查询TPS3838L30QDBVRQ1供应商 # TPS3836E\$8PQ专业525FQ47/H304Q申扣1636FQ1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 - Qualification in Accordance With AEC-Q100† - **Qualified for Automotive Applications** - **Customer-Specific Configuration Control** Can Be Supported Along With Major-Change Approval† - **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Supply Current of 220 nA (Typ) - Precision Supply Voltage Supervision Range: 1.8 V, 2.5 V, 3.0 V, 3.3 V - **Power-On Reset Generator With Selectable** Delay Time of 10 ms or 200 ms - Push/Pull RESET Output (TPS3836), RESET Output (TPS3837), or Open-Drain RESET Output (TPS3838) - **Manual Reset** - 5-Pin SOT-23 Package - Temperature Range -40°C to 125°C - † Contact factory for details. Q100 qualification data available on request. # description The TPS3836, TPS3837, TPS3838 families of supervisory circuits provide circuit initialization and timing supervision, primarily for DSP and processor-based systems. - **Applications Include** - Applications Using Automotive Low-Power DSPs, Microcontrollers, or Microprocessors - Battery-Powered Equipment - Intelligent Instruments - Wireless Communication Systems - Automotive Systems During power on, RESET is asserted when the supply voltage VDD becomes higher than 1.1 V. Thereafter, the supervisory circuit monitors VDD and keeps RESET output active as long as VDD remains below the threshold voltage VIT. An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after VDD has risen above the threshold voltage VIT. When CT is connected to GND a fixed delay time of typical 10 ms is asserted. When connected to VDD the delay time is typically 200 ms. When the supply voltage drops below the threshold voltage V_{IT} , the output becomes active (low) again. All the devices of this family have a fixed-sense threshold voltage V_{IT} set by an internal voltage divider. The TPS3836 has an active-low push-pull RESET output. The TPS3837 has active-high push-pull RESET, and TPS3838 integrates an active-low open-drain RESET output. WWW.DZSC.COM Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 ## description (continued) The product spectrum is designed for supply voltages of 1.8 V, 2.5 V, 3 V, and 3.3 V. The circuits are available in a 5-pin SOT-23 package. The TPS3836-Q-Q1, TPS3837-Q-Q1, TPS3838-Q-Q1 families are characterized for operation over a temperature range of –40°C to 125°C, and qualified in accordance with AEC-Q100 stress test qualification for integrated circuits. #### **PACKAGE INFORMATION** | TA | DEVICE NAME | THRESHOLD VOLTAGE | SYMBOL | |----------------|--------------------------------|-------------------|--------| | | TPS3836E18QDBVRQ1 [†] | 1.71 V | PDNQ | | | TPS3836J25QDBVRQ1 [†] | 2.25 V | PDSQ | | | TPS3836H30QDBVRQ1 [†] | 2.79 V | PHRQ | | | TPS3836L30QDBVRQ1 [†] | 2.64 V | PCAQ | | | TPS3836K33QDBVRQ1 [†] | 2.93 V | PDTQ | | | TPS3837E18QDBVRQ1 [†] | 1.71 V | PDOQ | | -40°C to 125°C | TPS3837J25QDBVRQ1 [†] | 2.25 V | PDRQ | | | TPS3837L30QDBVRQ1 [†] | 2.64 V | PCBQ | | | TPS3837K33QDBVRQ1 [†] | 2.93 V | PDUQ | | | TPS3838E18QDBVRQ1 [†] | 1.71 V | PDQQ | | | TPS3838J25QDBVRQ1 [†] | 2.25 V | PDPQ | | | TPS3838L30QDBVRQ1 [†] | 2.64 V | PCCQ | | | TPS3838K33QDBVRQ1 [†] | 2.93 V | PDVQ | [†] The DBVR passive indicates tape and reel of 3000 parts. #### ORDERING INFORMATION # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 #### **FUNCTION TABLE TPS3836, TPS3837, TPS3838** | MR | V _{DD} > V _{IT} | RESET [†] | RESET [‡] | |----|-----------------------------------|--------------------|--------------------| | L | 0 | L | Н | | L | 1 | L | Н | | Н | 0 | L | Н | | Н | 1 | Н | L | [†]TPS3836 and TPS3838 ## functional block diagram **[‡]TPS3837** # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 # timing diagram # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{DD} (see Note 1) | 7 \/ | |--|------------------------------| | | | | All other pins (see Note 1) | | | Maximum low output current, I _{OL} | 5 mA | | Maximum high output current, IOH | | | Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$) | ±10 mA | | Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$) | ±10 mA | | Continuous total power dissipation | See Dissipation Rating Table | | Operating free-air temperature range, T _A | | | Storage temperature range, T _{stq} | | | Soldering temperature | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to GND. For reliable operation, the device must not be operated at 7 V for more than t=1000 h continuously #### **DISSIPATION RATING TABLE** | PACKAGE | T _A <25°C
POWER RATING | DERATING FACTOR
ABOVE T _A = 25°C | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | T _A = 125°C
POWER RATING | |---------|--------------------------------------|--|---------------------------------------|---------------------------------------|--| | DBV | 437 mW | 3.5 mW/°C | 280 mW | 227 mW | 87 mW | # recommended operating conditions at specified temperature range | | MIN | MAX | UNIT | |--|---------------------|-----------------------|------| | Supply voltage, V _{DD} | 1.6 | 6 | V | | Input voltage, V _I | 0 | V _{DD} + 0.3 | V | | High-level input voltage, V _{IH} | $0.7 \times V_{DD}$ | | V | | Low-level input voltage, V _{IL} | | $0.3 \times V_{DD}$ | V | | Input transition rise and fall rate at \overline{MR} , $\Delta t/\Delta V$ | | 100 | ns/V | | Operating free-air temperature range, T _A | -40 | 125 | °C | # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 # electrical characteristics over recommended operating conditions (unless otherwise noted) | PARAMETER | TEST CONDITION | | MIN | TYP | MAX | UNIT | | | |---|---|---|--|--------------------------|---|---|---|--| | | RESET | $V_{DD} = 3.3 \text{ V},$ | I _{OH} = -2 mA | | | | | | | LPak laval autout valtana | (TPS3836) | $V_{DD} = 6 V$ | $I_{OH} = -3 \text{ mA}$ | 0.8 × | | | ., | | | Hign-level output voltage | RESET | $V_{DD} = 1.8 \text{ V},$ | $I_{OH} = -1 \text{ mA}$ | V_{DD} | | | V | | | | (TPS3837) | $V_{DD} = 3.3 \text{ V},$ | $I_{OL} = -2 \text{ mA}$ | | | | | | | | RESET | $V_{DD} = 1.8 \text{ V},$ | I _{OL} = 1 mA | | | | | | | Lava laval autovit valta sa | (TPS3836/8) | $V_{DD} = 3.3 \text{ V},$ | $I_{OL} = 2 \text{ mA}$ | | | 0.4 | V | | | Low-level output voltage | RESET | $V_{DD} = 3.3 \text{ V},$ | I _{OL} = 2 mA | | | 0.4 | V | | | | (TPS3837) | V _{DD} = 6 V, | IOL = 3 mA | | | | | | | Barrar and a state that a | TPS3836/8 | $V_{DD} \ge 1.1 V$, | $I_{OL} = 50 \mu\text{A}$ | | | 0.2 | | | | (see Note 2) | TPS3837 | V _{DD} ≥ 1.1 V, | I _{OH} = -50 μA | 0.8 ×
V _{DD} | | | V | | | | TPS383xE18 | | | 1.64 | 1.71 | 1.76 | | | | | TPS383xJ25 | | | 2.16 | 2.25 | 2.30 | | | | Negative-going input threshold voltage (see Note 3) | TPS383xH30 | | | 2.70 | 2.79 | 2.85 | V | | | | TPS383xL30 | | | 2.54 | 2.64 | 2.71 | | | | | TPS383xK33 | | | 2.82 | 2.93 | 3.10 | | | | | | 1.7 V < V _{IT} < 2.5 V | | | 30 | | | | | Hysteresis at V _{DD} input | | 2.5 V < V _{IT} < 3.5 V | | | 40 | | mV | | | | | 3.5 V < V _{IT} < 5 V | | | 50 | | | | | High-level input current | MR
(see Note 4) | $\overline{\text{MR}} = 0.7 \times \text{V}_{\text{DD}},$ | V _{DD} = 6 V | -40 | -60 | -100 | μΑ | | | | СТ | $CT = V_{DD} = 6 V$ | | -25 | | 25 | nA | | | Low-level input current | MR
(see Note 4) | MR = 0 V, | V _{DD} = 6 V | -130 | -200 | -340 | μΑ | | | · | СТ | CT = 0 V, | V _{DD} = 6 V | -25 | | 25 | nA | | | High-level output current | TPS3838 | $V_{DD} = V_{IT} + 0.2 V,$ | $V_{OH} = V_{DD}$ | | | 25 | nA | | | Supply current | | $V_{DD} > V_{IT}$ | V _{DD} < 3 V | | 220 | 500 | nA | | | | | V _{DD} > V _{IT} , | V _{DD} > 3 V | | 250 | 550 | | | | | | V _{DD} < V _{IT} | | | 10 | 25 | μΑ | | | Internal pullup resistor at MR | | | | | 30 | | kΩ | | | Input capacitance at MR, CT | | $V_I = 0 V \text{ to } V_{DD}$ | | | 5 | | pF | | | | High-level output voltage Low-level output voltage Power-up reset voltage (see Note 2) Negative-going input threshold voltage (see Note 3) Hysteresis at V _{DD} input High-level input current Low-level input current Supply current Internal pullup resistor at MR | High-level output voltage RESET (TPS3836) | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$ | | High-level output voltage RESET (TPS3836) | RESET (ΓPS3836) VDD = 3.3 V, IDH = -2 mA VDD = 4 V, IDH = -3 mA VDD = 1.8 V, IDH = -1 mA VDD = 3.3 V, IDH = -1 mA VDD = 1.8 V, IDH = -1 mA VDD = 3.3 1.1 V, IDH = -1 mA VDD = 1.1 V, IDH = -1 mA VDD VDD = 1.1 V, IDH = -1 mA VDD | High-level output voltage RESET (TPS3836) | | NOTES: 2. The lowest voltage at which \overline{RESET} output becomes active. t_{Γ} , $V_{DD} \ge 15 \,\mu\text{s/V}$ 3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminal. 4. If manual reset is unused, MR should be connected to V_{DD} to minimize current consumption. # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 – DECEMBER 2002 # timing requirements at R $_L$ = 1 M $\Omega,\,C_L$ = 50 pF, T_A = 25 $^{\circ}C$ | PARAMETER | | TEST CONDITIONS | | | TYP | MAX | UNIT | | |-----------|----------------------------|--------------------|--|------------------------------|-----|-----|------|----| | | | at V _{DD} | $V_{IH} = V_{IT} + 0.2 V,$ | $V_{IL} = V_{IT} - 0.2 V$ | 6 | | | μs | | | t _W Pulse width | at MR | $V_{DD} \ge V_{IT} + 0.2 \text{ V},$
$V_{IH} = 0.7 \times V_{DD}$ | $V_{IL} = 0.3 \times V_{DD}$ | 1 | | | μs | # switching characteristics at R_L = 1 M Ω , C_L = 50 pF, T_A = 25°C | | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|--|--------------------------------------|---|-----|-----|-----|------| | | Polocitica | | $\frac{V_{DD}}{MR} \ge V_{IT} + 0.2 \text{ V},$ $MR = 0.7 \times V_{DD},$ $CT = GND,$ See timing diagram | 5 | 10 | 15 | | | ^t d | Delay time | | $\begin{split} &\frac{V_DD}{MR} \geq V_{IT} + 0.2 \text{ V,} \\ &\text{MR} = 0.7 \times V_{DD}, \\ &\text{CT} = V_{DD} \text{ ,} \\ &\text{See timing diagram} \end{split}$ | 100 | 200 | 300 | ms | | tPHL | Propagation (delay) time, high-to-low-level output | V _{DD} to RESET delay | $V_{IL} = V_{IT} - 0.2 \text{ V},$
$V_{IH} = V_{IT} + 0.2 \text{ V}$ | | | 10 | μs | | | | (TPS3836, TPS3838) | V _{IL} = 1.6 V | | | 50 | | | tPLH | Propagation (delay) time, low-to-high-level output | V _{DD} to RESET delay | $V_{IL} = V_{IT} - 0.2 \text{ V},$
$V_{IH} = V_{IT} + 0.2 \text{ V}$ | | | 10 | μs | | | (TPS3837) | | V _{IL} = 1.6 V | | | 50 | | | tPHL | Propagation (delay) time, high-to-low-level output | MR to RESET delay (TPS3836, TPS3838) | $V_{DD} \ge V_{IT} + 0.2 \text{ V},$
$V_{IL} = 0.3 \times V_{DD},$ | | | 0.1 | μs | | ^t PLH | Propagation (delay) time, low-to-high-level output | MR to RESET delay (TPS3837) | $V_{IL} = 0.7 \times V_{DD}$ | | | 0.1 | μs | ## **TYPICAL CHARACTERISTICS** # **Table of Graphs** | | | | FIGURE | |-----------------|---|--|--------| | I _{DD} | Supply current | vs Supply voltage | 1 | | IMR | Manual reset current | vs Manual reset voltage | 2 | | VOL | Low-level output voltage | vs Low-level output current | 3 | | Vон | High-level output voltage | vs High-level output current | 4 | | | Normalized reset threshold voltage | vs Free-air temperature | 5 | | | Minimum pulse duration at V _{DD} | vs V _{DD} Threshold overdrive | 6 | SGLS141 – DECEMBER 2002 #### TYPICAL CHARACTERISTICS **HIGH-LEVEL OUTPUT VOLTAGE** ## **TYPICAL CHARACTERISTICS** ## NORMALIZED RESET THRESHOLD **VOLTAGE** vs FREE-AIR TEMPERATURE # MINIMUM PULSE DURATION AT V_{DD} **VDD THRESHOLD OVERDRIVE** Figure 6 # TPS3836E18-Q1 / J25-Q1 / H30-Q1 / L30-Q1 / K33-Q1 TPS3837E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1, TPS3838E18-Q1 / J25-Q1 / L30-Q1 / K33-Q1 NANOPOWER SUPERVISORY CIRCUITS SGLS141 - DECEMBER 2002 #### **MECHANICAL DATA** # **DBV (R-PDSO-G5)** #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-178 # PACKAGE OPTION ADDENDUM 25-Feb-2005 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan (2) | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-------------------|-----------------------|-----------------|--------------------|------|----------------|--------------|------------------|------------------------------| | TPS3836E18QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3836H30QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3836J25QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3836K33QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3836L30QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3837E18QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3837J25QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3837K33QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3837L30QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3838E18QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3838J25QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3838K33QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | | TPS3838L30QDBVRQ1 | ACTIVE | SOT-23 | DBV | 5 | 3000 | None | Call TI | Level-1-220C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-178 Variation AA. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265