminated. It BERR is asserted before
the falling edge of S2, AS will be negated in S7 in
either a read or write cycle. As long as BERR re-
mains asserted, the data and address buses will be
in the high-impedance state. When BERR is nega-
ted, the processor will begin stacking for exception
processing. Figure 4.18 is a timing diagram for the
exception sequence. The sequence is composed of
the following elements :
- 1. stacking the program counter and status regis-
ter,
- 2. stacking the error information,
- 3. reading the bus error vector table entry, and
- 4. executing the bus error handler routine.

The stacking of the program counter and the status
register is the same as if an interrupt had occurred.
Several additional items are stacked when a bus er-
ror occurs. These items are used to determine the
nature of the error and correct it, if possible. The bus
error vector is vector number two located at address
$000008. The processor loads the new program
counter from this location. A software bus error han-
dler routine is then executed by the processor. Re-

Figure 4.18 : Bus Error Timing Diagram.

fer to 5.2. Exception Processing for additional in-
formation.

4.2.4.2. RE-Run Operation

When, during a bus cycle, the processor receives a
bus error signal and the halt pin is being driven by
an external device, the processor enters the re-run
sequence. Figure 4.19 is a timing diagram for re-
running the bus cycle.

The processor terminates the bus cycle, then puts
the address and data output lines in the high-impe-
dance state. The processor remains "halted", and
will not run another bus cycle until the halt signal is
removed by external logic. Then the processor will
re-run the previous cycle using the same function
codes, the same data (for a write operation), and the
same controls. The bus error signal should be re-
moved at least one clock cycle before the halt signal
is removed.

The processor will not re-run a read-modify-write cy-
cle. This restriction is made to guarantee that the
entire cycle runs correctly and that the write opera-
tion of a test-and-set gperation is performed without
ever releasing AS. If BERR and HALT are asserted
during a read-modify-write bus cycle, a bus error
operation results.
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Figure 4.19 : Re—Run Bus Cycle Timing Diagram.
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4.2.4.3. Halt Operation

The halt input signal to the TS68000 performs a
halt/run/single-step function in a similar fashion to
the EF6800 halt function. The halt and run modes
are somewhat self explanatory in that when the hait
signal is constantly active the processor "halts"
(does nothing) and when the halt signal is constant-
ly inactive the processor "runs” (does something).

This single-step mode is derived from correctly ti-
med transitions on the halt signal input. If forces the
processor to execute a single bus cycle by entering
the run mode until the processor starts a bus cycle

Figure 4.20 : Halt Processor Timing Diagram.

then changing to the halt mode. Thus, the single-
step mode allows the user to proceed through (and
therefore debug) processor operations one bus cy-
cle at a time.

Figure 4.20 details the timing required for correct
single-step operations. Some care must be exerci-
sed to avoid harmful interactions between the bus
error signal and the halt pin when using the single-
cycle mode as a debugging tool. This is alsc true of
interactions between the halt and reset lines since
these can reset the machine.
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When the processor completes a bus cycle after re-
cognizing that the halt signal is active, most three-
state signals are put in the high-impedance state,
these include :

- 1. address lines, and

- 2.datalines.

This is required for correct performance of the re-
run bus cycle operation.

While the processor is honoring the halt request, bus
arbitration performs as usual. That s, halting has no
effecton bus arbitration. Itis the bus arbitration func-
tion that removes the control signals from the bus.

The halt function and the hardware trace capability
allow the hardware debugger to trace single bus cy-
cles or single instructions at a time. These proces-
sor capabifities, along with a software debugging
package, give total debugging flexibility.

4.2.4.4. Double bus faults

When a bus error exception occurs, the processor
will attempt to stack several words containing infor-
mation about the state of the machine. If a bus er-
ror exception occurs during the stacking operation,
there have been two bus errors inarow. This is com-
monly referred to as a double bus fault. When a dou-
ble bus fault occurs, the processor will halt. Once a
bus error exception has occurred, any bus error ex-
ception occurring before the execution of the next
instruction constitutes a double bus fauit.

Note that a bus cycle which is re-run does not consti-
tute a bus error exception and does not contribute
to a double bus fault. Note also that this means that
as long asthe external hardware requests it, the pro-
cessor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor
operation after the processor receives an external
reset input. The processor reads the vector table af-

Figure 4.21 : Reset Operation Timing Diagram.

ter a reset to determine the address to start program
execution. If a bus error occurs while reading the
vector table (or at any time before the first instruc-
tion is executed), the processor reacts as if a dou-
ble bus fault has occurred and it halts. Only an ex-
ternal reset will start a halted processor.

4.2.5. RESET OPERATION. The reset signal is a
bidirectional signal that allows either the processor
or an external signalto reset the system. Figure 4.21
is a timing diagram for the reset operation. Both the
halt and reset lines must be asserted to ensure to-
tal reset of the processor.

When the reset and halt lines are driven by an ex-
ternal device, it is recognized as an entire system
reset, including the processor. The processor res-
ponds by reading the reset vector table entry (vec-
tor number zero, address $000000) and loads it in-
to the supervisor stack pointer (SSP). Vector table
entry number one at address $000004 is read next
and loaded into the program counter. The proces-
sor initializes the status register to an interrupt level
of seven. No other registers are affected by the re-
set sequence.

When a reset instruction is executed, the processor
drives the reset pin for 124 clock periods. In this
case, the processor is trying to reset the rest of the
system. Therefore, there is no effect on the internal
state of the processor. All of the processor's inter-
nal registers and the status register are unaffected
by the execution of a reset instruction. All external
devices connected to the reset line will be reset at
the completion of the reset instruction.

Asserting the reset and halt lines for ten clock cy-
cles will cause a processor reset, except when Ve
is initially applied to the processor. In this case, an
external reset must be applied for at least 100 milli-
seconds.
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4.3. THE RELATIONSHIP OF DTACK,
BERR, AND HALT

In order to properly control termination of a bus cy-
cle for a re-run or a bus error condition, DTACK,
BERR, and HALT should be asserted and negated
on the rising edge of the TS68000 clock. This will
assure that when two signals are asserted simulta-
neously, the required setup time (#47) for both of
them will be met during the same bus state.

This, or some equivalent precaution, should be desi-
gned external to the TS68000. Parameter #48 is in-
tended to ensure this operation in a totally asynchro-
nous system, and may be ignored if the above
conditions are met.

The preferred bus cycle terminations may be sum-
marized as follows (case numbers refer to table
4.4):

Normal Termination : DTACK occurs first (case 1).

HALT is asserted _at the
same time or before DTACK
and BERR remains negated
(cases 2 and 3).

Bus Error Termination BERR is asserted in lieu of,
at the same time, or before
DTACK (case 4) ; BERR is
negated at the same time or
after DTACK.

HALT and BERR are asser-
ted in lieu of, at the_same
time, or before DTACK
(cases 6 and 7) ; HALT must
be held at least one cycle af-
ter BERR. Case 5 indicates
BERR may precede HALT
on all mask sets which al-
lows fully asynchronous as-

Halt Termination :

Re-Run Termination :

sertion.
Table 4.4 : DTACK, BERR and HALT Assertion Resuits.
Asserted. on Rising
Case N° Control Edge of State Result
Signal N N+ 2
DTACK A S Normal cycle terminate and continue
1 BERR NA X
HALT NA X
DTACK A S Normal cycle terminate and halt. Continue when HALT
2 BERR NA X removed.
HALT A S
DTACK NA A Normal cycle terminate and halt. Continue when HALT
3 BERR NA NA removed.
HALT A S
DTACK X X Terminate and take bus error trap.
4 BERR A S
HALT NA NA
DTACK NA X Terminate and re-run.
5 BERR A S
HALT NA A
DTACK X X Terminate and re-run when HALT removed.
6 BERR X S
HALT A S
DTACK NA X Terminate and re-run when HALT removed.
7 BERR NA A
HALT A S
Legend N - The number of the current even bus state {e.g., S4, S6, etc)

A - Signal is asserted in this bus state
NA - Signal is not asserted in this state
X - Don't care

S - Signal was asserted in previous state and remains asserted in this state

Table 4.4 details the resulting bus cycle termination
under various combinations of control signal se-
quences. The negation of these same control si-
gnals under several conditions is shown in table 4.5

(DTACK is assumed to be negated normally in all
cases ; for best results, both DTACK and BERR
should be negated when address strobe is nega-
ted).
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Table 4.5 : BERR and HALT Negation Results.

Conditions of Negated an Rising Edge
Termination in Control Signal of State Results - Next Cycle
Table 4-4 n n+2
Bus Error BERR . or . Takes bus error trap
HALT . or .
Re-run BERR . or [ lllegal sequence, usually traps to
HALT . vector number 0.
Re-run BERR . Re-runs the bus cycle
HALT .
Normal BERR . May Lengthen Next Cycle
HALT . or U
Normat BERR . If next cycle is started it will be
HALT . or None terminated as a bus error.
¢ = Signal is negated in this bus state.
EXAMPLE A : ta is given as parameter #31u and it must be met in

A system uses a watch-dog timer to terminate ac-
cesses 1o _unpopulated address space. The timer
asserts DTACK and BERR simultaneously after
time out (case 4).

EXAMPLE B :

A system uses error detection on RAM contents.
Designer may (a) delay DTACK until data verified
and return BERR and HALT simultaneously to re-
run error cycle (case 6), or if valid, return DTACK
(case 1) ; (b) delay DTACK until data verified and
return BERR at same time as DTACK if data in er-
ror (case 4).

4.4, ASYNCHRONOUS VERSUS SYNCRHO-
NOUS OPERATION

4.41. ASYNCHRONOUS OPERATION. To
achieve clock frequency independence at a system
level, the TS68000 can be used in an asynchronous
manner. This entails using only the bus handshake
lines (AS, UDS, LDS, DTACK, BERR, HALT, and
VPA) to control the data transfer. Using this method,
AS signals the start of a bus cycle and the data
strobes are used as a condition for valid data on a
write cycle. The slave device (memory or periphe-
ral) then responds by placing the requested data on
the data bus for a read cycle or latching data on a
write cycle and asserting the data transfer acknow-
ledge signal (DTACK) to terminate the bus cycle. If
no slave responds or the access is invalid, external
control logic asserts the BERR, or BERR and HALT,
signal to abort or re-run the bus cycle.

The DTACK signal is allowed to be asserted before
the data from a slave device is valid on a read cy-
cle. The length of time that DTACK may precede da-

any asynchronous system to insure that valid data
is fatched into the processor. Notice that there_is no
maximum time specified from the assertion of AS to
the assertion of DTACK. This is because the MPU
will insert wait cycles of one clock period each until
DTACK is recognized.

4.4.2. SYNCHRONOUS OPERATION. To allow for
those systems which use the system clock as a si-
gnal to generate DTACK and other asynchronous
inputs, the asynchronous input setup time is given
as parameter #47. If this setup is met on an input,
such as DTACK, the processor is guaranteed to re-
cognize that signal on the next falling edge of the
system clock. However, the converse is not true - if
the input signal does not meet the setup time it is
not guaranteed not to be recognized. In addition, if
DTACK is recognized on a falling edge, valid data
will be latched into the processor (on a read cycle)
onthe nextfalling edge provided that the data meets
the setup time given as parameter #27. Given this
parameter #31 may be ignored. Note that if DTACK
is asserted, with the required setup time, before the
falling edge of S4, no wait states will be incurred and
the bus cycle will run at its maximum speed of four
clock periods.

During an active bus cycle, BERR is sampled on
every falling edge of the clock starting with S2.
DTACK is sampled on every falling edge of the clock
starting with S4 and data is latched on the falling
edge of S6 during a read. The bus cycle will then be
terminated in S7 except when BERR is asserted in
the absence of DTACK, in which case it will termi-
nate one clock cycle laterin S9. VPA is sampled on-
ly on the third falling edge of the system clock be-
fore the rising edge of the E clock.
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SECTION §

PROCESSING STATES

This section describes the actions of the TS68000
which are outside the normal processing associated
with the execution of instructions. The functions of
the bits in the supervisor portion of the status regis-
ter are covered : the supervisor/user bit, the trace
enable bit, and the processor interrupt priority mask.
Finally, the sequence of memory references and ac-
tions taken by the processor on exception conditions
are detailed.

The TS68000 is always in one of three processing
states : normal, exception, or halted. The normal
processing state is that associated with instruction
execution ; the memory references are to fetch in-
structions and operands, and to store results. A spe-
cial case of the normal state is the stopped state
which the processor enters when a stop instruction
is executed. In this state, no further references are
made.

The exception processing state is associated with
interrupts, trap instructions, tracing, and other ex-
ceptional conditions. The exception may be internal-
ly generated by an instruction or by an unusual
condition arising during the execution of an instruc-
tion. Externally, exception processing can be forced
by an interrupt, by a bus error, or by a reset. Excep-
tion processing is design vide an efficient context
switch so that the processor may handle unusual
conditions.

The halted processing state is an indication of ca-
tastrophic hardware failure. For example, if during
the exception processing of a bus error another bus
error occurs, the processor assumes that the sys-
tem is unusable and halts. Only an external reset
can restart a halted processor. Note that a proces-
sor in the stopped state is not in the halted state, nor
vice versa.

5.1. PRIVILEGE STATES

The processor operates in one of two states of pri-
vilege : the "supervisor” state or the "user” state. The
privilege state determines which operations are le-
gal, are used to choose between the supervisor
stack pointer and the user stack pointer in instruc-
tion references, and may by used by an external me-
mory management device to control and translate
accesses.

The privilege state is a mechanism for providing se-
curity in a computer system. Programs should ac-
cess only their own code and data areas, and ought
to be restricted from accessing information which
they do not need and must not modify.

0

The privilege mechanism provides security by alio-
wing most programs to execute in user state. In this
state, the accesses are controlled, and the effects
on other parts of the system are limited. The opera-
ting system executes in the supervisor state, has ac-
cess to all resources, and performs the overhead
tasks for the user state programs.

5.1.1. SUPERVISOR STATE. The supervisor state
is the higher state of privilege. For instruction exe-
cution, the supervisor state is determined by the S
bit of the status register, if the S bitis asserted (high),
the processor is in the supervisor state. All instruc-
tions can be executed in the supervisor state. The
bus cycles generated by instructions executed inthe
supervisor state are classified as supervisor refe-
rences. While the processor is in the supervisor pri-
vilege state, those instructions which use either the
system stack pointer implicitly or address register
seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor
state, regardless of the setting of the S bit. The bus
cycles generated during exception processing are
classified as supervisor references. All stacking
operations during exception processing use the su-
pervisor stack pointer.

5.1.2. USER STATE. The user state is the lower
state of privilege. For instruction execution, the user
state is determined by the S bit of the status regis-
ter ; if the S bit is negated (low), the processor is
executing instructions in the user state.

Most instructions execute the same in user state as
in the supervisor state. However, some instructions
which have important system effects are made pri-
vileged. User programs are not permitted to execute
the stop instruction or the reset instruction. To en-
sure that a user program cannot enter the supervi-
sor state except in a controlled manner, the instruc-
tions which modify the whole state register are pri-
vileged. To aid in debugging programs which are to
be used as operating systems, the move to user
stack pointer (MOVE to USP) and move from user
stack pointer (MOVE from USP) instructions are al-
so privileged.

The bus cycles generated by an instruction execu-

ted in the user state are classified as user state re- ;
ferences. This allows an external memory manage- *
ment device to translate the address and to control |

access to protected portions of the address space.
While the processor is in the user privilege state,
those instructions which use either the system stack
pointer implicitly or address register seven explici-
tly, access the user stack pointer.

o -
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5.1.3. PRIVILEGE STATE CHANGES. Once the
processor is in the user state and executing instruc-
tions, only exception processing can change the pri-
vilege state. During exception processing, the cur-
rent setting of the S bit of the status register is sa-
ved and the S bit is asserted, putting the processor
in the supervisor state. Therefore, when instruction
execution resumes at the address specified to pro-
cess the exception, the processor is in the supervi-
sor privilege state.

5.1.4. REFERENCE CLASSIFICATION. When the
processor makes a reference, it classifies the kind
of reference being made, using the encoding on the
three function code output fines. This allows exter-
nal translation of addresses, control of access, and
differentiation of special processor state, such as in-
terrupt acknowledge. Table 5.1 lists the classifica-
tion of references.

Table 5.1 : Bus Cycle Classification.

Function Code output
Reference Class
FC2 FC1 FCoO
0 0 0 (unassigned)
0 0 1 User Data
0 1 o] User Program
0 1 1 (unassigned)
1 0 0 (unasigned)
1 0 1 Supervisor Data
1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

Figure 5.1 : Format of Vector Table Entries.

5.2. EXCEPTION PROCESSING

Before discussing the details of interrupts, traps,
and tracing, a general description of exception pro-
cessing is in order. The processing of an exception
occurs in four steps, with variations for different ex-
ception causes. During the first step, a temporary
copy of the status register is made and the status
register is set for exception processing. In the se-
cond step the exception vector is determined and
the third step is the saving of the current processor
context. In the fourth step a new context is obtained
and the processor switches to instruction proces-
sing.

5.2.1. EXCEPTION VECTORS. Exception vectors
are memory locations from which the processor
fetches the address of a routine which will handle
that exception. All exception vectors are two words
in length (figure 5.1), except for the reset vector
which is four words. All exception vectors lie in the
supervisor data space, except for the reset vector
which is in the supervisor program space. A vector
number is an 8-bit number which, when multiplied
by four, gives the address of an exception vector.
Vector numbers are generated internally or exter-
nally, depending on the cause of the exception. In
the case of interrupts, during the interrupt acknow-
ledge bus cycle, a peripheral provides an 8-bit vec-
tor number (figure 5.2) to the processor on data bus
lines DO through D7. The processor translates the
vector number into a full 24-bit address, shown in fi-
gure 5.3. The memory layout of for exception vec-
tors is given in table 5.2.

Word 0 New Program Counter tHigh) AD=0, A1=0
Word 1 New Program Counter (Low} A0=0, At=1
Figure 5.2 : Vector Number Format.
D15 D8 D7 DO
Ignored vI | v6|vS|va | v3d]v2jvi| w0
Where
v7 15 the MSB of the Vector Number
v0 1s the LSB of the Vecior Nuiniber
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Figure 5.3 : Exception Vector Address Calculation.

A23 A0 AD
Al Zeroes vi| wlw|va|v3|v2]viiw]o]o
Table 5.2 : Exception Vector Table.
Vector Number(s) Address Assigment
Dec Hex Space
0 0 000 SP Reset Initial SSP
- 4 004 SP Reset Initial PC
2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD llegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12* 48 030 SD (unassigned, reserved)
13" 52 034 SD (unassigned, reserved)
14* 56 038 SD (unassigned, reserved)
15 60 03C SD Uninitialized Interrupt Vector
16-23* 64 04C SD (unassigned, reserved)
95 05F -
24 96 060 SD Spurious Interrupt
25 100 064 Sb Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 Sb Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
3247 128 080 SD TRAP Instruction Vectors
191 0BF -
48-63" 192 0Co SD (unassigned, reserved)
255 OFF -
64-225 256 100 SD User Interrupt Vectors
1023 3FF - .

* Vector numbers 12 13 14 16 through 23, and 48 through 63 are reserved for future enhancements by SGS THOMSON Microelectronics. No
user peripheral devices should be assigned these numbers.
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As shown in table 5.2, the memory layout is 512
words long (1024 bytes). It starts at address 0 and
proceeds through address 1023. This provides 255
unique vectors ; some of these are reserved for
TRAPS and other system functions. Of the 255,
there are 192 reserved for user interrupt vectors.
However, there is no protection on the first 64 en-
tries, so user interrupt vectors may overlap at the
discretion of the systems designer.

5.2.2. KINDS OF EXCEPTIONS. Exceptions can be
generated by either internal or external causes. The
externally generated exceptions are the interrupts
and the bus error and reset requests. The interrupts
are requests from peripheral devices for processor
action while the bus error and reset inputs are used
for access control and processor restart. The inter-
nally generated exceptions come from instructions,
or from address errors or tracing. The trap (TRAP),
trap on overflow (TRAPV), check data register
against upper bounds (CHK), and divide (DIV) in-
structions all can generate exceptions as part of
their instruction execution. In addition, illegal instruc-
tions, word fetches from odd addresses, and privi-
lege violations cause exceptions. Tracing behaves
like a very high-priority internally-generated inter-
rupt after each instruction execution.

5.2.3. EXCEPTION PROCESSING SEQUENCE.
Exception processing occurs in four identifiable
steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit
is asserted, putting the processor into the supervi-
sor privilege state. Also, the T bit is negated which
will allow the exception handler to execute unhinde-
red by tracing. For the reset and interrupt excep-
tions, the interrupt priority mask is also updated.

In the second step, the vector number of the excep-
tion is determined. For interrupts, the vector num-
ber is obtained by a processor fetch and classified
as an interrupt acknowledge. For ali other excep-
tions, internal logic provides the vector number. This
vector number is then used to generate the address
of the exception vector.

Figure 5.4 : Exception Stack Order (groups 1 and 2).

The third step is to save the current processor sta-
tus, except for the reset exception. The current pro-
gram counter value and the saved copy of the sta-
tus register arer stacked using the supervisor stack
pointer as shown in figure 5.4. The program coun-
ter value stacked usually points to the next unexe-
cuted instruction ; however, for bus error and ad-
dress error, the value stacked for the program coun-
ter is unpredictable, and may be incremented from
the address of the instruction which caused the er-
ror. Additional information defining the current
context is stacked for the bus error and address er-
ror exceptions.

The last step is the same for all exceptions. The new
program counter vaiue is fetched from the excep-
tion vector. The processor then resumes instruction
execution. The instruction at the address given in
the exception vector is fetched, and normal instruc-
tion decoding and execution is started.

5.2.4. MULTIPLE EXCEPTIONS. These para-
graphs describe the processing which occurs when
multiple exceptions arise simultaneously. Excep-
tions can be grouped according to their occurrence
and priority. The group 0 exceptions are reset, bus
error, and address error. These exceptions cause
the instruction currently being executed to be abor-
ted and the exception processing to commence wi-
thin two clock cycles.

The group 1 exceptions are trace and interrupt, as
well as the privilege violations and illegal instruc-
tions. These exceptions allow the current instruction
to execute to completion, but pre-empt the execu-
tion of the next instruction by forcing exception pro-
cessing to occur (privilege violations and illegal in-
structions are detected when they are the next in-
struction to be executed). The group 2 exceptions
occur as part of the normal processing of instruc-
tions. The TRAP, TRAPV, CHK, and zero divide ex-
ceptions are in this group. For these exceptions, the
normal execution of an instruction may lead to ex-
ception processing.

SSP —

Status Register

- Program Counter — —

Higher
Addresses
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Group 0 exceptions have highest priority, while
group 2 exceptions have lowest priority. Within
group 0, reset has highest priority, followed by bus
error and then address error. Within group 1, trace
has priority over external interrupts, which in turn
takes priority over illegal instruction and privilege
violation. Since only one instruction can be execu-

ted at a time, there is no priority relation within

group 2.

The priority relation between two exceptions deter-
mines which is taken, or taken first, if the conditions
for both arise simultaneously. Therefore, if a bus er-
ror occurs during a TRAP instruction, the bus error
takes precedence, and the TRAP instruction pro-
cessing is aborted. In another example, if an inter-
rupt request occurs during the execution of an in-
struction while the T bit is asserted, the trace excep-
tion has priority, and is processed first. Before in-
struction processing resumes, however, the inter-
rupt exception is also processed, and instruction
processing commences finally in the interrupt han-
dler routine. A summary of exception grouping and
priority is given in table 5.3.

Table 5.3 : Exception Grouping and Priority.

Group | Exception Processing
Reset ) ) .
0 Address Error Exception processing begins
Bus Error within two clock cycles.
Trace
1 Interrupt Exception processing begins
llegal before the next instruction.
Privilege
TRAP, TRAPV| Exception processing is
2 CHK started by normal instruction
Zero Divivde | execution.

5.3. EXCEPTION PROCESSING DETAILED DIS-
CUSSION

Exceptions have a number of sources and each ex-
ception has processing which is peculiar to it. The
following paragraphs detail the sources of excep-
tionsn, how each arises, and how each is proces-
sed.

5.3.1. RESET. The reset input provides the highest
exception level. The processing of the reset signal
is designed for system initiation and recovery from
catastrophic failure. Any processing in progress at
the time of the reset is aborted and cannot be reco-
vered. The processor is forced into the supervisor
state and the trace state is forced off. The proces-
sor interrupt priority mask is set at level seven. The
vector number is internally generated to reference
the reset exception vector at location 0 in the super-

visor program space. Because no assumptions can
be made about the validity of register contents, in
particular the supervisor stack pointer, neither the
program counter nor the status register is saved.
The address contained in the first two words of the
reset exception vector is fetched as the initial super-
visor stack pointer, and the address in the last two
words of the reset exception vector is fetched as the
initial program counter. Finally, instruction execution
is started at the address in the program counter. The
power-up/restart code should be pointed to by the
initial program counter.

The reset instruction does not cause loading of the
reset vector, but does assert the reset line to reset
external devices. This aliows the software to reset
the system to a known state and then continue pro-
cessing with the next instruction.

5.3.2. INTERRUPTS. Seven levels of interrrupt prio-
rities are provided. Devices may be chained exter-
nally within interrupt priority levels, allowing an unli-
mited number of peripheral devices to interrupt the
processor. Interrupt priority levels are numbered
from one to seven, with level seven being the hi-
ghest priority. The status register contains a 3-bit
mask which indicates the current processor priority,
and interrupts are inhibited for all priority levels less
than or equal to the current processor priority.

Aninterrupt request is made to the processor by en-
coding the interrupt request level on the interrupt re-
quest lines ; a zero indicates no interrupt request.
Interrupt requests arriving at the processor do not
force immediate exception processing, but are
made pending. Pending interrupts are detected be-
tween instruction executions. If the priority of the
pending interrupt is lower than or equal to the cur-
rent processor priority, execution continues with the
next instruction and the interrupt exception proces-
sing is postponed. (The recognition of level seven
is slightly different, as explained in the following pa-
ragraph).

If the priority of the pending interrupt is greater than
the current processor priority, the exception proces-
sing sequence is started. A copy of the status regis-
ter is saved, the privilege state is sent to the super-
visor stack, tracing is suppressed, and the proces-
sor priority level is set o the level of the interrupt ac-
knowledged. The processor fetches the vector num-
ber from the interrupting device, classifying the re-
ference as an interrupt acknowledge and displaying
the level number of the interrupt being acknow-
ledged on the address bus. If external logic requests

an automatic vectoring, the processor internally ge-
nerates a vector number which is determined by the

interrupt level number. :

e

3
<
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If external logic indicates a bus error, the interrupt is
takento be spurious, and the generated vector num-
ber references the spurious interrupt vector. The
processor then proceeds with the usual exception
processing, saving the program counter and status
register on the supervisor stack. The saved value of
the program counter is the address of the instruc-
tion which would have been executed had the inter-
rupt not been present. The content of the interrupt
vector whose vector number was previously obtai-
ned is fetched and loaded into the program counter,
and normal instruction execution commences in the
interrupt handling routine. A flowchart for the inter-
rupt acknowledge sequence is given in figure 5.5, a
timing diagram is given in figure 5.6, and the inter-
rupt processing sequence is shown in figure 5.7.

Priority level seven is a special case. Level seven
interrupts cannot be inhibited by the interrupt priori-
ty mask, thus providing a "non-maskable interrupt"
capability. An interrupt is generated each time the
interrupt request level changes from some lower le-
vel to level seven. Note that a level seven interrupt
may still be caused by the level comparison if the
request level is a seven and the processor priority
is set to a lower level by an instruction.

5.3.3. UNINITIALIZED INTERRUPT. An interrupting
device asserts VPA or provides an interrupt during an
interrupt acknowledge cycle to the TS68000. If the

Figure 5.5 : Vector Acquisition Flowchart.

vector register has not been initialized, the res-pon-
ding TS68000 Family peripheral will provide vector 15,
the uninitialized interrupt vector. This provides a uni-
form way to recover from a programming error.

5.3.4. SPURIOUS INTERRUPT. If during the inter-
rupt acknowledge cycle no device responds by as-
serting DTACK or VPA, the bus error line should be
asserted to terminate the vector acquisition. The
processor separates the processing of this error
from bus error by fetching the spurious interrupt vec-
tor instead of the bus error vector. The processor
then proceeds with the usual exception processing.

5.3.5. INSTRUCTION TRAPS. Traps are excep-
tions caused by instructions. They arise either from
processor recognition of abnormal conditions during
instruction execution, or from use of instructions
whose normal behavior is trapping.

Some instructions are used specifically to generate
traps. The TRAP instruction always forces an ex-
ception and is useful for implementing system calls
for user programs. The TRAPV and CHK instruc-
tions force an exception if the user program detects
a runtime error, which may be an arithmetic over-
flow or a subscript out of bounds.

The signed divide (DIVS) and unsigned (DIVU) in-
structions will force an exception if a division opera-
tion is attempted with a divisor of zero.

PROCESSOR

Grant the Interrupt

Compare Interrupt Level in Siatus Register
and Wait for Current Instruction to Complete
2) Assert Address Stiobe (AS!

3} Place Interrupt Level on Al, A2, A3

1

——_

INTERRUPTING DEVICE

Request the Interrupt 1

4} Set Function Code to Interrupt Acknowledge
5) Assert Address Strobe (AS)
6) Assert Data Strobes (UDS* and LDS)

Provide the Veactor Number

1} Place Vector Number on DO-D7
2) Assert Data Transfer Acknowledge (DTACK)

Acquire the Vector Numb
1) Latch Vector Number
2} Negate UDS and LDS
3) Negate AS

F Start intervupt Processing

e

Release

1} Negate DTACK

* Although a vector number is one byte, both data stobes are asserted due to the microcode used for exception processing. The processor does

not recognize anything on data lines D8 through D15 at this time.
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Figure 5.6 : Interrupt Acknowledge Cycle Timing Diagram.

reorc2 X va X
IPLOAPL2 X

Last Bus Cycle of instruction Stack IACK Cycle Stack and

{Read or Wnte) PCL 1 (Vector Number Acquisition) ] Vector Fe!chg
“--——+ (SSPoTT bl g

* Although a vector number is one byte, both data stobes are asserted due to the microcode used for exception processing. The processor does
not recognize anything on data lines D8 through D15 at this time.

Figure 5.7 : Interrupt Processing Sequence.

Last Bus Cycle IACK
of instruchior Stack Cyde Stack Stack
(Duning Which PCL ,_,.‘ 4 o Status e PCH
(Vector Number
Interrupt Was fat SSP - 20 L tat SSP - 6 (at SSP — 4)
Acquisition)
Recognized!
3

Read Read Fetch First Two

Vector Vector Instruction Words

High Low of Interrupy

(A16-A31) (AQ-A15! Routine

Note : SSP refers to the value of the supervisor stack pointer before the interrupt occurs.
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53.6. ILLEGAL AND UNIMPLEMENTED IN-
STRUCTIONS. "lllegal instruction" is the term used
to refer to any of the word bit patterns which are not
the bit pattern of the first word of a legal instruction.
During instruction execution, if such an instruction
is fetched, an illegal instruction exception occurs.
SGS-THOMSON reserves the right to define in-
structions whose opcodes may be any of the illegal
instructions. Three bit patterns will always force an
illegal instruction trap on all TS68000 Family com-
patible microprocessors. They are : $4AFA, $4AFB,
and $4AFC. Two of the patterns, $4AFA and
$4AFB, are reserved for SGS-THOMSON Micro-
electronics system products. The third pattern,
S4AFC, is reserved for customer use.

Word patterns with bits 15 through 12 equaling 1010
or 1111 are distinguished as unimplemented ins-
tructions and separate exception vectors are given
to these patterns to permit efficient emulation. This
facility allows the operating system to detect pro-
gram errors, or to emulate unimplemented instruc-
tions in software.

5.3.7. PRIVILEGE VIOLATIONS. In order to provide
system security, various instructions are privileged.
An attempt to execute one of the privileged instruc-
tions while in the user state will cause an exception.
The privileged instructions are :

STOP AND Immediate to SR
RESET EOR Immediate to SR
RTE OR Immediate to SR

MOVEto SR MOVE USP

5.3.8. TRACING. To aid in program development,
the TS68000 includes a facility to allow instruction-
by-instruction tracing. In the trace state, after each
instruction is executed an exception is forced, allo-
wing a debugging program to monitor the execution
of the program under test.

The trace facility uses the T bit in the supervisor por-
tion of the status register. If the T bit is negated (off),
tracing is disabled, and instruction execution pro-
ceeds frominstruction to instruction as normal. If the
T bit is asserted (on) at the beginning of the execu-
tion of an instruction, a trace exception will be gene-
rated after the execution of that instruction is com-
pleted. If the instruction is not executed, either be-
cause an interrupt is taken, or the instruction is ille-
gal or privileged, the trace exception does not oc-
cur. The trace exception also does not occur if the
instruction is aborted by a reset, bus error, or ad-
dress error exception. If the instruction is indeed
executed and an interrupt is pending on completion,
the trace exception is processed before the interrupt

exception. If, during the execution of the instruction
an exception is forced by that instruction, the forced
exception is processed before the trace exception.

As an extreme illustration of the above rules, consi-
der the arrival of an interrupt during the execution of
aTRAP instruction while tracing is enabled. First the
trap exception is processed, then the trace excep-
tion, and finally the interrupt exception. Instruction
execution resumes in the interrupt handler routine.

5.3.9. BUS ERROR. Bus error exceptions occur
when the external logic requests that a bus error be
processed by an exception. The current bus cycle
which the processoris making is then aborted. Whe-
ther the processor was doing instruction or excep-
tion processing, that processing is terminated, and
the processor immediately begins exception pro-
cessing.

Exception processing for the bus error follows the
usual sequence of steps. The status register is co-
pied, the supervisor state is entered, and the trace
state is turned off. The vector number is generated
to refer to the bus error vector. Since the processor
was not between instructions when the bus error ex-
ception request was made, the context of the pro-
cessor is more detailed. To save more of this
context, additional information is saved on the su-
pervisor stack. The program counter and the copy
of the status register are of course saved. The va-
lue saved for the program counter is advanced by
some amount, one to five words beyond the address
of the first word of the instruction which made the
reference causing the bus error. If the bus error oc-
curred during the fetch of the next instruction, the
saved program counter has a value in the vicinity of
the current instruction, even if the current instruction
is a branch, a jump, or a return instruction. Besides
the usual information, the processor saves its inter-
nal copy of the first word of the instruction being pro-
cessed and the address which was being accessed
by the aborted bus cycle. Specific information about
the access is also saved : whether it was a read or
a write, whether or not the processor was proces-
sing an instruction, and the classification displayed
on the function code outputs when the bus error oc-
curred. The processor is processing an instruction
if it is in the normal state or processing a group 2 ex-
ception ; the processor is not processing an instruc-
tion if it is processing a group 0 or a group 1 excep-
tion. Figure 5.8 illustrates how this information is or-
ganized on the supervisor stack. Although this infor-
mation is not sufficient in general to effect full reco-
very from the bus error, it does allow software dia-
gnosis. Finally, the processor commences instruc-
tion processing at the address contained in vector

[
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number two. It is the responsibility of the error han-
dler routine to clean up the stack and determine
where to continue execution.

If a bus error occurs during the exception proces-
sing for a bus error, address error, or reset, the pro-
cessor is halted and all processing ceases. This sim-
plifies the detection of catastrophic system failure,
since the processor removes itself from the system
rather destroy any memory contents. Only the RE-
SET pin can restart a halted processor.

5.3.10. ADDRESS ERROR. Address error excep-
tions occur when the processor attempts to access
a word or a long word operand or an instruction at

Figure 5.8 : Exception Stack Order (group 0).

an odd address. The effect is much like an internal-
ly generated bus error, so that the bus cycle is abor-
ted and the processor ceases whatever processing
it is currently doing and begins exception proces-
sing. After the exception processing commences,
the sequence is the same as that for bus error inclu-
ding the information that is stacked, except that the
vector number refers to the address error vectorins-
tead. Likewise, if an address error occurs during the
exception processing for a bus error, address error,
or reset, the processor is haited. As shown in figure
5.9, an address error will execute a short bys cycle
followed by exception processing.

6 5 4 3 2 1 0

—
SSP—DJ

]R/WJ N ] Function Code

Higher

Instruction Register

Addresses

Status Register

Low

— - Program Counter = — — — — — — — T

R/W (read/wnte) wnte=0, read=1

I/N (instruction/ not): instruction =0, not=1

Figure 5.9 : Address Error Timing Diagram.
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SECTION 6

INTERFACE WITH EF6800 PERIPHERALS

SGS-THOMSON Microelectronics extensive line of
EF6800 peripherals are directly compatible with the
TS68000. Some of these devices that are particu-
larly useful are :

EF6821 Peripheral Interface Adapter

EF6840 Programmable Timer Module

EF9345, EF9367 CRT Controliers

EF6850 Asynchronous Communications Interface
Adapter

Figure 6.1 : EF6800 Interfacing Flowchart.

EF6852 Synchronous Serial Data Adapter
EF6854 Advanced Data Link Controller

To interface the synchronous EF6800 peripherals
with the asynchronous TS68000, the processor mo-
difies its bus cycle to meet the EF6800 cycle requi-
rements whenever an EF6800 device address is de-
tected. This is possible since both processors use
memory mapped I/O. Figure 6.1 is a flowchart of the
interface operation between the processor and
EF6800 devices.

SLAVE

» Define 6800 Cycle

1) External Hardware Asserts Valid Peripheral
Address (VPA)

Transfer the Data

1} The Peripheral Waits Until E is Active
and then Transfers the Data

PROCESSOR
Initiate the Cycle
1) The Processor Starts a Normal Read or
Wirite Cycle
Synchronize with Enable
1) The Processor Monitors Enable (E} Until it is(
Low {Phase 1}
[2) The Processor Asserts Valid Memory
Address (VMA}
Terminate the Cycle
1} The Processor Waits Untit E Goes Low
{On a Read Cycie the Data is Latched
as E Goes Low Internally)
2) The Processor Negates VMA
3) The Processor Negates AS, UDS, and (DS

[ Start Next Cycle ]
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6.1. DATA TRANSFER OPERATION

Three signals on the processor provide the EF6800
interface. They are : enable (E), valid memory ad-
dress (VMA), and valid peripheral address (VPA).
Enable corresponds to the E or phase 2 signal in
existing 6800 systems. The bus frequency in one
tenth of the incoming TS68000 clock frequency. The
timing of E allows 1 megahertz peripherals to be
used with 8 megahertz TS68000s. Enable has a
60/40 duty cycle ; that is, it is low for six input clocks

and high for four input clocks. This duty cycle allows
the processor to do successive VPA accesses on
successive E pulses.

EF6800 cycle timing is given in figures 6.2, 6.3, 8.7,
and 8.8. At state zero (S0) in the cycle, the address
bus is in the high-impedance state. A function code
is asserted on the function code output lines. One-
haif clock later, in state 1, the address bus is relea-
sed from the high-impedance state.

Figure 6.2 : TS68000 to EF6800 Peripheral Timing — Best Case.
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Figure 6.3 : TS68000 to EF6800 Peripheral Timing — Worst Case.
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During state 2, the address strobe (AS) is asserted
to indicate that there is a valid address on the ad-
dress bus. If the bus cycle is a read cycle, the upper
and/or lower data strobes are also asserted in state
2. If the bus cycle is a write cycle, the read/write
(R/W) signal is switched to low (write) during state
2. One-half clock later, in state 3, the write data is
placed on the data bus, and in state 4 the data
strobes are issued to indicate valid data on the da-
ta bus. The processor now inserts wait states until
it recognizes the assertion of VPA.

The VPA input signals the processor that the ad-
dress on the bus is the address of an EF6800 de-
vice (or an area reserved for EF6800 devices) and
that the bus should conform to the phase 2 transfer
characteristics of the EF6800 bus. Valid peripheral
address is derived by decoding the address bus,
conditioned by the address strobe. Chip select for
the EF6800 peripherals should be derived by deco-
ding the address bus conditioned by VMA.

After recognition of VPA, the processor assures that
the enable (E) is low, by waiting if necessary, and
subsequently asserts VMA. Valid memory address
is then used as part of the chip select equation of
the peripheral. This ensures that the EF6800 peri-
pherals are selected and deselected at the correct
time. The peripheral now runs its cycle during the
high portion of the E signal. Figures 6.2 and 6.3 de-
pict the best and worst case EF6800 cycle timing.
This cycle length is dependent strictly upon when
VPA is asserted in relationship to the E clock.

If we assume that external circuitry asserts VPA as
soon as possible after the assertion of AS, then VPA
will be recognized as being asserted on the falling
edge of S4. In this case, no "extra” wait cycles will
be inserted prior to the recognition of VPA asserted
and only the wait cycles inserted to synchronize with
the E clock will determine the total length of the cy-
cle. In any case, the synchronization delay will be
some integral number of clock cycles within the fol-
lowing two extremes :

1. Best Case - VPA is recognized as being asserted
on the falling edge three clock cycles before E rises
(or three clock cycles after E falls)

2. Worst Case - VPA is recognized as being asser-
ted on the falling edge two clock cycles before E
rises (or four clock cycles after E falls).

During a read cycle, the processor latches the peri-
pheral data in state 6. For all cycles, the processor
negates the address and data strobes one-half
clock cycle later in state 7 and the enable signal
goes low at this time. Another half clock later, the
address bus is put in the high-impedence state.

During a write cycle, the data bus is put in the high-
impedence state and the read/write signal is swit-
ched high. The peripheral logic must remove VPA
within one clock after the address strobe is negated.

DTACK should not be asserted while VPA is asser-
ted. Notice that the TS68000 VMA is active low,
contrasted with the active high EF6800 VMA. This
allows the processor to put its buses in the high-im-
pedance state on DMA requests without inadver-
tently selecting the peripherals.

6.2. INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the
processor is fetching the vector, the VPA is asser-
ted, the TS68000 will assert VMA and complete a
normal EF6800 read cycle as shown in figure 6.4.
The processor will then use an internally generated
vector that is a function of the interrupt being servi-
ced. This process is known as autovectoring. The
seven autovectors are vector numbers 25 through
31 (decimal).

Autovectoring operates in the same fashion (but is
not restricted to) the EF6800 interrupt sequence.
The basic difference is that there are six normalin-
terrupt vectors and one NMI type vector. As with
both the EF6800 and the TS68000’s normal vecto-
red interrupt, the interrupt service routine can be lo-
cated anywhere in the address space. This is due
to the fact that while the vector numbers are fixed,
the contents of the vector table entries are assigned
by the user.

Since VMA is asserted during autovectoring, care
should be taken to insure that the 6800 peripheral
address decoding prevents unintended accesses.
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Figure 6.4 : Autovector Operation Timing Diagram.

SO S2 S4 S6 SO S2 S4 w w W o w W ow W oW W w S6 SO S2
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™ Cycle Ll

* Although UDS and LDS are asserted, no data is read from the bus during the autovector cycle. The vector number is generated internally.
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SECTION 7

INSTRUCTION SET AND EXECUTION
TIMES

7.1. INSTRUCTION SET

The following paragraphs provide information about
the addressing categories and instruction set of the
TS68000.

7.1.1. ADDRESSING CATEGORIES. Effective ad-
dress modes may be categorized by the ways in
which they may be used. The following classifica-
tions will be used in the instruction definitions.

Data If an effective address mode may be
used to refer to data operands, it is
considered a data addressing effective
address mode.

Memory  If an effective address mode may be
used to refer to memory operands, it is
considered a memory addressing
effective address mode.

Alterable  If an effective address mode may be

used to refer to alterable (writeable)

Table 7.1 : Effective Addressing Mode Categories.

operands, it is considered an alterable
addressing effective address mode.

If an effective address mode may be
used to refer to memory operands
without an associated size, it is consi-
dered a control addressing effective
address mode.

These categories may be combined, so that addi-
tional, more restrictive, classifications may be defi-
ned. For example, the instruction descriptions use
such classifications as alterable memory or data al-
terable. The former refers to those addressing
modes which are both alterable and memory ad-
dresses, and the latter refers to addressing modes
which are both data and alterable.

Table 7.1 shows the various categories to which
each of the effective address modes belong. Table
7.21is the instruction set summary.

Control

Effective Addressing Categories
Address i
Modes Mode Register Data Memory Control Alterable
Dn 000 Register Number X - - X
An 001 Register Number - - - X
(An) 010 Register Number X X X X
(An) + 011 Register Number X X - X
— (An) 100 Register Number X X - X
d{An) 101 Register Number X X X X
d(An, ix) 110 Register Number X X X X
xxx. W 111 000 X X X X
xxx. L 111 001 X X X X
d(PC) 111 010 X X X -
d(PC, ix) 111 011 X X X -
#xxx 111 X X X - -

[
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Table 7.2 : Instruction Set.

U undefined

Conditions
Mnemonic Description Operation Codes
X[N|z|V|C
ABCD Add Decimal with Extend (destination) 1o + (source)qg + X — Destination “ultjul”
ADD Add Binary (destination) + (source) — Destination I
ADDA Add Address (destination) + (source) — Destination -1=l-1-|-
ADDI Add Immediate (destination) + Immediate Data — Destination Al I B e
ADDQ Add Quick (destination) + Immediate Data — Destination i I Tl I
ADDX Add Extended (destination) + (source) + X — Destination b Tl I T I
AND AND Logical (destination) A (source) — Destination -[*|*[o0]|0
ANDI AND Immediate (destination) A Immediate Data — Destination -{*1*|0ofo
ANDI to CCR | AND Immediate to Condition Codes | (source) A CCR — CCR b B I I I
ANDI to SR AND Immediate to Status Register (source) A SR — SR ol I T e I
ASL, ASR Arithmetic Shift (destination) shifted by <count> — Destination b Tl I I I
BCC Branch Conditionally If ¢c then PC +d > PC —|=-1-{-1-
~{<bit number>) OF Destination — Z
BCHG Test a Bit and Change ~(<bit number>) OF Destination — —|=1*1-1-
<bit number> OF Destination
e e oo ERE
BRA Branch always PC +d -» PC -1=1-1-1-
e aewon RS
BSR Branch to Subroutine PC —» - (SP);PC +d - PC -1-1-1-1-
BTST Test a Bit ~(<bit number>) OF Destination — Z —=1"1-i-
CHK Check Register against Bounds If Dn < 0 or Dn > (<ea>) then TRAP —|* Uy (U
CLR Clear and Operand 0 — Destination —-{o|1]0}o
CMP Compare (destination) — (source) E
CMPA Compare Address (destination) — (source) )
CMPI Compare Immediate (destination) — Immediate Data B R e
CMPM Compare Memory (destination) — (source) B
DBCC Test Condition, Decrement and Branch| If ~CC then Dn — 1 — Dn ; Dn = — 1 then PC+d—->PC|-i—-|—-|-I|-
DIVS Signed Divide (destination)/(source) — Destiantion -1*fj*1* |0
DiVU Unsigned Divide {destination)/{source) — Destination —-{** "0
ECR Exclusive OR Logical (destination) @ (source) — Destination -[*|*{0]|0
EORI Exclusive OR immediate (destination) @ Immediate Data — Destination -|*1*10]0
EORI to CCR Ii);clgsolr\::it%i I(r:non;zglate (source) ® CCR — CCR clalelels
EORI to SR li);cl;ts;\;jsogke;rir;gredlate (source) ® SR — SR elalelels
EXG Exchange Register RAx + Ry —-|=-1-1|-1-
EXT Sign Extend (destination) Sign-extended — Destination —-[*1*[0]|0
A logical AND * affected
¢ logical OR — unaffected
@ logical exclusive OR 0 cleared
~ logical compiement 1 set
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Table 7.2 : Instruction Set (continued).

Conditions
Mnemonic Description Operation Codes

X{N|Z|V|C

JMP Jump Destination » PC -1=-1-1-|-
JSR Jump to Subroutine PC — — (8P) ; Destination — PC -1=-1-1-1-
LEA Load Effective Address <ea> — An -|=1-1-1-
LINK Link and Allocate An —» — (SP) , SP — An ; SP + Displacement — SP -1=-1-1-1-
LSL, LSR Logical Shift (destination) shifted by <count> — Destination A O
MOVE Move Data from Source to Destination | (source) — (destination) -|*{*|o]o
MOVE to CCR |Move to Condition Code (source) - CCR A I I I I
MOVE to SR Move to the Status Register (source) - SR B S R I I
MOVE from SR |Move from the Status Register SR — Destination === |-
MOVE USP Move User Stack Pointer USP - An ; An - USP -{-1-1-1-
MOVEA Move Address (source) — Destination —-|=-1=1-|-
MOVEM Move Multiple Registers Zz%if;:;s_?ﬂzzzig:ion -f=t-l-1-
MOVEP Move Peripheral Data (source) — Destination -1=1-1-1-
MOVEQ Move Quick Immediate Data — Destination -[*]*|0|¢0
MULS Signed Multiply (destination) X (source)} — Destination -1*]*|0]0
MULU Unsigned Multiply (destination) X (source) — Destination -[*]*|0|0
NBCD Negate Decimal with Extend 0 — (destination)1p — X — Destination ARV R VR
NEG Negate 0 — (destination) — Destination i T I
NEGX Negate with Extend 0 - (destination) — X — Destination A I I I
NOP No Operation - —-|=1-1=|-
NOT Logical Complement ~(destination) — Destination —-{*|“]0fo0
OR Inclusive OR Logical (destination) v (source) — Destination -1*1*]10]0
ORI Inclusive OR Immediate (destination) v Immediate Data — Destination -{*j*q1o0fo
ORI to CCR "t‘z"‘g;ed;fn"g':::;a‘e (source) v CCR - CCR el
ORI to SR 'Ti"g;’i%;;::::’m (source) v SR > SR SN
PEA Push Effective Address <ea> — — (SP) =-l=1=-1-1{=-
RESET Reset External Device - -1=1-1-|-

[ 1= bit number

A logical AND

¢ logical OR

@ logical exclusive OR
~ logical complement

* affected

— unaffected
0 cleared

1 set

U undefined
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Table 7.2 : Instruction Set (continued).

Conditions
Mnemonic Description Operation Codes
X|N|Z|V
ROL, ROR Rotate (without extend) (destination) rotated by <count> — Destination -l“1* |0
ROXL, ROXR Rotate with extend (destination) rotated by <count> — Destination 1710
RTE Return from Exception (SP) + - SR ; (SP) + » PC 1t
RTR Return and Restore Condition Codes |{(SP) + —» CC ; (SP) + - PC Pt
RTS Return from Subroutine (SP) + » PC ===
SBCD Subtract Decimal with Extend (destination)1o — (source)so — X — Destination Ul U
SCC Set According to Condition IF CC then 1's — Destination else 0's — Destination -1-|-1-
STOP Load Status Register and Stop Immediate Data — SR, STOP eyt
suB Subtract Binary (destination) — (source) — Destination b T I
SUBA Subtract Address (destination) — (source) — Destination ===
SuBt Subtract Immediate (destination) — Immediate Data — Destination A I I
SUBQ Subtract Quick (destination) — Immediate Data — Destination 1ty
suBx Subtract with Extend (destination) — (source} — X — Destination A I T
SWAP Swap Resgister Halves Register [13:16] + Register {15:0] -i*|"jo
TAS Test and Set an Operand (destination) tested — CC, 1 — {7] OF Destination -1*["10
TRAP Trap PC — — (SSp) ; SR — - (8SP) ; (vector) » PC -|=-1-1-
TRAPV Trap on Overflow It V then TRAP el Ll el
TST Test and Operand (destination) tested —» CC 1" |0
UNLK Unlink An - SP ; (SP) + —» An ===
[ 1 = bit number * affected
A logical AND - unaffected
¢ logical OR 0 cleared
@ logical exclusive OR 1 set
~ logical complement U undefined

7.1.2. INSTRUCTION PREFETCH. The TS68000
uses a two-word tightly-coupled instruction prefetch
mechanism to enhance performance. This mecha-
nism is described in terms of the microcode opera-
tions involved. If the execution of an instruction is
defined to begin when the microroutine for that in-
struction is entered, some features of the prefetch
mechanism can be described.

- 1. When execution of an instruction begins, the
operation word and the word following have al-
ready been fetched. The operation word is in the
instruction decoder.

_ 2. Inthe case of multi-word instructions, as each
additional word of the instruction is used internal-
ly, a fetch is made to the instruction stream to re-
place it.

3. The last fetch for an instruction from the in-
struction stream is made when the operation
word is discarded and decoding is started on the
next instruction.

4. If the instruction is a single-word instruction
causing a branch, the second word is not used.
But because this word is fetched by the prece-
ding instruction, it is impossible to avoid this su-
perfluous fetch.

5. In the case of an interrupt or trace exception,
both words are not used.

6. The program counter usually points to the last
word fetched from the instruction stream.

OB W TE L
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7.2. INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the ins-
truction execution times in terms of external clock
(CLK) periods. In this timing data, it is assumed that
both memory read and write cycle times are four
clock periods. Any wait states caused by a longer
memory cycle must be added to the total instruction
time. The number of bus read and write cycles for
each instruction is also included with the timing da-
ta. This timing data is enclosed in parenthesis follo-
wing the execution periods and is shown as (r/w)
where r is the number of read cycles and w is the
number of write cycles.

The number of periods includes instruction fetch
and all applicable operand fetches and stores.

Table 7.3 : Effective Address Calculation Times.

7.2.1. EFFECTIVE ADDRESS OPERAND CALCU-
LATION TIMING. Table 7.3 lists the number of clock
periods required to compute an instruction’s effec-
tive address. It includes fetching of any extension
words, the address computation, and fetching of the
memory operand. The number of bus read and write
cycles is shown in parenthesis as (r/w). Note there
are no write cycles involved in processing the effec-
tive address.

7.2.2. MOVE INSTRUCTION EXECUTION TIMES.
Tables 7.4 and 7.5 indicate the number of clock pe-
riods for the move instruction. This data includes in-
struction fetch, operand reads, and operand writes.
The number of bus read and write cycles is shown
in parenthesis as (r/w).

Addressing Mode Byte, Word Long
Register
Dn Data Register Direct 0(0/0) 0(0/0)
An Address Register Direct 0(0/0) 0(0/0)
Memory
(An) Address Register Indirect 4(1/0) 8(2/0)
(An)+ Address Register Indirect with Postincrement 4(1/0) 8(2/0)
—(An) Address Register Indirect with Predecrement 6(1/0) 10(2/0)
d(An) Address Register Indirect with Displacement 8(2/0) 12(3/0)
d(AN, ix)* Address Register indirect with Index 10(2/0) 14(3/0)
xxx W Absolute Short 8(2/0) 12(3/0)
xxx L Absolute Long 12(3/0) 16(4/0)
d(PC) Program Counter with Displacement 8(2/0) 12(3/0)
d(PC, ix)* Program Counter with Index 10(2/0) 14(3/0)
#xxx Immediate 4(1/0) 8(2/0)

* The size of the index register (ix) does not affect execution time.

Table 7.4 : Move Byte and Word Instruction Execution Times.

Destination

Source

Dn An (An) (An)+ —(An) d(An) |d(An, ix)* xxx.W xxx.L
Dn 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) | 14(2/1) | 12(2/1) 16(3/1)
An 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) | 14(3/1) | 12(2/1) 16(3/1)
(An) 8(2/0) 8(2/0) 12(2/1) | 12(2/1) | 12(2/1) | 16(3/1) | 18(3/1) | 16(3/1) 20(4/1)
(An)+ 8(2/0) 8(2/0) 12(2/1) | 12(2/1) | 12(2/1) | 16(3/1) | 18(3/1) | 16(3/1) 20(4/1)
—(An) 10(2/0) | 10(2/0) | 14(2/1) | 14(2/1) | 14(2/1) | 18(3/1) | 20(3/1) | 18(3/1) 22(4/1)
d(An) 12(3/0) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) | 20(4/1) | 22(4/1) | 20(4/1) 24(5/1)
d(An, ix)* | 14(3/0) | 14(3/0) | 18(3/1) | 18(3/1) | 18(3/1) | 22(4/1) | 24(4/1) | 22(4/1) 26(5/1)
XXXW 12(3/0) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) | 20(4/1) | 22(4/1) | 20(4/1) 24(5/1)
xxxL 16(4/0) | 16(4/0) [ 20(4/1) | 20(4/1) | 20(4/1) | 24(5/1) | 26(5/1) | 24(5/1) 28(6/1)
d(PC) 12(3/0) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) | 20(4/1) | 20(4/1) | 20(4/1) 24(5/1)
d(PC, ix)* | 14(3/0) | 14(3/0) | 18(3/1) | 18(3/1) | 18(3/1) | 22(4/1) | 22(4/1) | 22(4/1) 26(5/1)
#xXX 8(2/0) 8(2/0) 12(2/1) | 12(2/1) | 12(2/1) | 16(3/1) | 18(3/1) | 16(3/1) 20(4/1)

* The size of the index register (ix) does not affect execution time.
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Table 7.5 : Move Long Instruction Execution Times.

Destination
Source
Dn An (An) (An)+ - {An) d(An) |d(An, ix)*| xxx.W xxx.L
Dn 4(1/0) 4(1/0) 12(1/2) | 12(1/2) | 12(1/2) | 16(2/2) | 18(2/2) | 16(2/2) 20(3/2)
An 4(1/0) 4(1/0) 12(1/2) | 12(1/2) | 12(1/2) | 16(2/2) | 18(2/2) | 16(2/2) 20(3/2)
(An) 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) 28(5/2)
(An)+ 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) 28(5/2)
- (An) 14(3/0) | 14(3/0) | 22(3/2) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) 30(5/2)
d(An) 16(4/0) | 16(4/0) | 24(4/2) | 24(4/2) | 24(4/2) | 28(5/2) | 30(5/2) | 28(5/2) 32(6/2)
d(An, ix)* | 18(4/0) | 18(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) 34(6/2)
XXXW 16(4/0) | 16(4/0) | 24(4/2) | 24(4/2) | 24(4/2) | 28(5/2) | 30(5/2) | 28(5/2) 32(6/2)
xxxL 20(5/0) | 20(5/0) | 28(5/2) | 28(5/2) | 28(5/2) | 32(6/2) | 34(6/2) | 32(6/2) 36(7/2)
d(PC) 16(4/0) | 16(4/0) | 24(4/2) | 24(4/2) | 24(4/2) | 28(5/2) | 30(5/2) | 28(5/2) 32(5/2)
d(PC, ix)* | 18(4/0) | 18(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) 34(6/2)
#XXX 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) 28(5/2)
* The size of the index register (ix) does not affect execution time.
Table 7.6 : Standard Instruction Execution Times.
Instruction Size op < ea >, Ant op < ea >, Dn opDn,<M>
ADD Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +
Long 6(1/0) +** 6(1/0) +** 12(1/2) +
Byte, Word - 4(1/0 8(11
AND Y/ (1/0) + () +
Long - 6(1/0) +** 12(1/72) +
Byte, Word 6(1/0 4(1/0 -
cMP y (1/0) + (1/0) +
Long 6(1/0) + 6(1/0) + -
DIvs - - 158(1/0) +* -
DIVU - - 140(1/0) +* -
Byte, Word - . 4(1/0) 8(1/1) +
EOR
Long - 8(1/0)*** 12(1/2) +
MULS - - 70(1/0) +~ -
MULU - - 70(1/0) +* -
oR Byte, Word - 4(1/0) + 8(1/1) +
Long - 6(1/0) +** 12(1/2) +
SUB Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +
Long 6(1/0) +** 6(1/0) +** 12(1/2) +

Notes : + add effective address calculation time
1 word or long only
* indicates maximum value
** The base time of six clock periods is increased to eight if the effective address mode is register direct or immediate (effective ad-
dress time should also be added)
*** Only available effective address mode is data register direct.
DIVS, DIVU - The divide algorithm used by the TS68000 provides less than 10% difference between the best and worst case timings.
MULS, MULU - The multiply algorithm requires 38 + 2n clocks where n is defined as :
MULU : n = the number of ones in the < ea >
MULU : n = concatanate the < ea > with a zero as the LSB ; n is the resultant number of 10 or 01 patterns in the 17-bit source ;i.e.,
worst case happens when the source is $5555.

T
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7.2.3. STANDARD INSTRUCTION EXECUTION
TIMES. The number of clock periods shown in table
7.6 indicates the time required to perform the ope-
rations, store the results, and read the next instruc-
tion. The number of bus read and write cycles is
shown in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles
must be added respectively to those of the effective
address calculation where indicated.

In table 7.6 the headings have the following mea-
nings : An = address register operand, Dn = data re-
gister operand, ea = an operand specified by an ef-
fective address, and M = memory effective address
operand

7.2.4. IMMEDIATE INSTRUCTION EXECUTION
TIMES. The number of clock periods shown in ta-
ble 7.7 includes the time to fetch immediate ope-
rands, perform the operations, store the resuits,
and read the next operation. The number of bus
read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the num-
ber of read and write cycles must be added res-
pectively to those of the effective address calcula-
tion where indicated.

In table 7.7, the headings have the following mea-
nings : # = immediate operand, Dn = data register

operand, An = address register operand, M = me-
mory operand, and SR = status register.

7.2.5. SINGLE OPERAND INSTRUCTION EXE-
CUTION TIMES. Table 7.8 indicates the number of
clock periods for the single operand instructions.
The number of bus read and write cycles is shown
in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be
added respectively to those of the effective address
calculation where indicated.

7.2.6. SHIFT/ROTATE INSTRUCTION EXECU-
TION TIMES. Table 7.9 indicates the number of
clock periods for the shift and rotate instructions.
The number of bus read and write cycles is shown
in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be
added respectively to those of the effective address
calculation where indicated.

7.2.7. BIT MANIPULATION INSTRUCTION EXE-
CUTION TIMES. Table 7.10 indicates the number
of clock periods required for the bit manipulation in-
structions. The number of bus read and write cycles
is shown in parethesis as (r/w). The number of clock
periods and the number of read and write cycles
must be added respectively to those of the effective
address calculation where indicated.

Table 7.7 : Immediate Instruction Execution Times.

Instruction Size op #, Dn op #, An op#, M
Byte, Word 8(2/0) - 12(2/1) +
ADDI
Long 16(3/0) - 20(3/2) +
Byte, Word 4(1/0) 8(1/1)" 8(1/1)+
ADDO
Long 8(1/0) 8(1/0) 12(1/2)+
Byte, Word 8(2/0) - 12(2/1)+
ANDI
Long 16(3/0) - 20(3/1)+
Byte, Word 8(2/0) - 8(2/0)+
CMPI
Long 14(3/0) - 12(3/0)+
Byte, Word 8(2/0) - 12(2/1)+
EORI
Long 16(3/0) - 20(3/2)+
MOVEQ Long 4(1/0) - -
ORI Byte, Word 8(2/0) - 12(2/1)+
Long 16(3/0) - 20(3/2)+
SUB Byte, Word 8(2/0) - 12(2/1)+
Long 16(3/0) - 20(3/2)+
Byte, Word 41/0) 8(1/0)* 8(1/1)+
sSuBQ
Long 8(1/0) 8(1/0) 12(1/2)+

+ add effective address calculation time

* word only
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Table 7.8 : Single Operand Instruction Execution Times.

Instruction Size Register Memory
Byte, Word 4(1/0 8(1/1
CLR y 4(1/0) (111)+
Long 6(1/0) 12(1/2)+
NBCD Byte 6(1/0) 8(1/1)+
Byte, Word 4(1/0 8(1/1
NEG y! (1/0) (1/1)+
Long 6(1/0) 12(1/1)+
Byte, Word 4(1/0) 8(1/2)+
NEGX
Long 6(1/0) 12(1/2)+
Byte, Word 4(1/0 8(1/1
NOT Y (1/0) (1/1)+
Long 6(1/0) 12(1/2)+
s Byte, False 4(1/0) 8(1/1)+
ce Byte, True 6(1/0) 8(1/2)+
TAS Byte 4(1/0) 10(1/1)+
Byte, Word 4(1/0 4(1/0
ST Y (1/0) (1/0)+
Long 4(1/0) 4(1/0)+
+ add effective address calculation time
Table 7.9 : Shift/rotate Instruction Execution Times.
Instruction Size Register Memory
Byte, Word 6 + 2n(1/0) 8 (1/1)+
ASR, ASL
Long 8 + 2n(1/0) -
Byte, Word 6 + 2n(1/0) 8 (1/1)+
LSR, LSL
Long 8 + 2n(1/0) -
Byte, Word 6 + 2n(1/0}) 8 (1/1)+
ROR, ROL
Long 8 + 2n(1/0) -
Byte, Word 6 + 2n(1/0) 8 (1/1)+
ROXR, ROXL
Long 8 + 2n(1/0) -
+ add effective address calculation time
Table 7.10 : Bit Manipulation Instruction Execution Times.
D . N
Instruction Size yhamre Static
Register Memory Register Memory
Byte - 8(1/1 - 12(2/1
BGHG y (111)+ 2(2/1)+
Long 8(1/0)" - 12(2/0)* -
Byte - 8(1/1 - 12(21
BCLR y! (1/1)+ (2/1)+
Long 10(1/0)* - 14(2/0)* -
Byte - 8(1/1 - 12(2/1
BSET yt (1/1)+ (2/1)+
Long 8(1/0)* - 12(2/0)* -
Byte - 4(1/0 - 8(2/0
BTST yt (1/0)+ (2/0)+
Long 6(1/0) - 10(2/0) -

+ add effective address calculation time

* indicates maximum value

OB W TE L

[



TS68000

7.2.8. CONDITIONAL INSTRUCTION EXECU-
TION TIMES. Table 7.11 indicates the number of
clock periods required for the conditional instruc-
tions. The number of bus read and write cycles is in-

dicated in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles
must be added respectively to those of the effective
address calcuiation where indicated.

Table 7.11 : Conditional Instruction Execution Times.

Instruction Displacement Branch Taken Branch not Taken
B Byte 10(2/0) 8(1/0)
ce Word 10(2/0) 12(2/0)
Byte 10(2/0 -
BRA Y (2/0)
Word 10(2/0) -
Byte 18(2/2 -
BSR yh (2/2)
Word 18(2/2) -
CC True - 12(2/0)
DBcce
CC False 10(2/0) 14(3/0)
+ add effective address calculation time

* indicates maximum value

7.2.9. JMP, JSR, LEA, PEA, AND MOVEM IN-
STRUCTION EXECUTION TIMES. Table 7.12 indi-
cates the number of clock periods required for the
jump, jump-to-subroutine, load effective address,

push effective address, and move multiple registers
instructions. The number of bus read and write cy-
cles is shown in parenthesis as (r/w)

Table 7.12 : JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times.

Instr | Size | (An) | (An)+ | -(An) | d(An) |d(An,ix)}s] xxxW | xxxL | d(PC) | d(PC, ix)*
JMP - 8(2/0) - - 10(2/0) | 14(3/0) | 10(2/0) | 12(3/0) | 10(2/0) | 14(3/0)
JSR - | 18(212) - - 18(2/2) | 22(2/2) | 18(2/2) | 20(3/2) | 18(2/2) | 22(2/2)
LEA - 4(1/0) - - 8(2/0) | 12(2/0) | 8(2/0) | 12(3/0) | 8(2/0) | 12(2/0)
PEA - | 120172) - - 16(2/2) | 20(2/2) | 16(2/2) | 20(3/2) | 16(2/2) | 20(2/2)

Word | 12+4n | 12+4n _ 16+4n [ 18+4n | 16+4n | 20+4n | 16+4n | 18 +4n

MOVEM (3 + n/0) | (3 + n/0) (4 + n/0) (4 +n/0) | (4 + n/0) | (5 + n/O) (4 + n/0)| (4 + n/0)

M- R Long | 12+8n | 12+8n N 16+8n | 18+8n | 16+8n | 20+8n | 164+8n | 184 8n
9 (3 +2n0)|(3 + 2n/0) (4 +2n/0)|(4 + 2n/0) (4 + 2n/0)|(5 + 2n/0){(4 + 20/0)| (4 + 2n/0)
Word | 8+4n _ 8+4n | 12+4n | 144+4n | 12+4n | 16+ 4n - -
MOVEM (2/n) (2/n) (3/n) (3/n) (3/n) (4/n) - -
RoM Lon 8+8n _ 84+48n | 124+48n | 144+8n | 12+8n | 16+ 8n - -
9 | (2r2n) (2/2n) | (3/2n) | (3/2n) | (3/2n) | (4/2n) - -

n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction's execution time

7.2.10. MULTI-PRECISION INSTRUCTION EXE-
CUTION TIMES. Table 7.13 indicates the number
of clock periods for the multi-precision instructions.
The number of clock periods includes the time to
fetch both operands, perform the operations, store
the results, and read the next instructions. The num-

ber of read and write cycles is shown in parenthe-
sis as (r/w).
in table 7-13, the headings have the following mea-

nings : Dn = data register operand and M = memo-
ry operand.
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Table 7.13 : Multi-precision Instruction Execution Times. :

Instruction Size op Dn, Dn opM, M E
Byte, Word 4(1/0 18(3/1 -
ADDX yt (1/0) (311)
Long 8(1/0) 30(5/2) .
Byte, Word 12(3/0) :
M -
CMPM Long 20(5/0) :
Byte, Word 4(1/0) 18(3/1)
SUBX
Long 8(1/0) 30(5/2)
ABCD Byte 6(1/0) 18(3/1) )
SBCD Byte 6(1/0) 18(3/1)

7.2.11. MISCELLANEOUS INSTRUCTION EXE- write cycles is shown in parenthesis as (r/w). The
CUTION TIMES. Tables 7.14 and 7.15 indicate the number of clock periods plus the number of read
number of clock periods for the following miscella- and write cycles must be added to those of the ef-
neous instructions. The number of bus read and fective address calculation where indicated.

Table 7.14 : Miscellaneous Instruction Execution Times.

Instruction Size Register Memory
ANDI to CCR Byte 20(3/0) -
ANDI to SR Word 20(3/0) -
CHK - 10(1/0)+ -
EORI to CCR Byte 20(3/0) -
EORI to SR Word 20(3/0) -
ORI to CCR Byte 20(3/0) -
ORIl to SR Word 20(3/0) -
MOVE from SR - 6(1/0) 8(1/1)+
MOVE to CCR - 12(2/0) 12(2/0)+
MOVE to SR - 12(2/0) 12(2/0)+
EXG - 6(1/0) -
Word 4(1/0) -
EXT
Long 4(1/0) -
LINK - 16(2/2) -
MOVE from USP - 4(1/0) -
MOVE to USP - 4(1/0) -
NOP - 4(1/0) -
RESET - 132(1/0) -
RTE - 20(5/0) -
RTR - 20(5/0) -
RTS - 16(4/0) -
STOP - 4(0/0) -
SWAP - 4(1/0) -
TRAPV - 4(1/0) -
UNLK - 12(3/0) -

+ add effective address calculation time

e w1
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Table 7.15 : Move Peripheral Instruction Execution Times.

Instruction Size Register —» Memory Memory — Register
Word 16(2/2) 16(4/0)
MOVEP
Long 24(2/4) 24(6/0)

7.2.12. EXCEPTION PROCESSING EXECUTION
TIMES. Table 7.16 indicates the number of clock
periods for exception processing. The number of

vector fetch, and the fetch of the first two instruction
words of the handler routine. The number of bus
read and write cycles is shown in parenthesis as

clock periods includes the time for all stacking, the

Table 7.16 : Exception Processing Execution Times.

(riw).

Exception Periods
Address Error 50(4/7)
Bus Error 50(4/7)
CHK Instruction 44(5/4)+
Divide by Zero 42(5/4)
lllegal Instruction 34(4/3)
Interrupt 44(5/3)*
Privilege Violation 34(4/3)
RESET** 40(6/0)
Trace 34(4/3)
TRAP Instruction 38(4/4)
TRAPV Instruction 34(4/3)

+ add effective address calculation time

* The interrupt acknowledge cycle is assumed to take four clock periods
** Indicates the time from when RESET and HALT are first sampled as negated to when instruction execution starts.
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SECTION 8

ELECTRICAL SPECIFICATIONS
This section contains electrical specifications and associated timing information for the TS68000.

These specifications represen
16 MHz.TS68000 and are va

8.1. ABSOLUTE MAXIMUM RATINGS

t an improvement over previously published specifications for the 8,10,12.5,
lid only for products bearing date codes of 8922 and later.

Symbol Parameter Value Unit
Vee Supply Voltage -03to7 )
Vin Input Voltage -03to7 \
Ta Operating Temperature Range TLtoTh
TS68000C 0to 70 g
TS68000V — 40 to 85
TS68000M - 5510 125

Tsig Storage Temperature — 5510 150 °C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it
is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level

(e.g. either GND or Vcc)

8.2. THERMAL DATA

package | Tamange | o cow | 2O | 1 ER | 0% Max. | @14 ma

Plastic DIL 0 °C to 70 °C 30 1.2 36 1.0 100

PLCC 0°Cto 70 °C 45 1.2 54 1.0 115

Ceramic PGA 0°Cto70°C 33 12 40 1.0 103

0 °C to 85 °C 33 1.2 40 1.0 118
— 40 °C to 85 °C 33 1.5 10 1.0 118
8.3. DC ELECTRICAL CHARACTERISTICS
(Voc =5Vdc 5% ;GND =0Vdc ; Ta=T 0 Ty ; see figures 8.1, 8.2 and 8.3)

Symbol Parameter Min. Max. | Unit |
Vin Input High Voltage 2 Vee \
Vi Input Low Voltage GND - 03 0.8 Vi
I input Leakage Current @ 5.25 V BERR, BGACK, BR, DTACK

CLK, IPLO-IPL2, VPA - 25 HA
HALT, RESET - 20
s Three-state (off state) Input Current @ 2.4 V0.4V
S, A1-A23, DO-D15, _ 20 | A
FCO-FC2, LDS, R/W, UDS, VMA
Vou Output High Voltage (lon =— 400 pA) __ . E*| Vec—-075 -
E, AS, A1-A23, BG, D0-D15, v
FCO-FC2, LDS, R/W, UDS, VMA 2.4 -
VoL Output Low Voltage
(loL = 1.6 mA) HALT - 0.5
(loL = 3.2 mA) A1-A23, BG, FCO-FC2 - 0.5 v
(loL =5 mA) RESET - 05
(oL =53 mA) E, AS, D0-D15, LDS, RW - 0.5
UDS, VMA
Pp*** Power Dissipation (see 8.4 POWER CONSIDERATIONS) - - w
Cin Capacitance (Vin =0V, Ta =25 °C ; Frequency = 1 MHz)™ - 20 pF

* With external pullup resistor of 1.1kQ.
* * Capacitance is periodically sampled rather than 100% tested.
* * * During normal operation instantaneous VCC current requirements may be as high as 1.5A.
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Figure 8.1 : RESET Test Load.

Figure 8.2 : HALT Test Load.

R

AS. A1-AZ3. BG. DODI5, E
FCO-FC2, LDS, R/W, UDS, VMA
122 k@ for Al A23, BG,.
FCO-FC2

+5V +5v
9100 2.9«
RESET HALT
130 pF I 70 pF
Figure 8.3 : Test Loads.
+5V
R* -740 0
Test 1N4148
Point or Equivalent
1N916
or Equivalent
CL=10pF
(Includes all Parasitics)
Ry =6 0 k8 tor
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8.4. POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C
can be obtained from :

Ty=Ta+ (PD-6ua)
Where :
Ta= Ambient Temperature, 'C

0Ja = Package Thermal Resistance,
Junction-to-Ambient, "C/W

Po = PnT + Pio
PINT = lcc x Vec, Watts - Chip Internal Power

Puo = Power Dissipation on Input and Output Pins
- User Determined

For most applications Pyo < PinT and can be neglec-
ted.

An approximate relationship between Pp and Ty
(if Pio is neglected) is :

Pp =K<+ (Ty+273°C)
Solving equations 1 and 2 for K gives :
K =PD«(Ta+273°C) + 6 ua* Po?

Where K is a constant pertaining to the particular
part. K can be determined from equation 3 by mea-
suring Pp (at equilibrium) for a known Ta. Using this
value of K the values of Pp and Ty can be obtained
by solving equations (1) and (2) iteratively for any
value of Ta.

Figure 8.4 ilustrates the graphic solution to the
equations, given above, for the specification power
dissipations of 1.50 and 1.75 watts over the ambient
temperature range of - 55°C to 125°C using an ave-
rage 6,4 of 40°C/watt to represent the various
TS68000 packages. However, actual 8JA’s in the
range of 30°C to 50°C/watt only change the curves
slightly.

Figure 8.4 : TS68000 Power Dissipation (Pp) vs Ambient Temperature (Ta).
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The total thermal resistance of a package (8JA) can be minimized by such thermal management techni-

be separated into two components, 8,c and 6¢a, ques as heat sinks, ambient air cooling and thermal
representing the barrier to heat flow from the semi- convention. Thus, good thermal management on
conductor junction to the package (case) surface the part of the user can significantly reduce 84 so
(8yc) and from the case to the outside ambient (8¢ ,). that 8, approximately equals8yc. Substitution of 8¢
These terms are related by the equation : for64ain equation (1) will result in a lower semicon-
BJA = 6.C + BCA ductor junction temperature.

Oyc is device related and cannot be influenced by
the user. However, 6ca is user dependent and can

8.5. AC ELECTRICAL SPECIFICATIONS — CLOCK TIMING (see figure 8-5)

8 MHz 10 MHz |12.5 MHz| 16 MHz .
Symbol Parameter Unit
Min. |Max.| Min.|Max.| Min. [Max.| Min. (Max.

f Frequency of Operation 4 8 4 10 8 |125(| 8 |16.7| MHz
teye Cycle Time 1251250 | 100 | 250 | 80 | 125 | 60 | 125 ns
teL Clock Pulse Width 55 | 125 | 45 | 125 | 35 |625| 25 |625| ns
tcH 55 | 125 | 45 | 125 35 [62.5| 25 |625
ter Rise and Fall Times - 10 - 10 - 5 - 5 ns
te - {10 - | 10| - 5 - 5

Figure 8.5 : Clock Input Timing Diagram.

teye

j—— 1CL —— ] fe——— 1CH——]

Cr—am |¢———-o —_— 1t

Note : Timing measurements are referenced to and from a low voltage of 0.8 volt and high a voltage of 2.0 volts, unless
otherwise noted. The voltage swing through this range should start outside and pass through the range such that
the rise or fall will be linear between 0.8 volt and 2.0 volts.

&
5
3
B
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8.6. AC ELECTRICAL SPECIFICATION DEFINi-
TIONS

The AC specifications presented consist of output
delays, input setup and hold times, and signal skew
times. All signals are specified relative to an appro-
priate edge of the clock and possibly to one or more
other signals.

The measurement of the AC specifications is defi-
ned by the waveforms shown in figure 8.6 in order
to test the parameters guaranteed by SGS-THOM-
SON. Inputs must be driven to the voltage levels

specified in the figure 8.6. Outputs are specified with
minimum and/or maximum limits, as appropriate,
and are measured as shown in the same figure. In-
puts are specified with minimum setup and hold
times, and are measured as shown. Finally the mea-
surement for signal-to-signal specifications are also
shown.

Note that the testing levels used to verify confor-
mance to the AC specifications does not affect the
guaranteed DC operation of the device as specified
in the DC electrical characteristics.

Figure 8.6 : Drive Levels and Test Points for AC Specifications.

A

B

/—\<—‘~— DRIVETO 2.4V

Nemenem +—DRIVE TO 0.5V

OQUTPUTS
CLOCK(1)

VALID

VALID
OUTPUTN QUTPUT n+1

QUTPUTS n %' n+l
CLOCK(2)
[ D
wees T w5 YO
C D
(" vauD
neurs ThK_ s 7

ALL SIGNALS(5)

mm—

X

Measurement levels: VyigH=2V; VLow=0.8V

V000250

Notes :

. This output timing is applicable to all parameters specified relative to the rising edge of the clock.

. This output timing is applicable to all parameters specified relative to the falling edge of the clock.

1
2
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
4
5

. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
. This timing is applicable to all parameters specified relative to the assertion negation of another signal.

Legend : A Maximum output delay specification.

. Minimum output hold time.

. Minimum input hold time specification.

. Signal valid to signal valid specification (max. or min.}.

A

B

C. Minimum input setup time specification.

D

E

F. Signal valid to signal invalid specification (max. or min.).
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8.7. AC ELECTRICAL SPECIFICATIONS —~ READ CYCLES
(Vec =5Vde £ 5% ; GND = 0Vdc ; Ta = T, to Ty ; see figure 8.7)

N° |Symbol Parameter 8 MHz 10 MHz |12.5 MHz| 16 MHz Unit
Min. |Max.| Min. |Max.| Min. |Max.| Min. |Max.
1 tcye | Clock Period 125|250 | 100 | 250 | 80 | 125 | 60 | 125 | ns
2 tct | Clock Width Low 55 |125| 45 [125| 35 | 62 | 25 | 62 | ns
3 tcn | Clock Width High 55 |125| 45 [125| 35 | 62 | 25 | 62 | ns
4 ter | Clock Fall Time - |10} - |10 ]| - 5 - 5 ns
5 tor Clock Rise Time - 10 - 10 — 5 - 5 ns
6 tcLav | Clock Low to Address Valid - 60 - 50 - 50 - 40 ns
BA | tchrcv | Clock High to FC Valid - | 60| - | 50| - |50 | — | 40 | ns
7 | tcwaonz | Clock High to Address, Data Bus - 70 - 60 - 50 - 50 ns
High Impedance (maximum)
8 tcuar | Clock High to Address, FC Invalid 0 - 0 - 0 - 0 - ns
(minimum)
9" | teusL | Clock High to AS, DS Low 0 | 60| 0 |55| 0 |50| 0 | 45| ns
11| taysL | Address Valid to AS, DS Low 20| -|15] -]10]-1]5]-1]ns
1A% treysy | FC Valid to AS, DS Low 50 | - |40 - |3 | - |3 - | ns
12001 teusn | Clock Low to AS, DS High - |50l - 145 - |40 | - |30 ns
132 | tshar E, oS High to Address/FC Invalid 30 - 20 - 10 - 10 - ns
14| tg, | AS, DS Width Low 240 | — |195| - {160 — |120| - | ns
15| tsy | AS, DS Width High 150 | — [105] - | 65| - | 50| — | ns
17| tgumy | AS, DS High to R/W High 40| - |20 - 10| - |10]| - | ns
18 tcumu | Clock High to R/W High 0 | 55| 0 |45 | 0 |40 | 0 | 45 | ns
27| tpicL | Data in to Clock low (setup time) 15| - 110} - [10] - |10] - ns
28'%! | tsupan | AS, DS High to DTACK High 0 [240| 0 |190] 0 [150| O | 80 | ns
29 | tsupu | AS, DS High to Data In Invalid o | -Jo|-]o]-|o]-"1ns
(hold time)
30 | tsusen | AS, DS High to BERR High o | -|o|-]o|-]o]|-1|ns
3123 tpaipl | DTACK Low to Data in (setup time) - |70 - {5 | - |40 - | 3| ns
32 | tRur ¢ HALT and RESET Input Transition Time | 0 | 200} O |200]| O 150 | 0 [150| ns
47| tas | Asynchronous Input Setup Time 20| - 20| - j10| - {10 - ns
48) | tge paL | BERR Low to DTACK Low 20| - |20 | - 10| - {10] - ns
56*) | typpw | HALT/RESET Pulse Width 10| - (10| - |10]| - | 10| - |CkPer.
Notes : 1. IForaloading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in the maximum co-
umns.

2. Actual value depends on clock period.

3. If 47 is satisfied for both DTACK and BERR, 48 may be 0 nanosecond.

4. For power up, the MPU must be held in RESET state for 100 milliseconds to allow stabilization of on-chip circuitry. After the system
is powered up, 56 refers to the minimum pulse width required to reset the system.

5. Ifthe asynchronous setup time (47) requirements are satisfied, the DTACK low-to-data setup time (31) requirement can be ignored.
The data must only satisfy the data-in to clock-low setup time (27) for the following cycle.
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These waveforms should only be referenced in re- nal description of the input and output signals. Re-
gard to the edge-to-edge measurement of the timing fer to other functional descriptions and their related
specifications. They are not intended as a functio- diagrams for device operation.

Figure 8.7 : Read Cycle Timing Diagram.

so st s2 s3 sa s5 ss 7 (@

« NSNS N
&1 O 50
gl la—(D)—w
FCO-FC2
«©®
A1.A23
@ i — ()
— 3 7‘
AS / {5) 'Sr {)— >
13 » (5) [ (9
N 11 —
LDS/UDS—/ St
>0
RIW /
@) @
DTACK 41
— @—— b
|
tl——@—»
Data In %
™
BERRA/BR
(Note 2 G
- @ [a—
J l—@
HALT/RESET
—» ,4—@
Asynchronous > g
inputs
{Note 1}

Notes : 1. Setup time for the synchronous inputs BGACK, IPLO-2, and VPA guarantees their recognition at the next falling edge of the clock
. BR need fall at this time only in order to insure being recognized at the end of this bus cycle
. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage 2.0 volts, unless otherwise noted. The

voltage swing through this range should start outside and pass through the range such that the rise or fall will be linear between 0.8
volt and 2.0 volts.
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8.8. AC ELECTRICAL SPECIFICATIONS — WRITE CYCLES
(Vec =5Vdc £5% ;GND =0Vde ; To =T, to Ty ; see figure 8.8)

N° [Symbol Parameter 8 MHz | 10 MHz [12.5 MHz| 16 MHz Unit
Min. [Max.|Min. |Max.{Min. [Max.|Min. |Max.
1 tcve | Clock Period 125 | 250 | 100 | 250 | 80 | 125 60 | 125 | ns
2 tc. | Clock Width Low 55 | 125 | 45 |125| 35 | 62 | 25 | 62 | ns
3 ton | Clock Width High 55 |125| 45 |125| 35 | 62 | 25 | 62 | ns
4 tes Clock Fall Time - 10 - 10 - 5 - 5 ns
5 ter Clock Rise Time - 10 - 10 - 5 | - 5 ns
6 tcLav | Clock Low to Address Valid - 60 - 50 - 50 - 40 ns
BA | tcurev | Clock High to FC Valid - | 60| ~ |50 | - [ 50| — | 40| ns
7 | tcuanz | Clock High to Address, Data Bus - 70 - 60 - 50 - 50 ns
High Impedance (maximum)
8 tcHar) | Clock High to Address, FC Invalid 0 - 0 - 0 - 0 - ns
(minimum)
9" | topsy | Clock High to AS, DS Low 0 | 60| 0 |55| 0 |5 | 0 (45| ns
112 | tays. | Address Valid to AS, DS Low 20| - |15 - |10 - 1|5 | -1 ns
A2 tecys. | FC Valid to AS, Low 50 | - [40| - | 35| ~ | 30| - | ns
12! | tcLsn | Clock Low to AS, DS High - |50 | - |4 - 40| - |30] ns
133 | tsnari | AS, DS High to Address/FC Invalid 30| - (20 -~ |10] - |10 - ns
142t | AS Low 240 | - |195| - 1160 - |120| - | ns
14A2) tpg. | DS Width Low 15 - |95 | - | 80 | - |60 | - ns
15| tgy | AS, DS Width High 150 - |105| - | 65| — |50 | - | ns
18| tcumu | Clock High to RAW High 0 | 55| 0 |45 | 0 |40 ] 0 | 40 | ns
20'" | tcuaL | Clock High to RAW Low - |55 | - 45| - |40 | - | 30| ns
20A®| tasmyv | AS, Low to R/W Valid - |20 | - |20 | -120] - |20] ns
212 | taygL | Address Valid to R/W Low 20| -/o0ofl-]lo|-]o]~-1ns
214" tecymy | FC Valid to RW Low 60 | — | 50| - | 30| -~ | 20| = | ns
22| tplsL | R/W Low to DS Low 80| - |80 | - (3| - |20 - ns
23 tcLoo | Clock Low to Data out Valid - 60 — 50 - 50 - 40 ns
25 | tsupor | AS, DS High to Data Out Invalid 30| -|20| - {15} - |10]| - ns
26'2) | tpos. | Data out Valid to DS Low 30| -2 | - |15 - | 10| - ns
282! | tsppan | AS, DS High to DTACK high 0 |240| 0 |190] 0 [150| 0 | 80 | ns
30 | tsusen | AS, DS High to BERR high 0o -Jo|-|o|-fo0o]-71ns
32 tRHr. ¢ HALT and RESET Input Transition Time | 0 200 O 200 | 0O 150 | 0 150 ns
47| tasi | Asynchronous Input Setup Time 20| - |20 -~ | 10] - | 10| - ns
48°) |15, paL | BERR Low to DTACK Low 20| - 20 - |20 | - | 10| - ns
53 | tchpol | Clock High to Data Out Invalid 0 -~ 0 - o] - 0 - ns
55 | tpLosp | R/W to Data Bus Driven 30 - 20 - 10 - 0 - ns
56| tyrpw | HALT/RESET Pulse Width 10| - |10 - |10] - {10] =] ns
Notes : 1. IFor aloading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in the maximum co-
umns.

2. Actual value depends on clock period
3. It 47 is satisfied for both DTACK and BERR , 48 may be 0 nanoseconds. g
4. For power up, the MPU must be held in RESET state for 100 milliseconds to allow stabilization of on-chip circuitry. After the system

is powered up, 56 refers to the minimum pulse width required to reset the system.
5. Ifthe asynchronous setup time (47) requirements are satisfied, the DTACK low-to-data setup time (31) requirement can be ignored.
The data must only satisfy the data-in to clock-low setup time (27) for the following cycle.
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These waveforms should only be referenced in re- nal description of the input and output signals. Re-
gard to the edge-to-edge measurement of the timing fer to other functional descriptions and their related
specifications. They are not intended as a functio- diagrams for device operation.

Figure 8.8 : Write Cycle Timing Diagram.
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Notes : 1. Timing measurements are referenced to and from a fow voitage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted.

The voltage swing through this range should start outside and pass through the range such that the rise or fall will be linear between
0.8 volt and 2.0 volts.

2. Because of loading variations, R/W may be valid after AS even through both are initiated by the rising edge of S2 (specification 20A).
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8.9. AC ELECTRICAL SPECIFICATIONS — TS68000 to 6800 PERIPHERAL
(Voc =5Vdc £5% ;GND =0 Vdc ; Ta = T, to Ty ; refer to figures 8.9 and 8.10)

N° | Symbol Parameter 8 MHz 10 MHz |(12.5 MHz| 16 MHz Unit
Min. | Max.| Min. |Max.| Min. Max.| Min. | Max.
12" tcisn | Clock Low to AS, DS High - |50 | - |4 - |40 - | 3] ns
18" | tchmm | Clock High to R/W High 0 | 55{ 0 [ 45| 0 | 40| 0 | 40 | ns
20| tewrL | Clock High to RAW Low (write) - | 55| - |45 — 40| - | 30| ns
23 tcoo | Clock Low to Data out Valid (write) - 60 - 50 - 50 — 40 ns
272 teipo | Datain to Clock Low 15| — (10| - | 101 - | 10| - ns
(setup time on read)
29 | tsupu | AS, DS high to Data in Invalid o f-1o0oi-]lo|=-=1]01]-1ns
(hold time on read)
40 | tcLvme | Clock Low to VMA Low - 70 -~ 70 - 70 - 50 ns
41 tcLer | Clock Low to E Transistion - 55 - 45 - 35 - 35 ns
42 ter + | E Output Rise and Fall Time - 25 - 15 - 15 - 15 ns
43 | tymLen | VMA Low to E high 200 - | 150 - 90 - 70 - ns
44 | tsuvpn | AS, DS High to VPA High 0 |[120| 0 |90 0 | 70| o | 50 | ns
45 | tercar | E Low to Control, Address Bus Invalid 30 - 10 - 10 - 10 - ns
(address hold time)
478 | tasi | Asynchronous Input Setup Time 20| - |20 - |10 - l10] =~ ns
49 | tgue. | AS, DS High to E Low -70| 70 |-55! 55 |-45| 45 [-35|4+35( ns
50 ten E Width High 450 | - |350| - [280] - |210| - ns
51 teL E Width low 7000 - |550 | — |[440| - (330 - ns
54 | teipor | E Low to Data out Invalid 30 - 20 - 15 - 10 - ns

Notes : 1. For a loading capacitance of less than or equal to 50 pF, subtract 5 nanoseconds from the value given in the maximum columns.
2. lithe asynchronous setup time (47) requirements are satisfied, the DTACK low-to-data setup time (31) requirement can be ignored.
The data must only satisfy the date-in clock-low setupt time (27) for the tollowing cycle.
3. The falling edge of S6 triggers both the negation of the strobes (AS, and x DS) and the falling edge of E. Either of these events can
occur first, depending upon the loading on each signal. Specification 49 indicates the absolute maximum skew that will oceur be-
tween the rising edge of the strobes and the falling edge of the E clock.

Figure 8.9 : TS68000 to 6800 Peripheral Timing Diagram — Best Case.
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Note : This timing diagram is included for those who wish to design their own circuit to generate VMA it shows the best
case possibly attainable.
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Figure 8.10 : TS68000 to 6800 Peripheral Timing Diagram — Worst Case.
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Note : This timing diagram is included for those who wish to design their own circuit to generate VMA. It shows the worst
case possibly attainable.
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8.10. AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION
(Vec =5Vdc £5% ;GND =0 Vdc ; Ta =T, to Ty : see figures 8.11, 8.12 and 8.13)

N° | Symbol Parameter 8 MHz 10 MHz (12,5 MHz| 16 MHz Unit
Min. | Max. | Min. |Max. | Min, |Max.| Min. | Max.
7 | tcHapz | Clock high to Address, Data Bus High - 70 - 60 - 50 — 50 ns
Impedance
16 | tchez | Clock High to Control Bus High - 80 - 70 — 60 - 50 ns
Impedance
33 | tcnaL | Clock High to BG Low - |80| - |50 - 140 - |40] ns
34 | teuen | Clock High to BG High - (60| - | 50| - 40| - [40] ns
35 | teriaL | BR, Low to BG Low 15 |90ns| 1.5 |80ns| 1.5 (60ns| 1.5 |60ns |Clk Per.
+35 +35 +35 +35
36" | taknan | BR, High to BG High 15 |90ns| 1.5 |80ns| 15 |70ns| 1.5 |60ns [Cik Per.
+35 +35 +35 +35
37 | TeaLeH | BGACK Low to BG High 1.5 [90ns| 1.5 [80ns| 1.5 |70ns| 1.5 |60ns |Clk Per.
+35 +35 +35 +35
37A|tgaLsrH | BGACK Low to BG High 20 {15 ] 20 (15| 20 [ 15| 10 | 15| ns
Clocks Clocks Ciocks Clocks
38 tarz | BG Low to Control, Address, Data Bus - 80 - 70 - 60 - 50 ns
High Impedance (AS High)
39 | Teu |BG Width High 15| - [15] - |15 - [ 15| - | ck
Per.
46 teaL | BGACK Width Low 1.5 — 1.5 - 1.5 - 1.5 — |Clk Per.
47®)| tas | Asynchronous Input Setup Time 20| - |20 | - |10 - | 10| - ns
57 | tgaBp | BGACK High to Control Bus Driven 15 - 15 - 15 - 15 = |Ck Per
AS, UDS, LDS . : . - ) i
FCy, RW, VMA | 1 1 1 1
58"V | tgugp | BR High to Control Bus Driven 15| - |15 - |15| - |15 Clk Per.
Notes : 1. The processor will negate BG and begin driving the bus again if external arbitration logic negates ﬁlefore asserting BGACK.

2. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.
3. If the asynchronous setup time (47) requirements are satisfied, the DTACK low-to-data setup time (31) requirement can ban ign
red. The data must only satisfy the date-in clock-low setup time (27) for the following cycle.

Figures 8.11, 8.12, and 8.13 depict the three bus ar-
bitration cases that can arise. Figure 8.11 shows the
timing where AS is negated when the processor as-
serts BG (ldle Bus Case). Figure 8.12 shows the ti-
ming where AS is asserted when the processor as-
serts BG (Active Bus Case). Figure 8.13 shows the
timing where more than one bus master are reques-
ting the bus. Refer to 4.2.2. Bus Arbitration for a
complete discussion of bus arbitration.

The waveforms shown in figures 8.11, 8.12, and
8.13 should only be referenced in regard to the
edge-to-edge measurement of the timing specifica-
tions. They are not intended as a functional descrip-
tion of the input and output signals. Refer to other
functional descriptions and their related diagrams
for device operation.
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Figure 8.11 : Bus Arbitration Timing Diagram — Idle Bus Case.
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Figure 8.12 : Bus Arbitration Timing Diagram — Active Bus Case.
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Figure 8.13 : Bus Arbitration Timing Diagram — Multiple Bus Requests.
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SECTION 9
ORDER CODES

This section contains detailed information to be used as a guide when ordering the TS68000

9.1. STANDARD VERSIONS

Part Number

Frequency (MHz)

Temperature Range

Package Type

TS68000 CP8
TS68000 VP8
TS68000 CP10
TS68000 VP10
TS68000 CP12
TS68000 CP16

8.0
8.0
10.0
10.0
12,5
16.0

0°C to +70°C
—40°C to +85°C
0°C to +70°C
—40°C to +85°C
0°C to +70°C
0°C to +70°C

Plastic DIL
P Suffix

TS68000 CFN8
TS68000 VFN8
TS68000 CFN10
TS68000 VFN10
TS68000 CFN12
TS68000 CFN16

8.0
8.0
10.0
10.0
125
16.0

0°C to +70°C
—40°C to +85°C
0°C to +70°C
—40°C to +85°C
0°C to +70°C
0°C to +70°C

PLCC
FN Suffix

TS68000 CR8

TS68000 CR10
TS68000 CR12
TS88000 CR16

8.0
10.0
125
16.0

0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C

Pin Grid Array
R Suffix
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SECTION 10

MECHANICAL DATA

This section contains the pin assignments and
package dimensions for the 64—pin dual-in-line, the

10.1. PIN ASSIGNMENTS
64—Pin Dual-in—Line Package

68-terminal chip carrier (LCCC), the 68—pin grid ar-
ray, and the 68—pin quad pack (PLCC), versions of
the TS68000.

68—Pin Quad Pack (PLCC)

—
D4 ﬂ 1 s« P05
p3(] 2 s3{1 06
p2( 3 62 ] D7
1] « 61 {1 D8
ooq 5 s0 1 D9
Z\éﬁ 6 53 { D10

aps( 7 58 13 O
EN 57 1 D12
RIW(] s 6 JD13

DTACK [J10 ss o
B_Gt i3 s« [1D1S

BGACK (] 12 53 [JGND
872; 13 52 [} A23

vee e s1[1a22
CLK E 15 50 [JA21
GND [] 18 49 Pvee
AT q . T568000 w8 [ a20
RESET {] 18 &7 jA19
VMA 19 46 {J A18
E {20 WS TIAY7
vPA [0 e a6
BERR C 22 «3{J Al5
IPLZ q 23 w21 A14
Pl [f2s «10A13
IPLO q 25 wflan
FC2 [ 26 39 ) AN
Fc1Qzr 38 [J A10
FCO : 27 37[J A9
A1[] 29 36 [1 A8
a2 ()30 151 a7
A3 E 31 34 jAG
AL 132 3130} AS
V000214

EpBB o
= Q o M N W © o 2 = o
s BREs83388888355a

9 8 7 6 5 4 3 I 1 6867 6665 64 63 62 6
Biack [ o s0 [JO13
86[]n sel]ome
BGACK [ 12 s8 [Jois
ar(u 57 [ 6ND
vee g 56 [ GhU
ck}s 55} A23
onD e s.[] a2
GND [ 17 53[] Az
N [ 18 TS68000 s2[] veo
AT G 5[] a2
RESET (] 20 50 ] A19
VMA [ = w9 f] A@
e[z w[Jam
wA[n w[] a6
BERR [ 24 w1 a5
Pz (= 5[] ate
PO [:‘ % w[] a1
lilﬂ 29 30 3t 32 33 3% 35 36 37 38 39 40 41 42 43
DO OoOUOU0000TOU0OUOOUUILT veeozs
Igg&ﬁ‘z;::iﬂ‘«“:??gﬁ%

NC s NO CONNECTION

68-Pin Grid Array

v000227

Ve
K O 0O O O o 0o O O ¢ W
NC FC2 FCO Al A3 AL A6 A7 A3 NC
J O 0O OO 00O O o0 O O

BERR IPLO FC1 NC A2 A5 A8 AI0 ANl Al

H O O O O O O
E P2 1PL A3 A2 A6

¢l O O o O
VMA VPA A5 AT

F c O Qo O
HACT RESET T::TBT?)?‘O A8 A19

E O O VIEW o O
CLK GND Ve A20

2} o o o O
BR Vcc GND A21

c o O O ® O
BGACK BG RIW D13 A23 A22

B o 0 0O 0 O 0 O o O
DTACK (DS UBS DO 03 D6 DI DN L4 DS

A O 0O 0 0 0o O 0O O 0 O
NC AS DI D2 D4 D5 D7 D8 DWO DI2

\. /

1 2 3 4 5 6 7 8 9 1
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10.2. PACKAGE DIMENSIONS

mm
) 22.86-23.50
o ‘ 20.07-20.57
N x
o 5 .
. 81.41-B1.66 . & /T‘\
C| o~ 0
€ : o ‘ I
] [ | o l T 1
BASE PLANE—C < |
SEATING PLANE ———== —T A T J
-1
| 3
i 0.20-0.30
1.27-1.52 1.40-1.65 2
0.41-0.51 2.54B5C . 22.86B5C
V000216
Pin 1 identification
2413 Identification 1 4,20 2261
2413 77 = 5,08 23,62
2433 61 i
80 %&7
( 1219 +H-M
;é7
Q
457
. 4 _
0127
0381
1 r
25,02
25,27
Outputs

Sorties
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10.2. PACKAGE DIMENSIONS (continued)

mm 26.67-27.18
-

— A S

15.88-16.13
13.08-13.34 1.83-2.24
|
! | ’-\‘
q |IL-r—Er
Hbte=
N o

en

b s
=== 0.43-0.48

ven

b=

| 8
T ! 4.32-4.83

0.20 0.38-0.89
> ET
2.00-262 114-1.47 000539
This is advanced information and specifications are subject to change without notice. Please inquire with our
sales offices about the availability to the different packages.
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