Data sheet acquired from Harris Semiconductor SCHS207G February 1998 - Revised October 2003 ### 捷多邦,专业PCB打样工厂,24小时加急出货 ### CD54HC4060, CD74HC4060, CD54HCT4060, CD74HCT4060 # High-Speed CMOS Logic 14-Stage Binary Counter with Oscillator the negative transition of ϕI (and ϕO). All inputs and outputs are buffered. Schmitt trigger action on the input-pulse-line permits unlimited rise and fall times. In order to achieve a symmetrical waveform in the oscillator section the HCT4060 input pulse switch points are the same as in the HC4060; only the MR input in the HCT4060 has TTL switching levels. ### **Ordering Information** | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |----------------|---------------------|--------------| | CD54HC4060F3A | -55 to 125 | 16 Ld CERDIP | | CD54HCT4060F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC4060E | -55 to 125 | 16 Ld PDIP | | CD74HC4060M | -55 to 125 | 16 Ld SOIC | | CD74HC4060MT | -55 to 125 | 16 Ld SOIC | | CD74HC4060M96 | -55 to 125 | 16 Ld SOIC | | CD74HC4060PW | -55 to 125 | 16 Ld TSSOP | | CD74HC4060PWR | -55 to 125 | 16 Ld TSSOP | | CD74HC4060PWT | -55 to 125 | 16 Ld TSSOP | | CD74HCT4060E | -55 to 125 | 16 Ld PDIP | | CD74HCT4060M | -55 to 125 | 16 Ld SOIC | | CD74HCT4060MT | -55 to 125 | 16 Ld SOIC | | CD74HCT4060M96 | -55 to 125 | 16 Ld SOIC | NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. #### **Features** - Onboard Oscillator - Common Reset - Negative-Edge Clocking - Fanout (Over Temperature Range) - Wide Operating Temperature Range ... -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH} ### Description The 'HC4060 and 'HCT4060 each consist of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A Master Reset input is provided which resets the counter to the all-0's state and disables the oscillator. A high level on the MR line accomplishes the reset function. All counter stages are master-slave flip-flops. The state of the counter is advanced one step in binary order on **Pinout** CD54HC4060, CD54HCT4060 (CERDIP) CD74HC4060 (PDIP, SOIC, TSSOP) CD74HCT4060 (PDIP, SOIC) TOP VIEW Q12 1 16 V_{CC} Q13 2 15 Q10 Q14 3 14 Q8 Q6 4 13 Q9 Q5 5 12 MR Q7 6 11 \$\phi I\$ Q4 7 10 \$\phi O\$ GND 8 9 \$\phi O\$ ### Functional Diagram FIGURE 1. LOGIC BLOCK DIAGRAM #### **TRUTH TABLE** | Øl | MR | OUTPUT STATE | |----------|----|-----------------------| | 1 | L | No Change | | \ | L | Advance to Next State | | Х | H | All Outputs are Low | #### **Absolute Maximum Ratings Thermal Information** DC Supply Voltage, V_{CC}-0.5V to 7V θ_{JA} (°C/W) Thermal Resistance (Typical, Note 1) DC Input Diode Current, I_{IK} 67 M (SOIC) Package..... DC Output Diode Current, IOK PW (TSSOP) Package For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$±20mA DC Drain Current, per Output, IO Maximum Storage Temperature Range $\,\ldots\,$ -65°C to 150°C For -0.5V < V_O < V_{CC} + 0.5V.....±25mA Maximum Lead Temperature (Soldering 10s).....300°C (SOIC - Lead Tips Only) **Operating Conditions** Temperature Range, T_A -55°C to 125°C Supply Voltage Range, V_{CC} HC Types2V to 6V DC Input or Output Voltage, V_I, V_O 0V to V_{CC} Input Rise and Fall Time 4.5V..... 500ns (Max) CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. #### **DC Electrical Specifications** | | | TE:
CONDI | _ | V _{CC} | | 25°C | | -40°C 1 | O 85°C | -55 ⁰ C T | O 125 ⁰ C | | | | |---------------------------------|-----------------|------------------------------------|---------------------|-----------------|-------|------|------|---------|--------|----------------------|----------------------|-------|---|---| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | | HC TYPES | | | | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | | | Voltage Q Outputs
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | OMOG Edado | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | | | High Level Output | | | - | - | - | - | - | - | - | - | - | V | | | | Voltage Q Outputs TTL Loads | | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | 2 20000 | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | Voltage Q Outputs
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | omeo Loado | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | Low Level Output | | | - | - | - | - | - | - | - | - | - | V | | | | Voltage Q Outputs
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | High-Level Output | V _{OH} | V _{CC} or | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | ٧ | | | | Voltage ቒO Output
(Pin 10) | VOH | | | I GND H | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | ٧ | | CMOS Loads | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | ٧ | | | ### DC Electrical Specifications (Continued) | | | TES
CONDI | | v _{cc} | | 25°C | | -40°C 1 | TO 85°C | -55°C TO 125°C | | | |--|-----------------|--|---------------------|-----------------|--------------|------|------|--------------|---------|----------------|-----|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | High-Level Output
Voltage ∳O Output
(Pin 10) | Voн | V _{CC} or
GND | -2.6
-3.3 | 4.5
6 | 3.98
5.48 | - | - | 3.84
5.34 | - | 3.7
5.2 | - | V | | TTL Loads
(Note 2) | | | | | | | | | | | | | | Low-Level Output | V _{OL} | V _{CC} or | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage | | GND | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | CMOS Loads | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low-Level Output | V _{OL} | V _{CC} or | 2.6 | 4.5 | - | 1 | 0.26 | - | 0.33 | - | 0.4 | V | | Voltage | | GND | 3.3 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | High-Level Output | V _{OH} | V _{IL} or V _{IH} | -3.2 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Voltage ϕ O Output
(Pin 9)
TTL Loads | | | -4.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | Low-Level Output | V _{OL} | V _{IL} or V _{IH} | -2.6 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Voltage ϕ O Output
(Pin 9)
TTL Loads | | | -3.3 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | II | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | lcc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | | HCT TYPES | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage Q Outputs
CMOS Loads | Voн | V _{IH} or V _{IL}
(Note 3) | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage Q Outputs
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | ٧ | | Low Level Output
Voltage Q Outputs
CMOS Loads | V _{OL} | V _{IH} or V _{IL}
(Note 3) | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | Low Level Output
Voltage Q Outputs
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | ٧ | | High-Level Output
Voltage ∳O Output
(Pin 10)
CMOS Loads | V _{OH} | V _{CC} or
GND | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High-Level Output
Voltage | Voн | V _{CC} or
GND | -2.6 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low-Level Output
Voltage ∳O Output
(Pin 10)
CMOS Loads | V _{OL} | V _{CC} or
GND | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | ### DC Electrical Specifications (Continued) | | | TES
CONDI | | v _{cc} | | 25°C | | -40°C 1 | O 85°C | -55°C TO 125°C | | | | |--|------------------------------|---|---------------------|-----------------|------|------|------|---------|--------|----------------|-----|-------|--| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | Low-Level Output
Voltage ∳O Output
(Pin 10)
TTL Loads | V _{OL} | V _{CC} or
GND | 2.6 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | High-Level Output
Voltage Output
(Pin 9)
TTL Loads | Voн | V _{IL} or V _{IH} | -3.2 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | Low-Level Output
Voltage ¢O Output
(Pin 9)
TTL Loads | V _{OL} | V _{IH} or V _{IL}
(Note 3) | 3.2 | 4.5 | - | | 0.26 | - | 0.33 | - | 0.4 | V | | | Input Leakage
Current | lį | Any
Voltage
Between
V _{CC} and
GND | - | 5.5 | - | | ±0.1 | - | ±1 | - | ±1 | μΑ | | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μΑ | | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 4) | V _{CC}
- 2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μΑ | | #### NOTES: - 2. Limits not valid when pin 12 (instead of pin 11) is used as control input. - 3. For pin 11 $V_{IH} = 3.15V$, $V_{IL} = 0.9V$. - 4. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA. ### **HCT Input Loading Table** | INPUT | UNIT LOADS | |-------|------------| | MR | 0.35 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications Table, e.g. 360 μA max at $25^{o}C.$ #### **Prerequisite for Switching Specifications** | | | | | 25°C | | -40 | °C TO 85 | 5°C | -55 ⁰ | C TO 12 | 5°C | | |---------------------|------------------|---------------------|-----|------|-----|-----|----------|-----|------------------|---------|-----|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | HC TYPES | • | | | | • | | | • | | | | • | | Maximum Input Pulse | f _{max} | 2 | 6 | - | - | 5 | - | - | 4 | - | - | MHz | | Frequency | | 4.5 | 30 | - | - | 25 | - | - | 20 | - | - | MHz | | | | 6 | 35 | - | - | 29 | - | - | 23 | - | - | MHz | | Input Pulse Width | t _W | 2 | 80 | - | - | 100 | - | - | 120 | - | - | ns | | | | 4.5 | 16 | - | - | 20 | - | - | 24 | - | - | ns | | | | 6 | 14 | - | - | 17 | - | - | 20 | - | - | ns | | Reset Removal Time | t _{REM} | 2 | 100 | - | - | 125 | - | - | 150 | - | - | ns | | | | 4.5 | 20 | - | - | 25 | - | - | 30 | - | - | ns | | | | 6 | 17 | - | - | 21 | - | - | 26 | - | - | ns | ### Prerequisite for Switching Specifications (Continued) | | | | 25°C | | -40 | °C TO 85 | 5°C | -55°C TO 125°C | | | | | |-----------------------------------|------------------|---------------------|------|-----|-----|----------|-----|----------------|-----|-----|-----|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Reset Pulse Width | t _W | 2 | 80 | - | - | 100 | - | - | 120 | - | - | ns | | | | 4.5 | 16 | - | - | 20 | - | - | 24 | - | - | ns | | | | 6 | 14 | - | - | 17 | - | - | 20 | - | - | ns | | HCT TYPES | | | | | • | | | • | | | - | | | Maximum Input,
Pulse Frequency | f _{max} | 4.5 | 30 | - | - | 25 | - | - | 20 | - | - | MHz | | Input Pulse Width | t _W | 4.5 | 16 | - | - | 20 | - | - | 24 | - | - | ns | | Reset Removal Time | ^t REM | 4.5 | 26 | - | - | 33 | - | - | 39 | - | - | ns | | Reset Pulse Width | t _W | 4.5 | 25 | - | - | 31 | - | - | 38 | - | - | ns | ### Switching Specifications Input $t_{\rm f},\,t_{\rm f}=$ 6ns | | | TEST | | | 25°C | | | C TO
°C | -55°C TO
125°C | | | |---|-------------------------------------|-----------------------|---------------------|-----|------|-----|-----|------------|-------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | • | | | | | | | | | | | | Propagation Delay | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 300 | - | 375 | - | 450 | ns | | φI to Q4 | | | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | C _L = 15pF | 5 | - | 25 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 51 | - | 64 | - | 78 | ns | | Q _n to Q _{n+1} | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 80 | - | 100 | - | 120 | ns | | | | | 4.5 | - | - | 16 | - | 20 | - | 24 | ns | | | | C _L = 15pF | 5 | - | 6 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 14 | - | 17 | - | 20 | ns | | MR to Q _n | t _{PHL} | C _L = 50pF | 2 | - | - | 175 | - | 220 | - | 265 | ns | | | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 30 | - | 37 | - | 45 | ns | | Output Transition Time | t _{THL} , t _{TLH} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _I
(TBD) | | | | | | | | | | | | Propagation Dissipation
Capacitance (Notes 5, 6) | C _{PD} | - | - | - | 40 | - | - | - | - | - | pF | | HCT TYPES | | | | | | | | | | | | | Propagation Delay | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | - | - | - | - | - | -ns | | φl to Q4 | | | 4.5 | 1 | - | 66 | - | 83 | - | 100 | ns | | | | C _L = 15pF | 5 | - | 25 | - | - | - | - | - | -ns | | | | C _L = 50pF | 6 | - | - | - | - | - | - | - | -ns | ### Switching Specifications Input $t_{\rm f},\,t_{\rm f}$ = 6ns (Continued) | | | TEST | | | 25°C | | -40 ⁰ (| с то
°С | | C TO
5°C | | |---|-------------------------------------|-----------------------|---------------------|-----|------|-----|--------------------|------------|-----|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Q _n to Q _{n+1} | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | - | - | - | - | - | ns | | | | | 4.5 | - | - | 16 | - | 20 | - | 24 | ns | | | | C _L = 15pF | 5 | - | 6 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | - | - | - | - | - | ns | | MR to Q _n | t _{PHL} | C _L = 50pF | 2 | - | - | - | - | - | = | - | ns | | | | | 4.5 | - | - | 44 | - | 55 | - | 66 | ns | | | | C _L = 15pF | 5 | - | 17 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | - | - | - | = | - | ns | | Output Transition Time | t _{THL} , t _{TLH} | C _L = 50pF | 2 | - | - | - | - | - | - | - | ns | | | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | - | - | - | - | - | ns | | Input Capacitance | C _I
(TBD) | | | | | | | | | | | | Propagation Dissipation
Capacitance (Notes 5, 6) | C _{PD} | - | - | ı | 40 | - | - | - | - | - | pF | #### NOTES: - 5. $C_{\mbox{PD}}$ is used to determine the dynamic power consumption, per package. - 6. $P_D = C_{PD} V_{CC}^2 f_i \Sigma (C_L V_{CC}^2 f_i/M)$ where $M = 2^1, 2^2, 2^3, ... 2^{14}, f_i = \text{input frequency}, C_L = \text{output load capacitance}.$ ### TYPICAL LIMIT VALUES FOR $R_{\boldsymbol{X}}$ AND $C_{\boldsymbol{X}}$ | PARAMETER | TEST
CONDITIONS | VOLTAGE | TYPICAL
MAXIMUM
LIMITS | |-------------------------------|--|---------|------------------------------| | R _X Minimum | C _X > 1000pF | 2 | 1ΚΩ | | | C _X > 10pF | 4.5 | | | | C _X > 10pF | 6 | | | R _X Maximum | C _X > 10pF | 2 | 20ΜΩ | | | C _X > 10pF | 4.5 | | | | C _X > 10pF | 6 | | | C _X Minimum | R _X > 10KΩ | 2 | 10pF | | | R _X > 10KΩ | 4.5 | | | | R _X > 10KΩ | 6 | | | | R _X = 1KΩ | 2 | 1000pF | | | $R_X = 1K\Omega$ | 4.5 | 10pF | | | R _X = 1KΩ | 6 | 10pF | | Maximum
Astable Oscillator | $C_X = 1000 pF$,
$R_X = 1 K\Omega$ | 2 | 0.5MHz
(Note 7) | | Frequency | $C_X = 100 pF,$
$R_X = 1 K\Omega$ | 4.5 | 3MHz
(Note 7) | | | $C_X = 100 pF$,
$R_X = 1 K\Omega$ | 6 | 3MHz
(Note 7) | NOTE: OSC Frequency \approx 1/2.2 R_XC_X For 1M Ω > R_X > 1K Ω , C_X > 10pF, f < 1MHz FIGURE 2. FREQUENCY OF ON-BOARD OSCILLATOR AS A FUNCTION OF C_χ and R_χ #### NOTE: 7. At very high frequencies $f = 1/2.2 R_X C_X$ no longer gives an accurate approximation. ### **Typical Performance Curves** NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 3. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 4. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 5. HC AND HCT TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC FIGURE 6. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 24-May-2007 ### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp (3) | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|--------------------| | 5962-8768001EA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | 5962-8977101EA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | CD54HC4060F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | CD54HCT4060F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | CD74HC4060E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HC4060EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HC4060M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060M96G4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060MG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060MTG4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWTE4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4060PWTG4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HCT4060EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HCT4060M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & | CU NIPDAU | Level-1-260C-UNLIM | ### PACKAGE OPTION ADDENDUM 24-May-2007 | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | | | | | | | no Sb/Br) | | | | CD74HCT4060M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060M96G4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060MG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT4060MTG4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### PACKAGE MATERIALS INFORMATION 22-Sep-2007 ### TAPE AND REEL BOX INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package | Pins | Site | Reel
Diameter
(mm) | Reel
Width
(mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|---------|------|---------|--------------------------|-----------------------|---------|---------|---------|------------|-----------|------------------| | CD74HC4060M96 | D | 16 | SITE 27 | 330 | 16 | 6.5 | 10.3 | 2.1 | 8 | 16 | Q1 | | CD74HC4060PWR | PW | 16 | SITE 41 | 330 | 12 | 7.0 | 5.6 | 1.6 | 8 | 12 | Q1 | | CD74HCT4060M96 | D | 16 | SITE 27 | 330 | 16 | 6.5 | 10.3 | 2.1 | 8 | 16 | Q1 | 22-Sep-2007 | Device | Package | Pins | Site | Length (mm) | Width (mm) | Height (mm) | |----------------|---------|------|---------|-------------|------------|-------------| | CD74HC4060M96 | D | 16 | SITE 27 | 342.9 | 336.6 | 0.0 | | CD74HC4060PWR | PW | 16 | SITE 41 | 346.0 | 346.0 | 0.0 | | CD74HCT4060M96 | D | 16 | SITE 27 | 342.9 | 336.6 | 0.0 | NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ### N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### D (R-PDSO-G16) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end. - Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side. - E. Reference JEDEC MS-012 variation AC. ### PW (R-PDSO-G**) #### 14 PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | | Applications | | |------------------------|---|---| | amplifier.ti.com | Audio | www.ti.com/audio | | dataconverter.ti.com | Automotive | www.ti.com/automotive | | dsp.ti.com | Broadband | www.ti.com/broadband | | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | logic.ti.com | Military | www.ti.com/military | | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | microcontroller.ti.com | Security | www.ti.com/security | | www.ti-rfid.com | Telephony | www.ti.com/telephony | | www.ti.com/lpw | Video & Imaging | www.ti.com/video | | | Wireless | www.ti.com/wireless | | | dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com | amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti-com/lpw Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging |