19-0606; Rev 0; 9/06

# 

# Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers

#### **General Description**

The MAX9789A/MAX9790A combine a stereo, 2W Class AB speaker power amplifier with a stereo 100mW DirectDrive™ headphone amplifier in a single device. The MAX9789A/MAX9790A are designed for use with the Microsoft Windows Vista™ operating system and are fully compliant with Microsoft's Windows Vista specifications. The headphone amplifier features Maxim's patented<sup>†</sup> DirectDrive architecture that produces a ground-referenced output from a single supply to eliminate the need for large DC-blocking capacitors, as well as save cost, board space, and component height. A high +90dB PSRR and low 0.002% THD+N ensures clean, low-distortion amplification of the audio signal.

Separate speaker and headphone amplifier control inputs provide independent shutdown of the speaker and headphone amplifiers, allowing speaker and headphone amplifiers to be active simultaneously, if required. The industry-leading click-and-pop suppression circuitry reduces audible transients during startup and shutdown cycles.

The MAX9789A features an internal LDO that can be used as a clean power supply for a CODEC or other circuits. The LDO output voltage is set internally at 4.75V or can be adjusted between 1.21V and 4.75V using a simple resistive divider. The LDO is protected against thermal overloads and short circuits while providing 120mA of continuous output current and can be enabled independently of the audio amplifiers.

By disabling the speaker and headphone amplifiers, and the LDO (for MAX9789A), the MAX9789A/MAX9790A enter low-power shutdown mode and draw only 0.3µA.

The MAX9789A/MAX9790A operate from a single 4.5V to 5.5V supply and feature thermal-overload and output short-circuit protection. Devices are specified over the -40°C to +85°C extended temperature range.

#### **Applications**



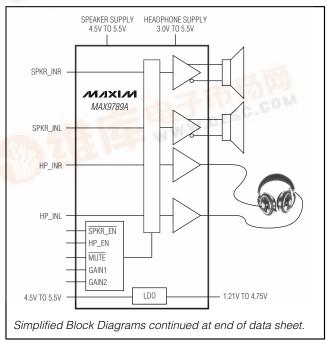
MIXIM

- Microsoft Windows Vista Compliant
- Class AB 2W Stereo BTL Speaker Amplifier

捷多邦,专业PCB打样工厂,24小时加急出货

- 100mW DirectDrive Headphone Amplifier Eliminates Costly, Bulky DC-Blocking Capacitors
- Excellent RF Immunity
- Integrated 120mA LDO (MAX9789A)
- High +90dB PSRR, Low 0.002% THD+N
- Low-Power Shutdown Mode
- Click-and-Pop Suppression
- Short-Circuit and Thermal-Overload Protection
- ±8kV ESD-Protected Headphone Driver Outputs
- Available in 32-Pin Thin QFN (5mm x 5mm x 0.8mm) Package

#### **\_Ordering Information**


| PART         | PIN-PACKAGE     | INTERNAL<br>LDO | PKG<br>CODE |
|--------------|-----------------|-----------------|-------------|
| MAX9789AETJ+ | 32 Thin QFN-EP* | Yes             | T3255N-1    |
| MAX9790AETJ+ | 32 Thin QFN-EP* | No              | T3255N-1    |

**Note:** All devices are specified over the -40°C to +85°C extended temperature range.

+Denotes lead-free package.

\*EP = Exposed paddle.

#### Simplified Block Diagrams



For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

#### **ABSOLUTE MAXIMUM RATINGS**

|                                                | -                                     |                                  |
|------------------------------------------------|---------------------------------------|----------------------------------|
| Supply Voltage (V <sub>DD</sub> , F            |                                       | $0.21/t_{0.1} \in 0.1/$          |
|                                                |                                       | 0.3V to +6.0V                    |
|                                                |                                       | ±0.3V                            |
| CPV <sub>SS</sub> , C1N, V <sub>SS</sub> to GI | ND                                    | 6.0V to +0.3V                    |
| HPR, HPL to GND                                |                                       | ±3.0V                            |
| Any Other Pin                                  |                                       | 0.3V to (V <sub>DD</sub> + 0.3V) |
| Duration of OUT_+, OL                          |                                       |                                  |
| to GND or PV <sub>DD</sub>                     |                                       | Continuous                       |
| Duration of Short Circu                        | it between OUT_                       | _+, OUT                          |
| and LDO_OUT                                    |                                       | Continuous                       |
| Duration of Short Circu                        | it between HPR,                       | HPL and GND,                     |
| Vss or HPVnn                                   | · · · · · · · · · · · · · · · · · · · | Continuous                       |
|                                                |                                       | JT, PGND)1.7A                    |
|                                                |                                       |                                  |
|                                                |                                       |                                  |

| Continuous Current (CPV <sub>DD</sub> , C1N, C1P, CPV <sub>SS</sub> , PV <sub>SS</sub> , V <sub>DD</sub> , HPV <sub>DD</sub> , LDO_OUT, HPR, HPL) |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Continuous Input Current (all other pins)                                                                                                         | ±20mA    |
| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ )                                                                                             |          |
| 32-Pin Thin QFN Single-Layer Board                                                                                                                |          |
| (derate 18.6mW/°C above +70°C)                                                                                                                    | 1489mW   |
| 32-Pin Thin QFN Multilayer Board                                                                                                                  |          |
| (derate 24.9 mW/°C above +70°C)                                                                                                                   | 1990mW   |
| Operating Temperature Range40°C                                                                                                                   | to +85°C |
| Junction Temperature                                                                                                                              | +150°C   |
| Storage Temperature Range65°C t                                                                                                                   | o +150°C |
| Lead Temperature (soldering, 10s)                                                                                                                 |          |
|                                                                                                                                                   |          |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V, I_{LDO_OUT} (MAX9789A only) = 0, C1 = C2 = C_{BIAS} = 1\mu F. R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A<sub>VSP</sub> = 10dB, A<sub>VHP</sub> = 3.5dB), T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 1)

| PARAMETER                           | SYMBOL                                   | COND                                                                        | TIONS     |                 | MIN   | ТҮР   | MAX  | UNITS |  |  |
|-------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|-----------|-----------------|-------|-------|------|-------|--|--|
| GENERAL                             | •                                        |                                                                             |           |                 |       |       |      | •     |  |  |
| Supply Voltage                      | V <sub>DD</sub> , PV <sub>DD</sub>       | Guaranteed by PSRR<br>Regulation Tests                                      | and LDO I | ₋ine            | 4.5   |       | 5.5  | V     |  |  |
| Headphone Supply Voltage            | CPV <sub>DD</sub> ,<br>HPV <sub>DD</sub> | Guaranteed by PSRR                                                          | Test      |                 | 3.0   |       | 5.5  | V     |  |  |
|                                     |                                          | SPKR_EN                                                                     | H         | P_EN            |       |       |      |       |  |  |
|                                     |                                          | 1 (MAX9789A)                                                                | 0 (MA     | X9789A)         |       | 0.1   | 0.16 | mA    |  |  |
| Quiescent Current                   | IDD                                      | 1 (MAX9790A)                                                                | 0 (MA     | X9790A)         |       | 0.3   | 6    | μA    |  |  |
|                                     | טטי                                      | 1                                                                           |           | 1               |       | 7     | 13   |       |  |  |
|                                     |                                          | 0                                                                           |           | 0               |       | 14    | 29   | mA    |  |  |
|                                     |                                          | 0                                                                           |           | 1               |       | 18    | 40   |       |  |  |
| Shutdown Current                    | ISHDN                                    | $\overline{\text{SPKR}}_{\text{EN}} = V_{\text{DD}}, \text{HP}_{\text{DD}}$ | EN = LDO  | _EN = GND       |       | 0.3   | 6    | μA    |  |  |
| Bias Voltage                        | VBIAS                                    |                                                                             |           |                 | 1.7   | 1.8   | 1.9  | V     |  |  |
| Shutdown to Full Operation          | tson                                     |                                                                             |           |                 |       | 100   |      | ms    |  |  |
| Gain Switching Time                 | tsw                                      |                                                                             |           |                 |       | 10    |      | μs    |  |  |
| Channel-to-Channel Gain<br>Tracking |                                          |                                                                             |           |                 |       | ±0.1  |      | dB    |  |  |
| SPEAKER AMPLIFIER                   |                                          |                                                                             |           |                 |       |       |      |       |  |  |
| Outout Dower                        | Davia                                    | THD+N = 1%, f = 1kH                                                         | Z,        | $R_L = 4\Omega$ |       | 2     |      | W     |  |  |
| Output Power                        | Pout                                     | $T_A = +25^{\circ}C$                                                        |           | $R_L = 8\Omega$ |       | 1     |      | VV    |  |  |
| Total Harmonic Distortion Plus      | THD+N                                    | $R_L = 8\Omega$ , $P_{OUT} = 1W$ ,                                          | f = 1kHz  |                 |       | 0.002 |      | %     |  |  |
| Noise                               | IHD+N                                    | $R_L = 4\Omega, P_{OUT} = 1W, T$                                            | f = 1kHz  |                 | 0.004 |       |      | %     |  |  |
|                                     |                                          | $V_{DD} = 4.5V$ to 5.5V, T <sub>4</sub>                                     | A = +25°C |                 | 72    | 90    |      |       |  |  |
| Power-Supply Rejection Ratio        | PSRR                                     | f = 1kHz, 200mV <sub>P-P</sub> (N                                           | ote 3)    |                 |       | 70    |      | dB    |  |  |
|                                     |                                          | f = 10kHz, 200mV <sub>P-P</sub> (                                           | Note 3)   |                 |       | 50    |      |       |  |  |



#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V, I_{LDO_OUT} (MAX9789A only) = 0, C1 = C2 = C_{BIAS} = 1\mu F. R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A<sub>VSP</sub> = 10dB, A<sub>VHP</sub> = 3.5dB), T\_A = T\_{MIN} to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T\_A = +25°C.) (Note 1)

| PARAMETER                      | SYMBOL          | CONDIT                                                                                                                            | IONS              | MIN | ТҮР  | MAX | UNITS             |
|--------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|------|-----|-------------------|
|                                |                 | GAIN1                                                                                                                             | GAIN2             |     |      |     |                   |
|                                |                 | 0                                                                                                                                 | 0                 |     | 6    |     |                   |
| Voltage Gain                   | Av              | 0                                                                                                                                 | 1                 |     | 10   |     | dB                |
|                                |                 | 1                                                                                                                                 | 0                 |     | 15.6 |     |                   |
|                                |                 | 1                                                                                                                                 | 1                 |     | 21.6 |     |                   |
|                                |                 | Measured at speaker a                                                                                                             | mplifier inputs   |     |      |     |                   |
|                                |                 | GAIN1                                                                                                                             | GAIN2             |     |      |     |                   |
|                                | Dui             | 0                                                                                                                                 | 0                 |     | 80   |     | ko                |
| Input Impedance                | R <sub>IN</sub> | 0                                                                                                                                 | 1                 |     | 65   |     | kΩ                |
|                                |                 | 1                                                                                                                                 | 0                 |     | 45   |     | ]                 |
|                                |                 | 1                                                                                                                                 | 1                 |     | 25   |     |                   |
| Output Offset Voltage          | V <sub>OS</sub> | Measured between OU<br>$T_A = +25^{\circ}C$                                                                                       | T_+ and OUT,      |     | ±1   | ±15 | mV                |
| Click and Dan Laval            | K               | $R_{L} = 8\Omega$ , peak voltage,                                                                                                 | Into shutdown     |     | -50  |     |                   |
| Click-and-Pop Level            | Кср             | A-weighted, 32 samples<br>per second (Notes 2, 3)                                                                                 |                   |     | -50  |     | dBV               |
| Cignal to Naise Datia          |                 | D: 00 Dation 114/                                                                                                                 | A-weighted        |     | 102  |     | alD               |
| Signal-to-Noise Ratio          | SNR             | $R_L = 8\Omega$ , $P_{OUT} = 1W$                                                                                                  | f = 22Hz to 22kHz |     | 99   |     | dB                |
| Noise                          | Vn              | BW = 22Hz to 22kHz                                                                                                                |                   |     | 30   |     | μV <sub>RMS</sub> |
| Capacitive-Load Drive          | CL              | No sustained oscillation                                                                                                          | S                 |     | 200  |     | pF                |
| Crosstalk                      |                 | L to R, R to L, $R_L = 8\Omega$ ,<br>V <sub>OUT</sub> = 70.7nV <sub>RMS</sub> , 20k<br>BW = 20Hz to 20kHz                         |                   |     | -70  |     | dB                |
| Slew Rate                      | SR              |                                                                                                                                   |                   |     | 1.4  |     | V/µs              |
| HEADPHONE AMPLIFIER            | •               |                                                                                                                                   |                   |     |      |     |                   |
|                                |                 | THD+N = 1%, f =                                                                                                                   | $R_L = 16\Omega$  |     | 100  |     |                   |
| Output Power                   | Pout            | · · · · · ·                                                                                                                       | $R_L = 32\Omega$  |     | 55   |     | mW                |
|                                |                 | $R_{L} = 32\Omega$ , FS = 0.300V <sub>I</sub><br>V <sub>OUT</sub> = 210mV <sub>RMS</sub> , 20<br>BW = 20Hz to 20kHz               | RMS,              |     | -77  |     | dB FS             |
| Total Harmonic Distortion Plus |                 | $R_L = 32\Omega$ , $P_{OUT} = 40m^3$                                                                                              | N, f = 1kHz       |     | 0.02 |     | %                 |
| Noise                          | THD+N           | $R_L = 16\Omega$ , $P_{OUT} = 60m^3$                                                                                              |                   |     | 0.03 |     | /0                |
|                                |                 | $ \begin{array}{l} R_L = 10 k \Omega, \ FS = 0.707 \\ V_{OUT} = 500 m V_{RMS}, \ 20 \\ BW = 20 Hz \ to \ 20 k Hz \\ \end{array} $ | /RMS,             |     | -94  |     | dB FS             |

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V, I_{LDO_OUT} (MAX9789A only) = 0, C1 = C2 = C_{BIAS} = 1\mu F. R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A<sub>VSP</sub> = 10dB, A<sub>VHP</sub> = 3.5dB), T\_A = T\_{MIN} to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T\_A = +25°C.) (Note 1)

| PARAMETER                                | SYMBOL          | COND                                                                                                                                                                | ITIONS                                                                                                             | MIN  | TYP  | MAX  | UNITS             |
|------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|------|------|-------------------|
|                                          |                 | $HPV_{DD} = 3V \text{ to } 5.5V,$                                                                                                                                   | T <sub>A</sub> = +25°C                                                                                             | 70   | 95   |      |                   |
| Power-Supply Rejection Ratio<br>(Note 5) | PSRR            | f = 1kHz, VRIPPLE = 2                                                                                                                                               | 00mV <sub>P-P</sub> (Note 3)                                                                                       |      | 84   |      | dB                |
| (1018-3)                                 |                 | f = 10kHz, VRIPPLE =                                                                                                                                                | 200mV <sub>P-P</sub> (Note 3)                                                                                      |      | 63   |      |                   |
| Voltage Gain                             | Av              |                                                                                                                                                                     |                                                                                                                    |      | 3.5  |      | dB                |
| Input Impedance                          | RIN             | Measured at headpho                                                                                                                                                 | one amplifier inputs                                                                                               | 20   | 40   | 80   | kΩ                |
| Output Offset Voltage                    | Vos             | T <sub>A</sub> = +25°C                                                                                                                                              |                                                                                                                    |      | ±2   | ±7   | mV                |
|                                          |                 | $R_L = 32\Omega$ , peak voltage                                                                                                                                     | ge, Into shutdown                                                                                                  |      | -60  |      |                   |
| Click-and-Pop Level                      | K <sub>CP</sub> | A-weighted, 32 samp per second (Notes 2,                                                                                                                            | les                                                                                                                |      | -60  |      | dBV               |
| Dynamic Range                            | DR              | $\begin{aligned} \text{R}_{\text{L}} &= 32\Omega, \text{ f} = 1\text{kHz}, \text{A} \\ \text{FS} &= 0.300\text{V}_{\text{RMS}}, \text{V}_{\text{OL}} \end{aligned}$ | -weighted,                                                                                                         |      | 89   |      | dB FS             |
| Dynamic hange                            | Dh              | $\label{eq:RL} \begin{split} R_{L} &= 10 k \Omega,  f = 1 k Hz, \\ FS &= 0.707 V_{RMS},  V_{OL} \end{split}$                                                        | 0                                                                                                                  |      | 97   |      | UD F3             |
| Signal to Naisa Datia                    | SNR             | $R_L = 32\Omega$ ,                                                                                                                                                  | 22Hz to 22kHz                                                                                                      |      | 100  |      | ٩D                |
| Signal-to-Noise Ratio                    | SINH            | $P_{OUT} = 60 mW$                                                                                                                                                   | A-weighted                                                                                                         |      | 103  |      | dB                |
| Noise                                    | Vn              | BW = 22Hz to $22kHz$                                                                                                                                                |                                                                                                                    |      | 12   |      | μV <sub>RMS</sub> |
| Capacitive-Load Drive                    | CL              | No sustained oscillation                                                                                                                                            | ons                                                                                                                |      | 200  |      | pF                |
| Crosstalk                                |                 | L to R, R to L,<br>20kHz AES17                                                                                                                                      | $\label{eq:RL} \begin{array}{l} R_L = 32\Omega, \\ FS = 0.300 V_{RMS}, \\ V_{OUT} = 30 m V_{RMS} \end{array}$      |      | -74  |      | dB                |
| CIUSSIAIN                                |                 | BW = 20Hz to 20kHz                                                                                                                                                  | $\label{eq:RL} \begin{split} R_L &= 10 k \Omega, \\ FS &= 0.707 V_{RMS}, \\ V_{OUT} &= 70.7 m V_{RMS} \end{split}$ |      | -77  |      | ub                |
| Slew Rate                                | SR              |                                                                                                                                                                     |                                                                                                                    |      | 0.4  |      | V/µs              |
| ESD                                      | ESD             | Human Body Model (                                                                                                                                                  | HPR, HPL)                                                                                                          |      | ±8   |      | kV                |
| Charge-Pump Frequency                    | fosc            |                                                                                                                                                                     |                                                                                                                    | 500  | 550  | 600  | kHz               |
| LOW-DROPOUT LINEAR REGUL                 | ATOR            |                                                                                                                                                                     |                                                                                                                    |      |      |      | •                 |
| Regulator Input Voltage Range            | V <sub>DD</sub> | Inferred from line regu                                                                                                                                             | ulation                                                                                                            | 4.5  |      | 5.5  | V                 |
|                                          |                 | I <sub>OUT</sub> = 0mA                                                                                                                                              |                                                                                                                    |      | 0.1  | 0.16 |                   |
| Ground Current                           | IGND            | I <sub>OUT</sub> = 120mA                                                                                                                                            |                                                                                                                    |      | -40  |      | mA                |
| Output Current                           | Iout            |                                                                                                                                                                     |                                                                                                                    |      |      | 120  | mA                |
| Crosstalk                                |                 | V <sub>OUT</sub> = 4.75V, f = 1k⊢                                                                                                                                   | lz, speaker P <sub>OUT</sub> = 2W                                                                                  |      | -88  |      | dB                |
| Fixed Output Voltage Accuracy            |                 | I <sub>OUT</sub> = 1mA                                                                                                                                              |                                                                                                                    |      |      | ±1.5 | %                 |
| Adjustable Output Voltage Range          |                 |                                                                                                                                                                     |                                                                                                                    | 1.21 |      | 4.75 | V                 |
| LDO_SET Reference Voltage                | VSET            |                                                                                                                                                                     |                                                                                                                    | 1.19 | 1.21 | 1.23 | V                 |
| LDO_SET Dual-Mode Threshold              |                 |                                                                                                                                                                     |                                                                                                                    |      | 200  |      | mV                |
| LDO_SET Input Bias Current<br>(Note 4)   | ISET            |                                                                                                                                                                     |                                                                                                                    |      | ±20  | ±500 | nA                |
| Dropout Voltage (Note 5)                 | V <sub>DO</sub> | $V_{OUT} = 4.75V$ (fixed output operation),                                                                                                                         | I <sub>OUT</sub> = 50mA                                                                                            |      | 25   | 50   | mV                |
| ,                                        |                 | $T_A = +25^{\circ}C$                                                                                                                                                | $I_{OUT} = 120 \text{mA}$                                                                                          |      | 75   | 150  |                   |



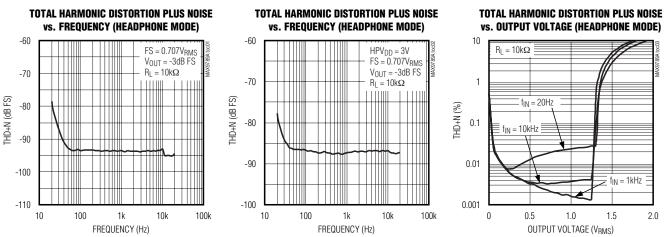
#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V, I_{LDO_OUT} (MAX9789A only) = 0, C1 = C2 = C_{BIAS} = 1\mu F. R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A<sub>VSP</sub> = 10dB, A<sub>VHP</sub> = 3.5dB), T\_A = T\_{MIN} to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T\_A = +25°C.) (Note 1)

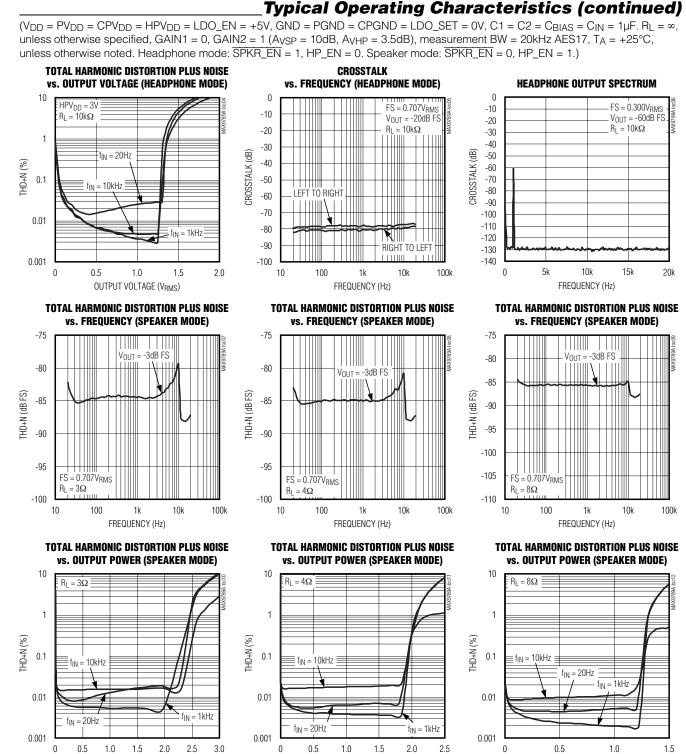
| PARAMETER                   | SYMBOL     | CONDITIC                                                             | NS               | MIN  | TYP  | MAX  | UNITS             |
|-----------------------------|------------|----------------------------------------------------------------------|------------------|------|------|------|-------------------|
| Current Limit               | ILIM       |                                                                      |                  |      | 300  |      | mA                |
| Startup Time                |            |                                                                      |                  |      | 20   |      | μs                |
| Line Regulation             |            | $V_{IN} = 4.5V$ to 5.5V, LDO_0<br>I <sub>LDO_OUT</sub> = 1mA         | OUT = 2.5V,      | -4.8 | +0.8 | +4.8 | mV/V              |
| Load Regulation             |            | $V_{LDO_OUT} = 4.75V,$<br>1mA < I <sub>LDO_OUT</sub> < 120m/         | 4                |      | 0.2  |      | mV/mA             |
| Ripple Rejection            |            | $V_{RIPPLE} = 200 m V_{P-P}$                                         | f = 1kHz         |      | 59   |      | dB                |
|                             |            | ILDO_OUT = 10mA                                                      | f = 10kHz        |      | 42   |      | uВ                |
| Output Voltage Noise        |            | 20Hz to 22kHz, C <sub>LDO_OU</sub> -<br>I <sub>LDO_OUT</sub> = 120mA | τ = 2 x 1μF,     |      | 125  |      | μV <sub>RMS</sub> |
| DIGITAL INPUTS (SPKR_EN, HP | _EN, MUTE, | GAIN1, GAIN2, LDO_EN (M                                              | /IAX9789A Only)) |      |      |      |                   |
| Input-Voltage High          | VINH       |                                                                      |                  | 2    |      |      | V                 |
| Input-Voltage Low           | VINL       |                                                                      |                  |      |      | 0.8  | V                 |
| Input Bias Current          |            |                                                                      |                  |      |      | ±1   | μA                |

Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.

**Note 2:** Specified at room temperature with an 8Ω resistive load connected across BTL output for speaker amplifier. Specified at room temperature with a 32Ω resistive load connected between HPR, HPL, and GND for headphone amplifier. Speaker and headphone mode transitions are controlled by SPKR\_EN and HP\_EN control pins, respectively.


Note 3: Amplifier inputs AC-coupled to GND.

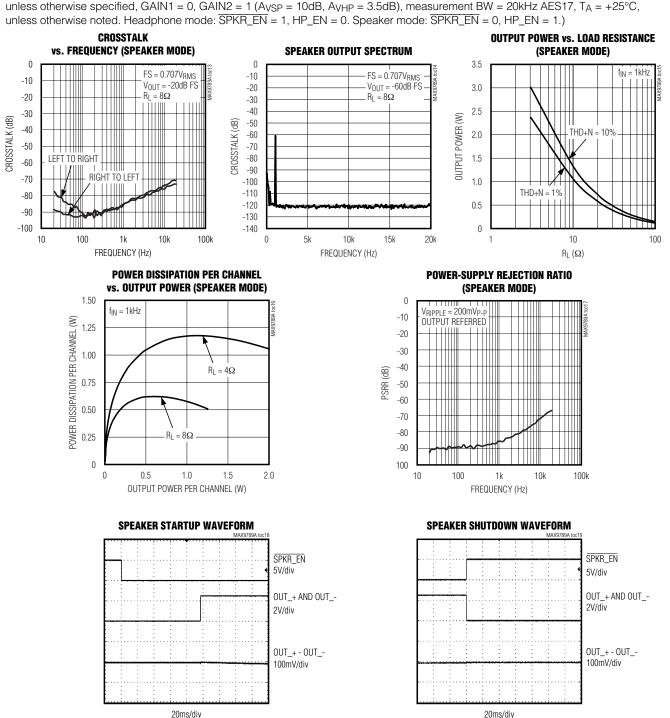
Note 4: Maximum value is due to test limitations.


Note 5: VLDO\_OUT = VLDO\_OUTNOMINAL - 2%.

#### **Typical Operating Characteristics**

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN = +5V, \\ GND = PGND = CPGND = LDO_SET = 0V, \\ C1 = C2 = C_{BIAS} = C_{IN} = 1\mu F. \\ R_L = \infty, \\ unless otherwise specified, \\ GAIN1 = 0, \\ GAIN2 = 1 \\ (A_{VSP} = 10dB, \\ A_{VHP} = 3.5dB), \\ measurement \\ BW = 20kHz \\ AES17, \\ T_A = +25^{\circ}C, \\ unless otherwise noted. \\ Headphone mode: \\ \overline{SPKR_EN} = 1, \\ HP_EN = 0. \\ Speaker mode: \\ \overline{SPKR_EN} = 0, \\ HP_EN = 1.)$ 

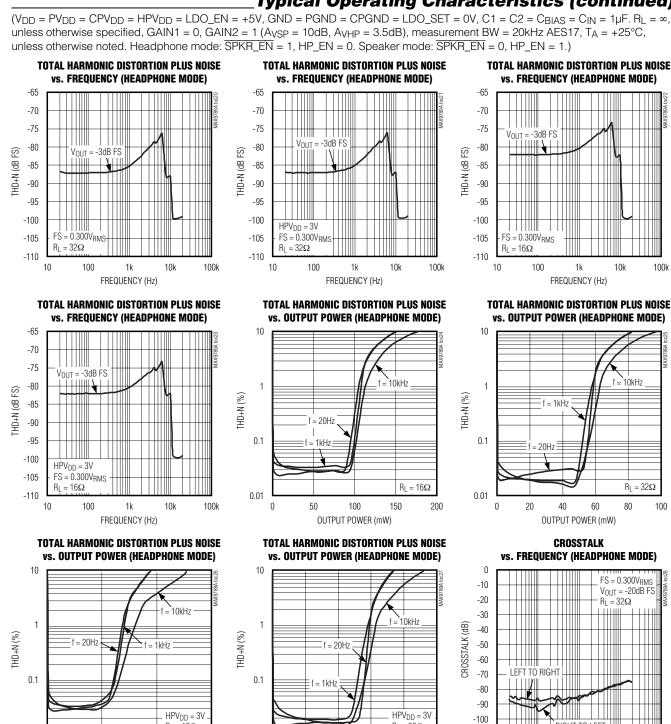







OUTPUT POWER (W)

OUTPUT POWER (W)


OUTPUT POWER (W)



# Typical Operating Characteristics (continued)

(VDD = PVDD = CPVDD = HPVDD = LDO\_EN = +5V, GND = PGND = CPGND = LDO\_SET = 0V, C1 = C2 = CBIAS = CIN = 1µF. RL = ∞, unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (Avsp = 10dB, AvHp = 3.5dB), measurement BW = 20kHz AES17, TA = +25°C,

MAX9789A/MAX9790A



 $R_L = 32\Omega$ 

80

100

-110

10

100

**Typical Operating Characteristics (continued)** 

MAX9789A/MAX9790A

10k

100k

**RIGHT TO LEFT** 

1k

FREQUENCY (Hz)

0.01

0

50

 $R_1 = 16\Omega$ 

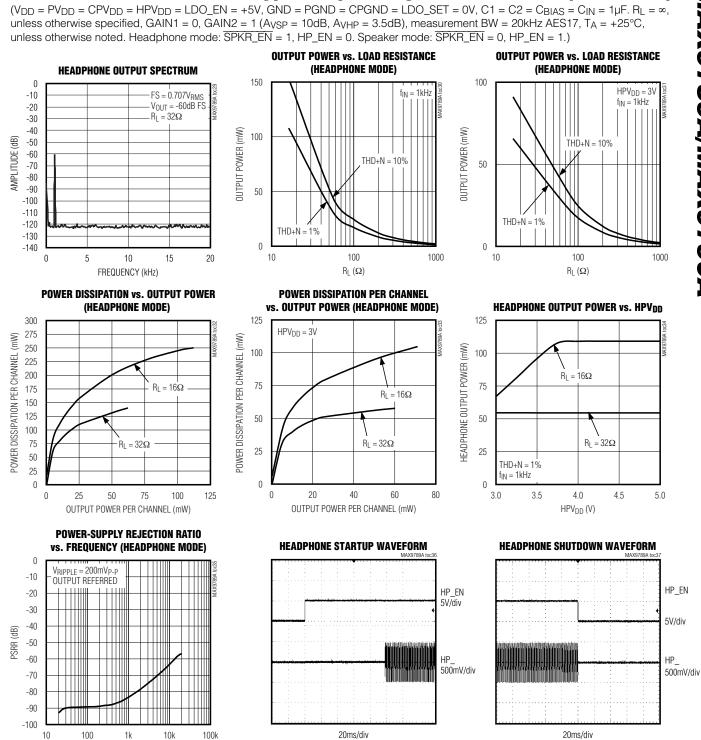
100

OUTPUT POWER (mW)

150

0.01

0

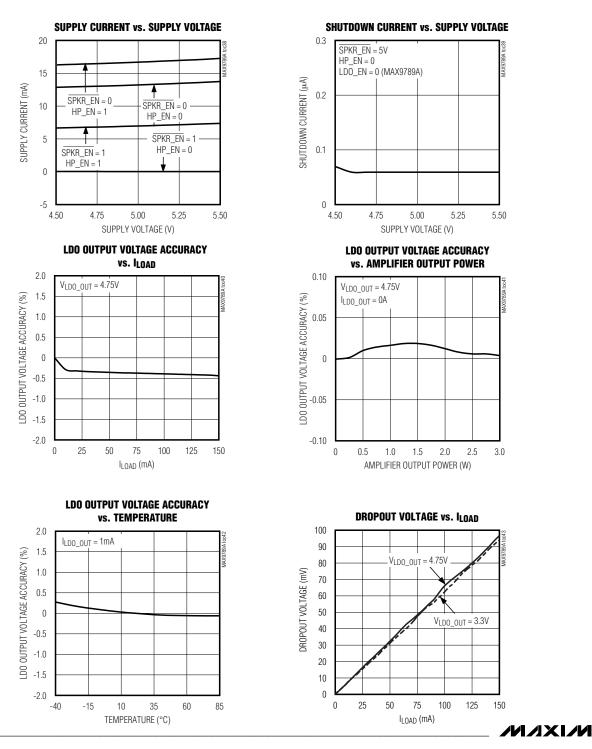

20

40

60

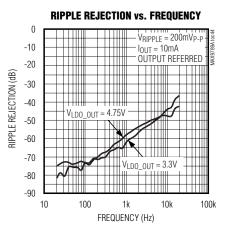
OUTPUT POWER (mW)

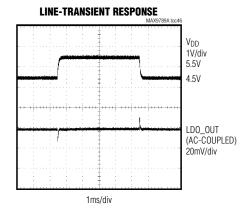
Typical Operating Characteristics (continued)

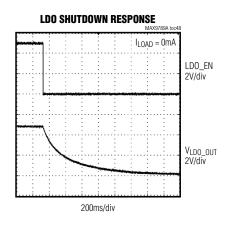



# MAX9789A/MAX9790A

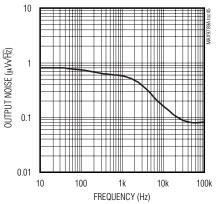
FREQUENCY (Hz)

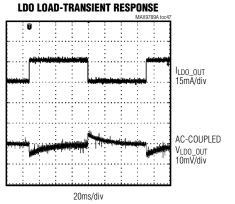

#### **Typical Operating Characteristics (continued)**

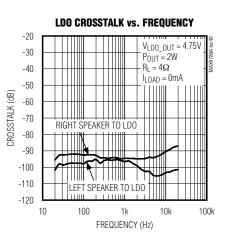

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN = +5V$ ,  $GND = PGND = CPGND = LDO_SET = 0V$ ,  $C1 = C2 = C_{BIAS} = C_{IN} = 1\mu$ F.  $R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 1 ( $A_{VSP} = 10$ dB,  $A_{VHP} = 3.5$ dB), measurement BW = 20kHz AES17,  $T_A = +25^{\circ}$ C, unless otherwise noted. Headphone mode:  $\overline{SPKR}_{EN} = 1$ ,  $HP_{EN} = 0$ . Speaker mode:  $\overline{SPKR}_{EN} = 0$ ,  $HP_{EN} = 1$ .)




#### **Typical Operating Characteristics (continued)**


 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = LDO_EN = +5V$ ,  $GND = PGND = CPGND = LDO_SET = 0V$ ,  $C1 = C2 = C_{BIAS} = C_{IN} = 1\mu$ F.  $R_L = \infty$ , unless otherwise specified, GAIN1 = 0, GAIN2 = 1 ( $A_{VSP} = 10$ dB,  $A_{VHP} = 3.5$ dB), measurement BW = 20kHz AES17,  $T_A = +25^{\circ}$ C, unless otherwise noted. Headphone mode:  $\overline{SPKR}_{EN} = 1$ ,  $HP_{EN} = 0$ . Speaker mode:  $\overline{SPKR}_{EN} = 0$ ,  $HP_{EN} = 1$ .)






#### OUTPUT NOISE vs. FREQUENCY







#### Pin Description

| Р        | IN       |                 |                                                                                                                                                                                                                        |
|----------|----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX9789A | MAX9790A | NAME            | FUNCTION                                                                                                                                                                                                               |
| 1        |          | LDO_SET         | Regulator Feedback Input. Connect to GND for 4.75V fixed output. Connect to a resistor-<br>divider for adjustable output. See Figure 1.                                                                                |
| 2        | 2        | SPKR_INR        | Right-Channel Speaker Amplifier Input                                                                                                                                                                                  |
| 3        | 3        | SPKR_INL        | Left-Channel Speaker Amplifier Input                                                                                                                                                                                   |
| 4        | _        | LDO_EN          | LDO Enable. Connect LDO_EN to VDD to enable the LDO.                                                                                                                                                                   |
| 5, 21    | 5, 21    | PGND            | Power Ground. Star-connect to GND.                                                                                                                                                                                     |
| 6        | 6        | OUTL+           | Left-Channel Speaker Amplifier Output, Positive Phase                                                                                                                                                                  |
| 7        | 7        | OUTL-           | Left-Channel Speaker Amplifier Output, Negative Phase                                                                                                                                                                  |
| 8, 18    | 8, 18    | PVDD            | Speaker Amplifier Power-Supply Input. Bypass with a 0.1µF capacitor to PGND.                                                                                                                                           |
| 9        | 9        | CPVDD           | Charge-Pump Power Supply. Connect a 1µF capacitor between CPV <sub>DD</sub> and PGND.                                                                                                                                  |
| 10       | 10       | C1P             | Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF capacitor between C1P to C1N.                                                                                                                            |
| 11       | 11       | CPGND           | Charge-Pump Ground. Connect directly to PGND plane.                                                                                                                                                                    |
| 12       | 12       | C1N             | Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF capacitor between C1P to C1N.                                                                                                                            |
| 13       | 13       | CPVSS           | Charge-Pump Output. Connect to PV <sub>SS</sub> .                                                                                                                                                                      |
| 14       | 14       | PVSS            | Headphone Amplifier Negative Power Supply. Connect a $1\mu\text{F}$ capacitor between $\text{PV}_{\text{SS}}$ and PGND.                                                                                                |
| 15       | 15       | HPR             | Right-Channel Headphone Amplifier Output                                                                                                                                                                               |
| 16       | 16       | HPL             | Left-Channel Headphone Amplifier Output                                                                                                                                                                                |
| 17       | 17       | HPVDD           | Headphone Amplifier Positive Power Supply. Connect a $10\mu\text{F}$ capacitor between $\text{HPV}_{\text{DD}}$ and PGND.                                                                                              |
| 19       | 19       | OUTR-           | Right-Channel Speaker Amplifier Output, Negative Phase                                                                                                                                                                 |
| 20       | 20       | OUTR+           | Right-Channel Speaker Amplifier Output, Positive Phase                                                                                                                                                                 |
| 22       | 22       | HP_EN           | Active-High Headphone Amplifier Enable                                                                                                                                                                                 |
| 23       | 23       | SPKR_EN         | Active-Low Speaker Amplifier Enable                                                                                                                                                                                    |
| 24       | 24       | BIAS            | Common-Mode Bias Voltage. Bypass with a 1µF capacitor to GND.                                                                                                                                                          |
| 25       | 25       | MUTE            | Active-Low Mute Enable. Mutes speaker and headphone amplifiers.                                                                                                                                                        |
| 26       | 26       | HP_INR          | Right-Channel Headphone Amplifier Input                                                                                                                                                                                |
| 27       | 27       | HP_INL          | Left-Channel Headphone Amplifier Input                                                                                                                                                                                 |
| 28       | 4, 28    | GND             | Signal Ground. Star-connect to PGND.                                                                                                                                                                                   |
| 29       | _        | LDO_OUT         | LDO Output. Bypass with two 1µF capacitors to GND.                                                                                                                                                                     |
| 30       | 30       | V <sub>DD</sub> | Positive Power Supply and LDO Input (MAX9789A). Bypass with one $0.1\mu$ F capacitor and two $1\mu$ F capacitors to GND (MAX9789A). Bypass with one $0.1\mu$ F capacitor and one $1\mu$ F capacitor to GND (MAX9790A). |
| 31       | 31       | GAIN1           | Speaker Amplifier Gain Select 1                                                                                                                                                                                        |
| 32       | 32       | GAIN2           | Speaker Amplifier Gain Select 2                                                                                                                                                                                        |
| —        | 1, 29    | N.C.            | No Connection. Not internally connected.                                                                                                                                                                               |
| EP       | EP       | EP              | Exposed Paddle. Connect to GND.                                                                                                                                                                                        |



#### **Detailed Description**

The MAX9789A/MAX9790A combine a 2W BTL speaker amplifier with an 100mW DirectDrive headphone amplifier. These devices feature comprehensive click-and-pop suppression and programmable four-level speaker amplifier gain control. The MAX9789A/MAX9790A feature high +90dB PSRR, low 0.002% THD+N, industry-leading clickand-pop performance, low-power shutdown mode, and excellent RF immunity. The MAX9789A incorporates an integrated LDO that serves as a clean power supply for a CODEC or other circuits.

The MAX9789A/MAX9790A is Microsoft Windows Vista compliant. See Table 1 for a comparison of the Microsoft Windows Vista premium mobile specifications and MAX9789A/MAX9790A specifications.

The speaker amplifiers use BTL architecture, doubling the voltage drive to the speakers and eliminating the need for DC-blocking capacitors. The output consists of two signals, identical in magnitude, but 180° out of phase.

The headphone amplifiers use Maxim's patented DirectDrive architecture to eliminate the bulky output DC-blocking capacitors required by traditional headphone amplifiers. A charge pump inverts a positive supply (CPV<sub>DD</sub>) to create a negative supply (CPV<sub>SS</sub>). The headphone amplifiers operate from these bipolar supplies with their outputs biased about GND. The benefit of the GND bias is that the amplifier outputs no longer have a DC component (typically V<sub>DD</sub> / 2). This feature eliminates the large DC-blocking capacitors required with conventional headphone amplifiers to

conserve board space and system cost, as well as improve low-frequency response.

The MAX9789A/MAX9790A feature programmable speaker amplifier gain, allowing the speaker gain to be set by the logic voltages applied to GAIN1 and GAIN2, while the headphone amplifiers feature a fixed 3.5dB gain. Both amplifiers feature an undervoltage lockout that prevents operation from an insufficient power supply and click-and-pop suppression that eliminates audible transients on startup and shutdown. The amplifiers include thermal overload and short-circuit protection, while the headphone amplifier outputs (IEC Air Discharge) can withstand ±8kV ESD strikes. An additional feature of the speaker amplifiers is that there is no phase inversion from input to output.

#### Low-Dropout Linear Regulator (MAX9789A Only)

The MAX9789A's low-dropout (LDO) linear regulator can be used to provide a clean power supply to a CODEC or other circuitry. The LDO can be enabled independently of the audio amplifiers. Set LDO\_EN = V<sub>DD</sub> to enable the LDO or set LDO\_EN = GND to disable the LDO. The LDO is capable of providing up to 120mA continuous current and features Maxim's Dual Mode<sup>™</sup> feedback, easily enabling a fixed 4.75V output or a user-adjustable output. When LDO\_SET is connected to GND, the output is internally set to 4.75V. The output voltage can be adjusted from 1.21V to 4.75V by connecting two external resistors as a voltage divider, at LDO\_SET (Figure 1).

| DEVICE TYPE                                                                       | REQUIREMENT                       | WINDOWS PREMIUM MOBILE Vista<br>SPECIFICATIONS | MAX9789A/MAX9790A<br>TYPICAL PERFORMANCE |
|-----------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|------------------------------------------|
|                                                                                   | THD+N                             | ≤ -65dB FS<br>[20Hz, 20kHz]                    | -94dB FS<br>[20Hz, 20kHz]                |
| Analog Line Output<br>Jack ( $R_L = 10k\Omega$ ,<br>FS = 0.707V <sub>RMS</sub> )  | Dynamic range with signal present | ≤ -80dB FS,<br>A-weighted                      | -97dB FS,<br>A-weighted                  |
| 1 3 - 0.707 VRMS)                                                                 | Line output crosstalk             | ≤ -50dB<br>[20Hz, 20kHz]                       | -77dB<br>[20Hz, 20kHz]                   |
|                                                                                   | THD+N                             | ≤ -45dB FS<br>[20Hz, 20kHz]                    | -77dB FS<br>[20Hz, 20kHz]                |
| Analog Headphone<br>Out Jack ( $R_L = 32\Omega$ ,<br>FS = 0.300V <sub>RMS</sub> ) | Dynamic range with signal present | ≤ -60dB FS,<br>A-weighted                      | -89dB FS,<br>A-weighted                  |
| 1 3 – 0.000 (RMS)                                                                 | Headphone output<br>crosstalk     | ≤ -50dB<br>[20Hz, 20kHz]                       | -74dB<br>[20Hz, 20kHz]                   |

# Table 1. Windows Premium Mobile Vista Specifications vs. MAX9789A/MAX9790ASpecifications

*Note:* THD+N, DR, FREQUENCY ACCURACY, and CROSSTALK should be measured in accordance with AES-17 audio measurements standards.

Dual Mode is a trademark of Maxim Integrated Products, Inc.



The output voltage is set by the following equation:

$$V_{LDO_OUT} = V_{LDO_SET} \left(1 + \frac{R1}{R2}\right)$$

where  $V_{LDO}$  SET = 1.21V. To simplify resistor selection:

$$R1 = R2\left(\frac{V_{LDO}OUT}{1.21} - 1\right)$$

Since the input bias current at LDO\_SET is typically less than 500nA (max), large resistance values can be used for R1 and R2 to minimize power consumption without compromising accuracy. The parallel combination of R1 and R2 should be less than  $1M\Omega$ .

**DirectDrive** Conventional single-supply headphone amplifiers have their outputs biased about a nominal DC voltage (V<sub>DD</sub> / 2) for maximum dynamic range. Large coupling capacitors are needed to block this DC bias from the headphones. Without these capacitors, a significant amount of DC current flows to the headphone, resulting in unnecessary power dissipation and possible damage to both headphone and headphone amplifier.

Maxim's patented DirectDrive architecture uses a charge pump to create an internal negative supply voltage. It allows the MAX9789A/MAX9790A headphone amplifier output to be biased about GND. With no DC component, there is no need for the large DC-blocking

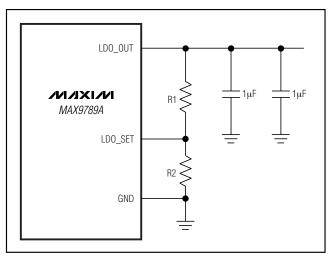



Figure 1. Adjustable Output Using External Feedback Resistors.

capacitors. Instead of two large capacitors (330µF typically required to meet Vista magnitude response specifications), the MAX9789A/MAX9790A charge pump requires only two small 1µF ceramic capacitors, conserving board space, reducing cost, and improving the low-frequency response of the headphone amplifier.

Previous attempts to eliminate the output coupling capacitors involved biasing the headphone return (sleeve) to the DC bias voltage of the headphone amplifiers. This method raised some issues:

- The sleeve is typically grounded to the chassis. Using this biasing approach, the sleeve must be isolated from system ground, complicating product design.
- During an ESD strike, the amplifier's ESD structures are the only path to system ground. The amplifier must be able to withstand the full ESD strike.
- When using the headphone jack as a line out to other equipment, the bias voltage on the sleeve may conflict with the ground potential from other equipment, resulting in large ground loop current and possible damage to the amplifiers.

#### Low-Frequency Response

In addition to the cost and size disadvantages, the DCblocking capacitors limit the low-frequency response of the amplifier and distort the audio signal:

• The impedance of the headphone load and the DCblocking capacitor form a highpass filter with the -3dB point determined by:

$$f_{-3dB} = \frac{1}{2\pi R_L C_{OUT}}$$

where RL is the impedance of the headphone and COUT is the value of the DC-blocking capacitor.

The highpass filter is required by conventional singleended, single-supply headphone amplifier to block the midrail DC component of the audio signal from the headphones. Depending on the -3dB point, the filter can attenuate low-frequency signals within the audio band. Larger values of COUT reduce the attenuation, but are physically larger, more expensive capacitors. Figure 2 shows the relationship between the size of COUT and the resulting low-frequency attenuation. Note the Vista's magnitude response specification calls for a -3dB point at 20Hz at the headphone jack. The -3dB point at 20Hz for a  $32\Omega$  headphone requires a 330µF blocking capacitor (Table 2).

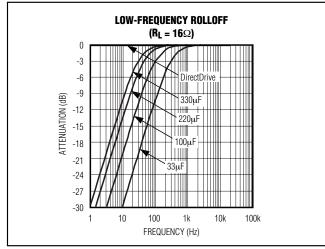



Figure 2. Low-Frequency Attenuation of Common DC-Blocking Capacitor Values

- The voltage coefficient of the capacitor, the change in capacitance due to a change in the voltage across the capacitor, distorts the audio signal. At frequencies around the -3dB point, this effect is maximized and the voltage coefficient appears as frequency-dependent distortion. Figure 3 shows the THD+N introduced by two different capacitor dielectrics. Note that around the -3dB point, THD+N increases dramatically.
- The combination of low-frequency attenuation and frequency-dependent distortion compromises audio reproduction. DirectDrive improves low-frequency reproduction in portable audio equipment that emphasizes low-frequency effects, such as multimedia laptops, MP3, CD, and DVD players (See Table 2).

| С <sub>ОUT</sub> (µF) | f-3dB            | (Hz)             |
|-----------------------|------------------|------------------|
| ουτ (μι )             | $R_L = 16\Omega$ | $R_L = 32\Omega$ |
| 22                    | 452              | 226              |
| 33                    | 301              | 151              |
| 100                   | 99               | 50               |
| 220                   | 45               | 23               |
| 330*                  | 30               | 15               |
| 470                   | 21               | 11               |

Table 2. Low-Frequency Rolloff

\*Vista requirement for 32 $\Omega$  load.

#### **Charge Pump** The MAX9789A/MAX9790A feature a low-noise charge pump. The 550kHz switching frequency is well beyond the audio range, and does not interfere with the audio signals. The switch drivers feature a controlled switching

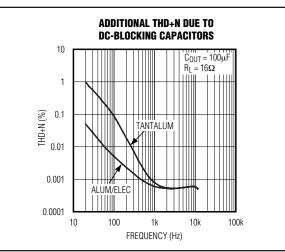



Figure 3. Distortion Contributed by DC-Blocking Capacitors

speed that minimizes noise generated by switching transients. Limiting the switching speed of the charge pump minimizes the di/dt noise caused by the parasitic bond wire and trace inductance.

#### BIAS

The MAX9789A/MAX9790A feature an internally generated, power-supply independent, common-mode bias voltage of 1.8V referenced to GND. BIAS provides both click-and-pop suppression and sets the DC bias level for the amplifiers. The BIAS pin should be bypassed to GND with a 1 $\mu$ F capacitor. No external load should be applied to BIAS. Any load lowers the BIAS voltage, affecting the overall performance of the device.

**Headphone and Speaker Amplifier Gain** The MAX9789A/MAX9790A feature programmable speaker amplifier gain, set by the logic voltages

applied to pins GAIN1 and GAIN2. Table 3 shows the logic combinations that can be applied to pins GAIN1 and GAIN2 and their affects on the speaker amplifier gain. The headphone amplifier gain is fixed at 3.5dB.

# Table 3. MAX9789A/MAX9790AProgrammable Gain Settings

|       | N     | IAX9789A/MAX9790          | Α                           |
|-------|-------|---------------------------|-----------------------------|
| GAIN1 | GAIN2 | SPEAKER MODE<br>GAIN (dB) | HEADPHONE<br>MODE GAIN (dB) |
| 0     | 0     | 6                         | 3.5                         |
| 0     | 1     | 10                        | 3.5                         |
| 1     | 0     | 15.6                      | 3.5                         |
| 1     | 1     | 21.6                      | 3.5                         |



#### Speaker and Headphone Amplifier Enable

The MAX9789A/MAX9790A feature control inputs for the independent enabling of the speaker and headphone amplifiers, allowing both to be active simultaneously if required. Driving SPKR\_EN high disables the speaker amplifiers. Driving HP\_EN low independently disables the headphone amplifiers. For applications that require only one of the amplifiers to be on at a given time, SPKR\_EN and HP\_EN can be tied together allowing a single logic voltage to enable either the speaker or the headphone amplifier as shown in Figure 4.

**MUTE** The MAX9789A/MAX9790A allow for the speaker and headphone amplifiers to be muted. By driving MUTE low, both the speaker and headphone amplifiers are muted. When muted, the speaker outputs remain biased at V<sub>DD</sub> / 2.

**Shutdown** The MAX9789A/MAX9790A feature a low-power shutdown mode, drawing 0.3µA of supply current. By disabling the speaker, headphone amplifiers and the LDO (for MAX9789A), the MAX9789A/MAX9790A enter lowpower shutdown mode. Set SPKR\_EN to V<sub>DD</sub> and HP\_EN and LDO\_EN to GND to disable the speaker amplifiers, headphone amplifiers, and LDO, respectively.

#### **Click-and-Pop Suppression**

#### Speaker Amplifier

The MAX9789A/MAX9790A speaker amplifiers feature Maxim's comprehensive, industry-leading click-andpop suppression. During startup, the click-and-pop suppression circuitry eliminates any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp to GND quickly and simultaneously.

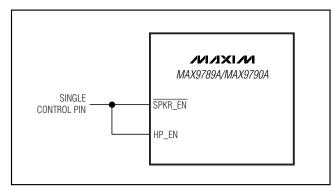



Figure 4. Enabling Either the Speaker or Headphone Amplifier with a Single Control Pin

#### Headphone Amplifier

In conventional single-supply headphone amplifiers, the output-coupling capacitor is a major contributor of audible clicks and pops. Upon startup, the amplifier charges the coupling capacitor to its bias voltage, typically V<sub>DD</sub> / 2. Likewise, during shutdown, the capacitor is discharged to GND. A DC shift across the capacitor results, which in turn, appears as an audible transient at the headphone. Since the MAX9789A/MAX9790A do not require output-coupling capacitors, no audible transient occurs.

Additionally, the MAX9789A/MAX9790A features extensive click-and-pop suppression that eliminates any audible transient sources internal to the device. The startup/shutdown waveform in the *Typical Operating Characteristics* shows that there are minimal spectral components in the audible range at the output.

#### **Applications Information**

#### **BTL Speaker Amplifiers**

The MAX9789A/MAX9790A feature speaker amplifiers designed to drive a load differentially, a configuration referred to as bridge-tied load (BTL). The BTL configuration (Figure 5) offers advantages over the singleended configuration, where one side of the load is connected to ground. Driving the load differentially doubles the output voltage compared to a singleended amplifier operating under similar conditions. The doubling of the output voltage yields four times the output power at the load.

Since the differential outputs are biased at mid-supply, there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for single-ended amplifiers. These capacitors can be large, expensive, consume board space, and degrade low-frequency performance.

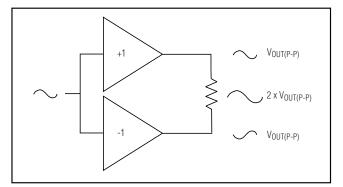



Figure 5. Bridge-Tied Load Configuration

#### **Mono Speaker Configuration**

The MAX9789A stereo BTL Class AB speaker amplifier can be configured to drive a mono speaker. Rather than combining the CODEC's left- and right-input signals in a resistive network prior to one channel of the speaker amplifier input, the transducer itself can be connected to the BTL speaker amplifier output as shown in Figure 6. When compared to the resistive network implementation, the configuration in Figure 6 will:

- 1) Eliminate noise pickup by eliminating the highimpedance node at the CODEC's left- and rightsignal mixing point. SNR performance will be improved as a result.
- 2) Eliminate gain error by eliminating any resistive mismatch between the external resistance used to sum the left and right signals and the MAX9789A internal resistance.

#### **Power Dissipation and Heat Sinking**

Under normal operating conditions, the MAX9789A/ MAX9790A can dissipate a significant amount of power. The maximum power dissipation for each package is given in the *Absolute Maximum Ratings* section under Continuous Power Dissipation, or can be calculated by the following equation:

$$P_{DISSPKG(MAX)} = \frac{T_{J}(MAX) - T_{A}}{\theta_{JA}}$$

where  $T_{J(MAX)}$  is +150°C,  $T_A$  is the ambient temperature, and  $\theta_{JA}$  is the reciprocal of the derating factor in °C/W as specified in the *Absolute Maximum Ratings* section. For example,  $\theta_{JA}$  for the 32-pin TQFN-EP package is +40.2°C/W for a multilayer PC board.

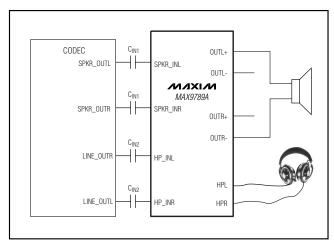
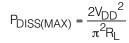




Figure 6. Mono Signal Output Configuration for MAX9789A

#### **Output Power (Speaker Amplifier)**

The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The maximum power dissipation for a given  $V_{DD}$  and load is given by the following equation:



If the power dissipation for a given application exceeds the maximum allowed for a given package, either reduce V<sub>DD</sub>, increase load impedance, decrease the ambient temperature, or add heat sinking to the device. Large output, supply, and ground PC board traces improve the maximum power dissipation in the package.

Thermal-overload protection limits total power dissipation in these devices. When the junction temperature exceeds +150°C, the thermal-protection circuitry disables the amplifier output stage. The amplifiers are enabled once the junction temperature cools by +15°C. This results in a pulsing output under continuous thermal-overload conditions as the device heats and cools.

#### **Power Supplies**

The MAX9789A/MAX9790A have separate supply pins for each portion of the device, allowing for the optimum combination of headroom and power dissipation and noise immunity. The speaker amplifiers are powered from PV<sub>DD</sub>. PV<sub>DD</sub> ranges from 4.5V to 5.5V. The headphone amplifiers are powered from HPV<sub>DD</sub> and PV<sub>SS</sub>. HPV<sub>DD</sub> is the positive supply of the headphone amplifiers and ranges from 3V to 5.5V. PV<sub>SS</sub> is the negative supply of the headphone amplifiers. Connect PV<sub>SS</sub> to CPV<sub>SS</sub>. The charge pump is powered by CPV<sub>DD</sub>. CPV<sub>DD</sub> ranges from 3V to 5.5V and should be the same potential as HPV<sub>DD</sub>. The charge pump inverts the voltage at CPV<sub>DD</sub>, and the resulting voltage appears at CPV<sub>SS</sub>. The internal LDO and the remainder of the device is powered by V<sub>DD</sub>.

#### **Component Selection**

#### Supply Bypassing

The MAX9789A/MAX9790A have separate supply pins for each portion of the device, allowing for the optimum combination of headroom and power dissipation and noise immunity.

#### Speaker Amplifier Power-Supply Input (PVDD)

The speaker amplifiers are powered from  $PV_{DD}$ .  $PV_{DD}$  ranges from 4.5V to 5.5V. Bypass  $PV_{DD}$  with a 0.1µF capacitor to PGND. Note additional bulk capacitance is required at the device if long input traces between  $PV_{DD}$  and the power source are used.

#### Headphone Amplifier Power-Supply Input (HPV<sub>DD</sub> and PV<sub>SS</sub>)

The headphone amplifiers are powered from HPV<sub>DD</sub> and PV<sub>SS</sub>. HPV<sub>DD</sub> is the positive supply of the headphone amplifiers and ranges from 3.0V to 5.5V. Bypass HPV<sub>DD</sub> with a 10µF capacitor to PGND. PV<sub>SS</sub> is the negative supply of the headphone amplifiers. Bypass PV<sub>SS</sub> with a 1µF capacitor to PGND. Connect PV<sub>SS</sub> to CPV<sub>SS</sub>. The charge pump is powered by CPV<sub>DD</sub>. CPV<sub>DD</sub> ranges from 3.0V to 5.5V and should be the same potential as HPV<sub>DD</sub>. Bypass CPV<sub>DD</sub> with a 1µF capacitor to PGND. The charge pump inverts the voltage at CPV<sub>DD</sub>, and the resulting voltage appears at CPV<sub>SS</sub>. A 1µF capacitor must be connected between C1N and C1P.

#### Power Supply and LDO Input (VDD)

The internal LDO and the remainder of the device is powered by V<sub>DD</sub>. V<sub>DD</sub> ranges from 4.5V to 5.5V. Bypass V<sub>DD</sub> with a 0.1 $\mu$ F capacitor to GND and two 1 $\mu$ F capacitors in parallel to GND. Note additional bulk capacitance is required at the device if long input traces between V<sub>DD</sub> and the power source are used.

#### Input Filtering

The input capacitor ( $C_{IN}$ ), in conjunction with the amplifier input resistance ( $R_{IN}$ ), forms a highpass filter that removes the DC bias from the incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$

R<sub>IN</sub> is the amplifier's internal input resistance value given in the *Electrical Characteristics*. Choose C<sub>IN</sub> such that  $f_{-3dB}$  is well below the lowest frequency of interest. Setting  $f_{-3dB}$  too high affects the amplifier's low frequency response. Use capacitors with adequately low voltage coefficient dielectrics, such as 1206-sized X7R ceramic capacitors. Capacitors with higher voltage coefficients result in increased distortion at low frequencies (see Figure 8).

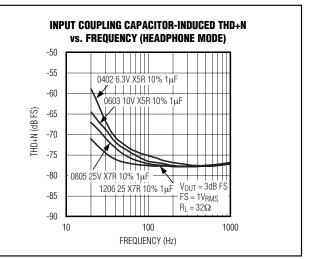



Figure 8. Input Coupling Capacitor-Induced THD vs. Frequency (Headphone Mode)

#### **BIAS Capacitor**

BIAS is the output of the internally generated DC bias voltage. The BIAS bypass capacitor, C<sub>BIAS</sub> improves PSRR and THD+N by reducing power supply and other noise sources at the common-mode bias node, and also generates the clickless/popless, startup/shutdown DC bias waveforms for the speaker and headphone amplifiers. Bypass BIAS with a 1µF capacitor to GND.

#### Charge-Pump Capacitor Selection

Use capacitors with an ESR less than  $100m\Omega$  for optimum performance. Low ESR ceramic capacitors minimize the output resistance of the charge pump. For best performance over the extended temperature range, select capacitors with an X7R dielectric.

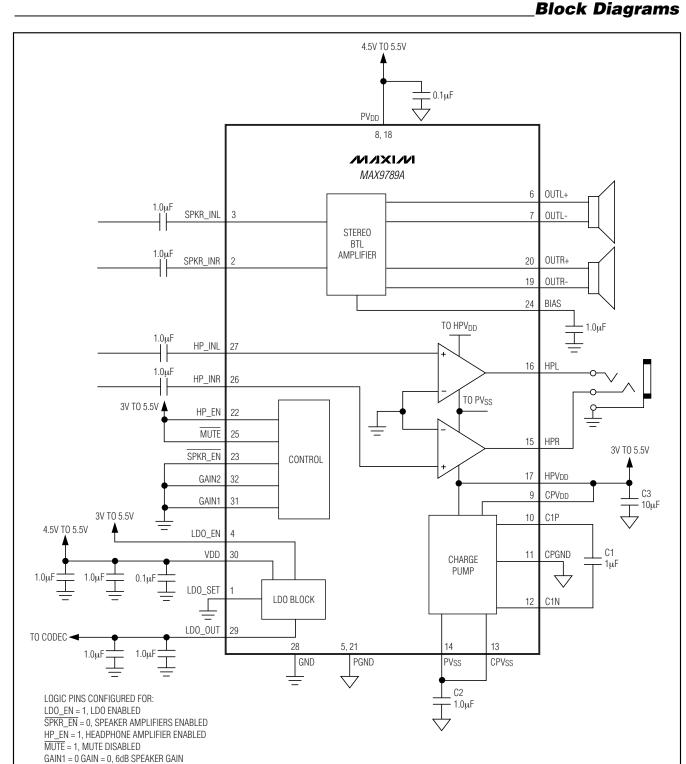
#### Flying Capacitor (C1)

The value of the flying capacitor (C1) affects the load regulation and output resistance of the charge pump. A C1 value that is too small degrades the device's ability to provide sufficient current drive, which leads to a loss of output voltage. Connect a  $1\mu$ F capacitor between C1P and C1N.

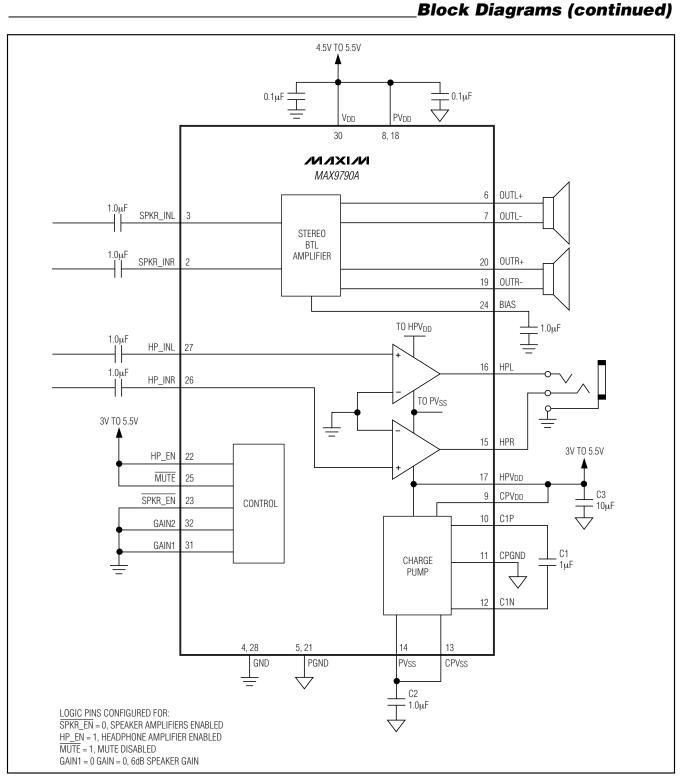
#### **Output Capacitor (C2)**

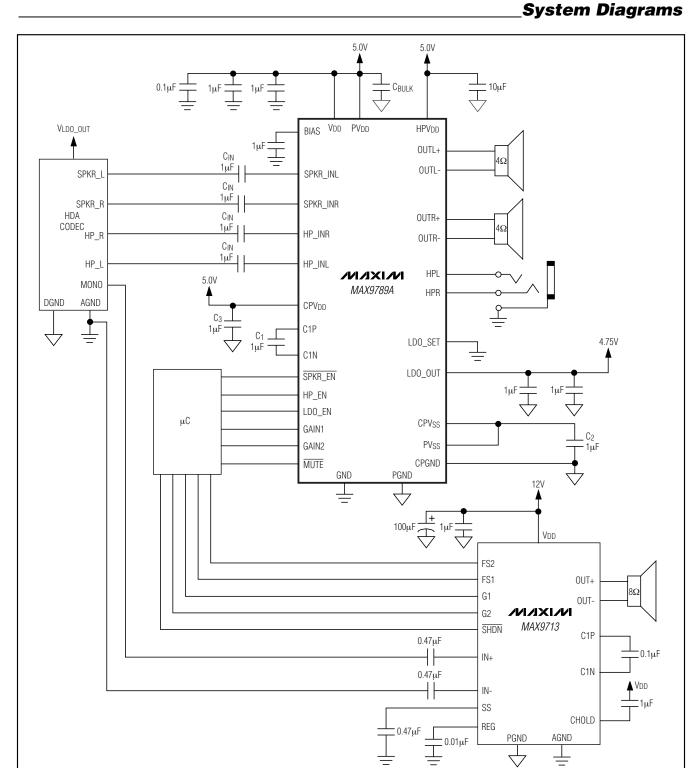
The output capacitor value and ESR directly affect the ripple at  $CPV_{SS}$ . Increasing the value of C2 reduces output ripple. Likewise, decreasing the ESR of C2 reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels.

#### CPV<sub>DD</sub> Bypass Capacitor (C3)


The CPV<sub>DD</sub> bypass capacitor (C3) lowers the output impedance of the power supply and reduces the impact of the MAX9789A/MAX9790A's charge-pump switching transients. Bypass CPV<sub>DD</sub> with 1µF, the same value as C1, and place it physically close to the CPV<sub>DD</sub> and CPGND pins.

#### Layout and Grounding

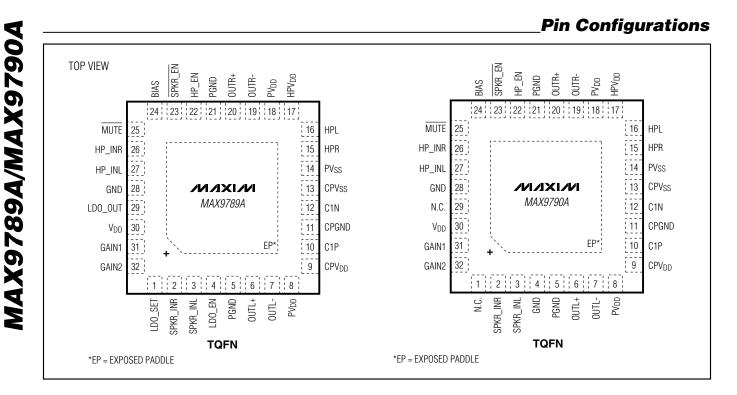

Proper layout and grounding are essential for optimum performance. Use large traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance, as well as route heat away from the device. Good grounding improves audio performance, minimizes crosstalk between channels, and prevents switching noise from coupling into the audio signal. Connect PGND and GND together at a single point on the PC board. Route PGND and all traces that carry switching transients away from GND and the traces and components in the audio signal path. Connect C2 and C3 to the PGND plane. Connect PVss and CPVss together at C2. Place the charge-pump capacitors (C1, C2, and C3) as close as possible to the device. Bypass  $PV_{DD}$  with a 0.1µF capacitor to PGND. Place the bypass capacitors as close as possible to the device.


Use large, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4 $\Omega$  load through a 100m $\Omega$  trace, 49mW is consumed in the trace. If power is delivered through a 10m $\Omega$  trace, only 5mW is consumed in the trace. Large output, supply and GND traces also improve the power dissipation of the device.

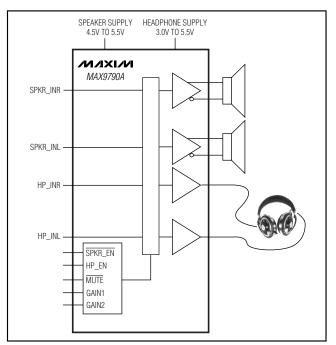
The MAX9789A/MAX9790A thin QFN package features an exposed thermal pad on its underside. This pad lowers the package's thermal resistance by providing a direct heat conduction path from the die to the printed circuit board. Connect the exposed thermal pad to GND by using a large pad and multiple vias to the GND plane.



MAX9789A/MAX9790A





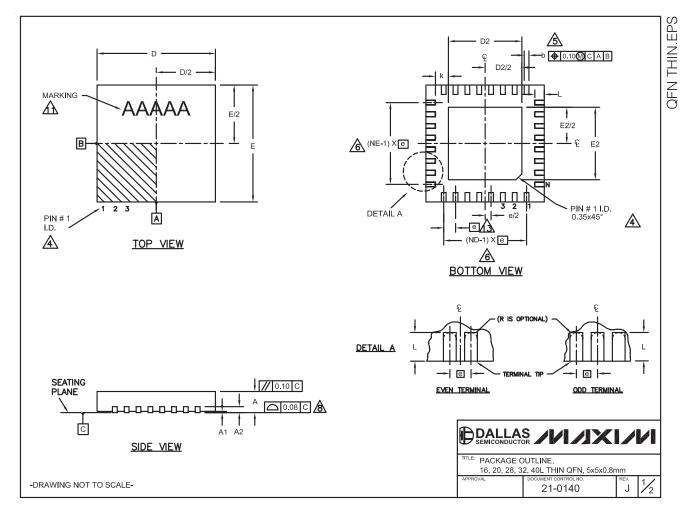


MAX9789A/MAX9790A

M/X/W





#### Simplified Block Diagrams \_\_\_\_\_(continued)




#### \_Chip Information

PROCESS: BiCMOS

#### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)



# MAX9789A/MAX9790A

#### **Package Information (continued)**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                          | OMMON                                                                                                                                                                     | DIMEN                                                                                                                                  | SION                                                                                                                                  | S                                                                                               |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       |            |                                                            | EX                                   | POSEI                                   | D PAC                                                      | VARI                                                                                                                                                 | ATIO                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------|------------|------------------------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|--|
| 'KG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      | 6L 5x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                            | 20L                                                                                                                                                                       |                                                                                                                                        |                                                                                                                                       | 28L                                                                                             |                                                                                                          |                                                                                       | 32L 5>                                                                                             |                                                  |                                            | 40L 5>                                  |                                       |            | PKG.                                                       |                                      | D2                                      |                                                            |                                                                                                                                                      | E2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |    |  |
| YMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN.                                                                                                                                 | NOM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAX.                                                                                                                                                                                       | MIN. NO                                                                                                                                                                   | л. MAX                                                                                                                                 | MIN.                                                                                                                                  | NO                                                                                              | M. MAX.                                                                                                  | MIN.                                                                                  | NOM.                                                                                               | MAX                                              | MIN.                                       | NOM.                                    | MAX.                                  |            | CODES                                                      | MIN.                                 | NOM.                                    | MAX.                                                       | MIN.                                                                                                                                                 | NOM                                           | 1. M/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AX.                                     |    |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                 | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.80                                                                                                                                                                                       | 0.70 0.7                                                                                                                                                                  | 5 0.80                                                                                                                                 | 0.70                                                                                                                                  | 0.7                                                                                             | 5 0.80                                                                                                   | 0.70                                                                                  | 0.75                                                                                               | 0.80                                             | 0.70                                       | 0.75                                    | 0.80                                  | - F        | T1655-2                                                    | 3.00                                 | 3.10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                      |    |  |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                       | 0 0.0                                                                                                                                                                     | 2 0.05                                                                                                                                 | 0                                                                                                                                     | 0.0                                                                                             | 2 0.05                                                                                                   | 0                                                                                     | 0.02                                                                                               | 0.05                                             | 0                                          | 0.02                                    | 0.05                                  | - 17       | T1655-3                                                    | 3.00                                 | 3.10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      |    |  |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                                                                                                                   | 20 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F.                                                                                                                                                                                         | 0.20 F                                                                                                                                                                    | REF.                                                                                                                                   | 0.                                                                                                                                    | .20 F                                                                                           | REF.                                                                                                     | 0                                                                                     | 20 RE                                                                                              | F.                                               | 0                                          | 20 RE                                   | F.                                    |            | T1655N-1                                                   | 3.00                                 | 3.10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      |    |  |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | 0.25 0.3                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       | Ē          | T2055-3                                                    | 3.00                                 | 3.10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      |    |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | 4.90 5.0                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       | - F        | T2055-4                                                    | 3.00                                 | 3.10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      |    |  |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | 4.90 5.0                                                                                                                                                                  | _                                                                                                                                      |                                                                                                                                       | _                                                                                               | _                                                                                                        |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       | - F        | T2055-5                                                    | 3.15                                 | 3.25                                    | 3.35                                                       | 3.15                                                                                                                                                 | 3.25                                          | 5 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                      |    |  |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                             | .80 BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            | 0.65                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                       |                                                                                                 | BSC.                                                                                                     |                                                                                       | .50 B                                                                                              |                                                  |                                            | .40 B                                   | SU.                                   | _ H        | T2855-3                                                    | 3.15                                 | 3.25                                    |                                                            |                                                                                                                                                      | 3.25                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |    |  |
| k<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | 0.25 -                                                                                                                                                                    | -                                                                                                                                      | 0.25                                                                                                                                  | _                                                                                               | 5 0.65                                                                                                   | 0.25                                                                                  | -                                                                                                  | -                                                | 0.25                                       |                                         | -                                     | _ H        | T2855-4                                                    | 2.60                                 | 2.70                                    |                                                            | 2.60                                                                                                                                                 | 2.70                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |    |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.30                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                       | 0.45 0.5                                                                                                                                                                  | _                                                                                                                                      | 0.45                                                                                                                                  | 28                                                                                              | _                                                                                                        | 0.30                                                                                  | 32                                                                                                 | 0.50                                             | 0.30                                       | 40                                      | 0.50                                  |            | T2855-5                                                    | 2.60                                 | 2.70                                    |                                                            | 2.60                                                                                                                                                 | 2.70                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |    |  |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | 20                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                       | 20                                                                                              |                                                                                                          |                                                                                       | 32<br>8                                                                                            |                                                  |                                            | 10                                      |                                       | Ē          | T2855-6                                                    | 3.15                                 | 3.25                                    |                                                            | 3.15                                                                                                                                                 | 3.25                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |    |  |
| NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | 5                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                       | 7                                                                                               |                                                                                                          |                                                                                       | 8                                                                                                  |                                                  |                                            | 10                                      |                                       | - F        | T2855-7                                                    | 2.60                                 | 2.70                                    | 2.80                                                       | 2.60                                                                                                                                                 | 2.70                                          | ) 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                      |    |  |
| IEDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      | NHHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;                                                                                                                                                                                          | WH                                                                                                                                                                        | HC                                                                                                                                     | 1                                                                                                                                     | WHF                                                                                             | ID-1                                                                                                     |                                                                                       | VHHD                                                                                               | -2                                               |                                            |                                         |                                       | Ē          | T2855-8                                                    | 3.15                                 | 3.25                                    | 3.35                                                       | 3.15                                                                                                                                                 | 3.25                                          | 5 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                      |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       | - F        | T2855N-1                                                   | 3.15                                 | 3.25                                    | 3.35                                                       | 3.15                                                                                                                                                 | 3.25                                          | 5 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                      |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       |            | T3255-3                                                    | 3.00                                 | 3 10                                    | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | ) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       |            | 13233-3                                                    | 0.00                                 |                                         |                                                            | 0.00                                                                                                                                                 | 10.10                                         | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                      |    |  |
| TES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       | _ <b>_</b> | T3255-3<br>T3255-4                                         | 3.00                                 |                                         | 3.20                                                       | 3.00                                                                                                                                                 | 3.10                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IENSIC                                                                                                                               | NING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & тс                                                                                                                                                                                       | LERANC                                                                                                                                                                    | NG CC                                                                                                                                  | NFOF                                                                                                                                  | RM T                                                                                            | O ASM                                                                                                    | E Y14                                                                                 | .5M-1                                                                                              | 994.                                             |                                            |                                         |                                       | Ē          |                                                            |                                      | 3.10                                    | 3.20<br>3.20                                               | 3.00                                                                                                                                                 | 3.10<br>3.10                                  | ) 3.:<br>) 3.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>20                                |    |  |
| 1. DIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | DLERANC                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                       |                                                                                                 |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       |            | T3255-4                                                    | 3.00                                 | 3.10                                    | 3.20<br>3.20                                               | 3.00                                                                                                                                                 | 3.10                                          | ) 3.:<br>) 3.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>20                                |    |  |
| 1. DIM<br>2. ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . DIME                                                                                                                               | NSIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IS AF                                                                                                                                                                                      |                                                                                                                                                                           | IMETE                                                                                                                                  | RS. A                                                                                                                                 | NGL                                                                                             |                                                                                                          |                                                                                       |                                                                                                    |                                                  |                                            |                                         |                                       |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1                  | 3.00<br>3.00<br>3.00<br>3.40         | 3.10<br>3.10<br>3.10<br>3.50            | 3.20<br>3.20<br>3.20<br>3.60                               | 3.00<br>3.00<br>3.00<br>3.40                                                                                                                         | 3.10<br>3.10<br>3.10<br>3.50                  | ) 3.<br>) 3.<br>) 3.<br>) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60                    |    |  |
| 1. DIM<br>2. ALL<br>3. N IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . DIME<br>6 THE <sup>-</sup>                                                                                                         | NSIOI<br>TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS AF                                                                                                                                                                                      | RE IN MILI<br>MBER OF                                                                                                                                                     | IMETE                                                                                                                                  | RS. A                                                                                                                                 | NGL                                                                                             | .ES AR                                                                                                   | E IN C                                                                                | )EGRE                                                                                              | ES.                                              | ITION                                      | SHAL                                    | L                                     |            | T3255-4<br>T3255-5<br>T3255N-1                             | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>3. THE<br>COL<br>OPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . DIME<br>5 THE<br>E TERM<br>NFORM<br>TIONA                                                                                          | NSION<br>TOTA<br>MINAL<br>M TO ,<br>L, BU <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS AF<br>_ NUM<br>#1 IE<br>JESD<br>F MUS                                                                                                                                                   | RE IN MILI<br>MBER OF<br>DENTIFIEF<br>95-1 SPP<br>ST BE LO                                                                                                                | .IMETE<br>TERMI<br>R AND<br>-012. I<br>CATED                                                                                           | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH                                                                                               | INGL<br>INAL<br>LS C                                                                            | ES AR<br>NUME<br>OF TER                                                                                  | E IN E<br>ERIN<br>MINAI<br>NE IN                                                      | )EGRE<br>G COI<br>_ #1 IE<br>DICAT                                                                 | EES.<br>NVEN<br>DENTI                            | IFIER                                      | ARE                                     |                                       |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1                  | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40                                                                                                                         | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4. THE<br>COP<br>IDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . DIME<br>5 THE<br>E TERM<br>NFORM<br>TIONAL<br>NTIFIE                                                                               | NSION<br>TOTA<br>MINAL<br>M TO ,<br>L, BU<br>ER MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS AF<br>- NUM<br>#1 IE<br>JESD<br>T MUS<br>Y BE                                                                                                                                           | RE IN MILI<br>MBER OF<br>DENTIFIER<br>95-1 SPP<br>ST BE LOO<br>EITHER /                                                                                                   | IMETE<br>TERMI<br>R AND<br>-012. I<br>CATED<br>MOLI                                                                                    | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR M                                                                                     | NGL<br>INAL<br>LS C<br>IIN T<br>MAR                                                             | ES AR<br>NUME<br>OF TER<br>HE ZOI<br>KED FE                                                              | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF                                             | G COI<br>_ #1 IE<br>DICAT<br>RE.                                                                   | EES.<br>NVEN<br>DENTI<br>ED. 1                   | IFIER<br>THE T                             | ARE<br>ERM <b>I</b> M                   | VAL #1                                |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1                  | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>COI<br>OPT<br>IDE<br>0DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . DIME<br>S THE <sup>-</sup><br>E TERM<br>NFORM<br>NFORM<br>NTIFIE                                                                   | NSION<br>TOTA<br>MINAL<br>MINAL<br>MINAL<br>, BU<br>L, BU<br>ER MA<br>DN b A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS AF<br>- NUM<br>#1 IE<br>JESD<br>MUS<br>Y BE<br>PPLI                                                                                                                                     | RE IN MILI<br>MBER OF<br>DENTIFIEF<br>95-1 SPP<br>ST BE LO                                                                                                                | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE                                                                                      | RS. A<br>NALS<br>TERM<br>DETAI<br>WITH<br>O OR M                                                                                      | NGL<br>INAL<br>LS C<br>IIN T<br>VAR<br>ERM                                                      | ES AR<br>NUME<br>OF TER<br>HE ZOI<br>KED FE                                                              | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF                                             | G COI<br>_ #1 IE<br>DICAT<br>RE.                                                                   | EES.<br>NVEN<br>DENTI<br>ED. 1                   | IFIER<br>THE T                             | ARE<br>ERM <b>I</b> M                   | VAL #1                                |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1                  | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>COP<br>OPT<br>IDE<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . DIME<br>5 THE<br>E TERM<br>NFORM<br>TIONAL<br>NTIFIE<br>1ENSIC<br>5 mm <i>P</i>                                                    | NSION<br>TOTA<br>MINAL<br>MINAL<br>MINAL<br>SINAL<br>SINAL<br>SINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>M | NS AF<br>- NUM<br>JESD<br>MUS<br>Y BE<br>.PPLII<br>.30 m                                                                                                                                   | RE IN MILI<br>MBER OF<br>DENTIFIEF<br>95-1 SPP<br>ST BE LOO<br>EITHER /<br>ES TO ME                                                                                       | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE<br>TALLI<br>TERMI                                                                    | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR M<br>ZED TI<br>NAL TI                                                                 | INGL<br>LS C<br>IIN T<br>VAR<br>ERM<br>IP                                                       | ES AR<br>NUME<br>OF TER<br>HE ZOI<br>KED FE<br>IINAL A                                                   | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF<br>ND IS                                    | G COI<br>_ #1 IE<br>DICAT<br>RE.<br>; MEAS                                                         | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE           | IFIER<br>THE T                             | ARE<br>ERMIN                            | JAL #1<br>N                           |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>3. N IS<br>COI<br>OPT<br>IDE<br>5. DIM<br>0.25<br>6. ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . DIME<br>5 THE<br>E TERM<br>NFORM<br>NTIONAL<br>NTIFIE<br>1ENSIC<br>5 mm A<br>AND N                                                 | NSION<br>TOTA<br>MINAL<br>MINAL<br>MITO<br>L, BU<br>ER MA<br>ON b A<br>AND 0<br>JE RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NS AF<br>#1 IE<br>JESD<br>MUS<br>Y BE<br>PPLII<br>30 m                                                                                                                                     | RE IN MILI<br>MBER OF<br>95-1 SPP<br>ST BE LOO<br>EITHER /<br>ES TO ME<br>m FROM                                                                                          | IMETE<br>TERMI<br>AND<br>-012. I<br>-012. I<br>CATED<br>MOLE<br>TALLI<br>FERMI<br>UMBEF                                                | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR M<br>ZED TI<br>NAL TI<br>R OF T                                                       | INGL<br>LS C<br>IIN T<br>VAR<br>ERM<br>IP                                                       | .es ar<br>- Nume<br>DF ter<br>He Zoi<br>Ked Fe<br>IINAL A<br>MINALS                                      | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF<br>ND IS<br>ON E                            | G COI<br>_ #1 IE<br>DICAT<br>RE.<br>5 MEAS                                                         | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE           | IFIER<br>THE T                             | ARE<br>ERMIN                            | JAL #1<br>N                           |            | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4 THE<br>COI<br>OPT<br>IDE<br>5 DIM<br>0.25<br>6 ND<br>7. DEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . DIME<br>5 THE<br>E TERM<br>NFORM<br>TIONAL<br>TIONAL<br>NTIFIE<br>IENSIC<br>5 mm A<br>AND N<br>POPUL                               | NSION<br>TOTAL<br>MINAL<br>MINAL<br>MINAL<br>BERMA<br>ON 6 A<br>ND 0<br>ND 0<br>ND 0<br>NE RE<br>LATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS AF<br>#1 IE<br>JESD<br>MUS<br>Y BE<br>PPLII<br>.30 m<br>FER <sup>1</sup><br>N IS F                                                                                                      | RE IN MILI<br>MBER OF<br>DENTIFIEF<br>95-1 SPP<br>ST BE LOO<br>EITHER /<br>ES TO ME<br>ES TO ME<br>M FROM                                                                 | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE<br>TALLI<br>TERMI<br>UMBEF<br>IN A S                                                 | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR M<br>ZED TI<br>NAL TI<br>NAL TI<br>R OF T                                             | INGL<br>LS C<br>IIN T<br>WAR<br>ERW<br>IP<br>FERM                                               | ES AR<br>DF TER<br>HE ZOI<br>KED FE<br>IINAL A<br>MINALS<br>CAL F <i>I</i>                               | E IN E<br>ERIN<br>MINAI<br>SATUF<br>ND IS<br>ON E<br>SHIC                             | DEGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>: MEAS<br>: MEAS<br>: ACH I                           | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE<br>D ANI  | IFIER<br>THE T<br>ED BE<br>D E SI          | ARE<br>ERMIN<br>TWEE<br>DE RE           | JAL #1<br>N<br>ESPECT                 | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4 THE<br>COP<br>IDE<br>5 DIM<br>0.25<br>6 ND<br>7. DEF<br>8 COI<br>9. DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . DIME<br>S THE<br>E TERM<br>NFORI<br>TIONAL<br>NTIFIE<br>IENSIC<br>5 mm A<br>AND N<br>POPUL<br>PLANA                                | NSION<br>TOTAL<br>MINAL<br>MITO<br>L, BU<br>ER MA<br>ON 6 A<br>ND 0<br>NE RE<br>LATION<br>ARITY<br>G CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS AF<br>#1 IE<br>JESD<br>MUS<br>Y BE<br>PPLII<br>30 m<br>FER <sup>-</sup><br>N IS F<br>APPL<br>FORI                                                                                       | RE IN MILI<br>MBER OF<br>95-1 SPP<br>51 BE LOG<br>EITHER /<br>ES TO ME<br>m FROM<br>FO THE N<br>POSSIBLE<br>JES TO T<br>VIS TO JE                                         | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE<br>TALLI<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI                                       | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>OR M<br>CED TI<br>NAL TI<br>R OF T<br>SYMME<br>POSEI                                       | INGL<br>LS C<br>IIN T<br>VAR<br>ERM<br>IP<br>FERM<br>ETRI<br>D HE                               | LES AR                                                                                                   | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF<br>ND IS<br>ON E<br>SHIC                    | DEGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>: MEA:<br>: MEA:<br>: ACH I<br>N.<br>JG AS            | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE<br>D ANI  | IFIER<br>THE T<br>ED BE<br>D E SI          | ARE<br>ERMIN<br>TWEE<br>DE RE<br>THE T  | JAL #1<br>N<br>ESPECT<br>ERMIN#       | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50    | 3.20<br>3.20<br>3.20<br>3.60<br>3.60                       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40                                                                                                                 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:<br>) 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4. THE<br>COP<br>IDE<br>0.25<br>6. ND<br>7. DEF<br>8. COP<br>9. DR/<br>T28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIME<br>THE<br>TERN<br>NFORI<br>NTONAL<br>NTIFIE<br>ENSIC<br>5 mm A<br>AND N<br>POPUL<br>PLANA<br>AWING<br>855-3 A                   | NSION<br>TOTAL<br>MINAL<br>MINAL<br>MINAL<br>ER MA<br>DN 6 A<br>ND 0<br>IE RE<br>LATION<br>RITY<br>G CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS AF<br>#1 IE<br>JESD<br>MUS<br>Y BE<br>PPLII<br>30 m<br>FER T<br>N IS F<br>APPL<br>APPL<br>SORI                                                                                          | RE IN MILI<br>MBER OF<br>95-1 SPP<br>51 BE LOG<br>EITHER /<br>ES TO ME<br>m FROM<br>FO THE N<br>POSSIBLE<br>JES TO T<br>VIS TO JE                                         | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE<br>TALLIZ<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI<br>DEC M                             | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR M<br>ZED TI<br>NAL TI<br>R OF T<br>SYMME<br>POSEI<br>O220,                            | INGL<br>LS C<br>IIN T<br>VAR<br>ERM<br>IP<br>FERM<br>ETRI<br>D HE                               | LES AR                                                                                                   | E IN E<br>ERIN<br>MINAI<br>NE IN<br>EATUF<br>ND IS<br>ON E<br>SHIC                    | DEGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>: MEA:<br>: MEA:<br>: ACH I<br>N.<br>JG AS            | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE<br>D ANI  | IFIER<br>THE T<br>ED BE<br>D E SI          | ARE<br>ERMIN<br>TWEE<br>DE RE<br>THE T  | JAL #1<br>N<br>ESPECT<br>ERMIN#       | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.50<br>3.50<br>\$SEE C | 3.20<br>3.20<br>3.60<br>3.60                               | 3.00<br>3.00<br>3.40<br>3.40<br>NDIMEN                                                                                                               | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60<br>60<br>bLE |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4 THE<br>OPT<br>IDE<br>0.25<br>6 ND<br>7. DEF<br>8 COI<br>9. DR/<br>T28<br>4 WAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIME<br>THE<br>TERN<br>FORM<br>NFORM<br>TIONAL<br>NTIFIE<br>IENSIC<br>5 mm A<br>AND N<br>POPUL<br>PLANA<br>AWING<br>555-3 A<br>RPAGE | NSION<br>TOTAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>BI<br>ND 0<br>AND 0<br>ND 6<br>AND 0<br>ND 1<br>ARITY<br>CON<br>ND 1<br>ARITY<br>CON<br>ND 1<br>ARITY<br>CON<br>ND 1<br>ARITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NS AF<br>- NUM<br>#1 IE<br>JESD<br>T MUS<br>Y BE<br>PPLII<br>30 m<br>FER <sup>-1</sup><br>N IS F<br>APPL<br>FORI<br>2855-1<br>LL NO                                                        | RE IN MILI<br>MBER OF<br>95-1 SPP<br>57 BE LOO<br>EITHER /<br>ES TO ME<br>m FROM<br>FO THE N<br>POSSIBLE<br>JES TO T<br>MS TO JE<br>3.                                    | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>MOLE<br>TALLE<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI<br>DEC M                              | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>OOR N<br>ZED TI<br>NAL TI<br>R OF T<br>SYMME<br>POSEI<br>0220,                             | INGL<br>INAL<br>LS C<br>IIN T<br>MAR<br>ERM<br>IP<br>ETRI<br>ETRI<br>D HE<br>EXC                | LES AR<br>DF TER<br>HE ZOI<br>KED FE<br>IINAL A<br>MINALS<br>CAL FA<br>EAT SIN<br>CEPT E                 | E IN E<br>ERIN<br>MINAI<br>NE IN<br>ATUF<br>ND IS<br>ON E<br>SHIC<br>IK SLI           | DEGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>: MEAS<br>: MEAS<br>: ACH I<br>N.<br>JG AS<br>: ED PA | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE<br>D ANI  | IFIER<br>THE T<br>ED BE<br>D E SI          | ARE<br>ERMIN<br>TWEE<br>DE RE<br>THE T  | JAL #1<br>N<br>ESPECT<br>ERMIN#       | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.00<br>3.40<br>3.40 | 3.10<br>3.10<br>3.50<br>3.50<br>\$SEE C | 3.20<br>3.20<br>3.60<br>3.60                               | 3.00<br>3.00<br>3.40<br>3.40<br>NDIMEN                                                                                                               | 3.10<br>3.10<br>3.10<br>3.50<br>3.50          | ) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60              |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>4. THE<br>OPT<br>IDE<br>5. DIM<br>0.25<br>6. ND<br>7. DEF<br>7. DEF<br>7. DEF<br>7. DEF<br>8. COI<br>9. DR/<br>128<br>4. WAI<br>1. MAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . DIME<br>S THE<br>E TERM<br>FORM<br>TIONAL<br>NTIFIE<br>IENSIC<br>5 mm A<br>AND N<br>POPUL<br>PLANA<br>PLANA<br>RPAGE<br>RKING      | NSION<br>TOTAL<br>MINAL<br>MINAL<br>MINAL<br>MINAL<br>MINA<br>MINA<br>MINA<br>MINA<br>MINA<br>MINA<br>MINA<br>MINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS AF<br>- NUM<br>JESD<br>I GSD<br>I MUS<br>Y BE<br>PPLII<br>30 m<br>FER<br>I<br>N IS F<br>APPL<br>FORI<br>2855-1<br>LL NO<br>R PA                                                         | RE IN MILI<br>MBER OF<br>95-1 SPP<br>T BE LOO<br>EITHER /<br>ES TO ME<br>m FROM '<br>TO THE N<br>POSSIBLE<br>IES TO T<br>MS TO JE<br>5.<br>DT EXCEE                       | IMETE<br>TERMI<br>AND<br>-012. I<br>CATED<br>AMOLE<br>TALLI<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI<br>DEC M<br>ED 0.10<br>RIENT         | ERS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>O OR N<br>ZED TI<br>NAL TI<br>NAL TI<br>NAL TI<br>O220,<br>O220,<br>MMM.                  | NGL<br>IINAL<br>LS C<br>IIN T<br>MAR<br>ERM<br>IP<br>ETRI<br>ETRI<br>ETRI<br>EXC                | ES AR<br>NUME<br>DF TER<br>HE ZOI<br>KED FE<br>IINAL A<br>MINALS<br>CAL FA<br>SAT SIN<br>CEPT E<br>FEREN | e in e<br>Berin<br>Minai<br>Ne in<br>Catuf<br>On e<br>Satuf<br>Satuf<br>K sli<br>Xpos | G COI<br>_ #1 IE<br>DICAT<br>RE.<br>S MEAS<br>S ACH I<br>N.<br>JG AS<br>SED PA                     | EES.<br>NVEN<br>DENTI<br>ED. 1<br>SURE<br>D ANI  | IFIER<br>THE T<br>ED BE<br>D E SI          | ARE<br>ERMIN<br>TWEE<br>DE RE<br>THE T  | JAL #1<br>N<br>ESPECT<br>ERMIN#       | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2       | 3.00<br>3.00<br>3.40<br>3.40<br>*    | 3.10<br>3.10<br>3.50<br>3.50<br>*SEE C  | 3.20<br>3.20<br>3.60<br>3.60<br>0MMOT                      | 3.00<br>3.00<br>3.40<br>3.40<br>3.40<br>N DIMEN                                                                                                      | 3.10<br>3.10<br>3.10<br>3.50<br>3.50<br>1000  | ) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.<br>) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>60<br>60<br>60<br>bLE | XI |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>3. N IS<br>COI<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.2   | DIME<br>THE<br>TERM<br>TIONAL<br>NTIFIE<br>IENSIC<br>MAND N<br>POPUL<br>PLANA<br>AWING<br>055-3 A<br>RPAGE<br>RKING<br>MBER          | NSION<br>TOTA<br>MINAL<br>M TO J<br>IR MA<br>DN 6 A<br>ND 0 6<br>A<br>ND 0 6<br>A<br>ND 0 7<br>CON<br>ND 7<br>CON<br>T<br>S FC<br>OF LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS AF<br>- NUM<br>JESD<br>T MUS<br>Y BE<br>PPLII<br>30 m<br>FER <sup>-</sup><br>APPL<br>EDR<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | RE IN MILI<br>MBER OF<br>95-1 SPP<br>T BE LOO<br>EITHER /<br>ES TO ME<br>m FROM '<br>FO THE N<br>POSSIBLE<br>LIES TO T<br>MS TO JE<br>5.<br>DT EXCEE<br>CKAGE C           | IMETE<br>TERMI<br>AND<br>OTALLI<br>CATED<br>MOLE<br>TALLI<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI<br>DEC M<br>ED 0.10<br>RIENT<br>ARE FO | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>) OR N<br>ZED TI<br>NAL TI<br>R OF T<br>YMME<br>POSEI<br>O220,<br>I mm.<br>ATION<br>DR REI | NGL<br>IINAL<br>LS C<br>IIN T<br>MAR<br>ERM<br>IP<br>TERM<br>ETRI<br>ETRI<br>EXC<br>N RE<br>FER | LES AR                                                                                                   | e in e<br>Berin<br>Minai<br>Ne in<br>Satuf<br>Nd is<br>On e<br>Satuf<br>K sli<br>Xpos | EGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>I MEA<br>A<br>ACH I<br>N.<br>JG AS<br>ED P/            | EES.<br>NVEN<br>DENTI<br>EED. 1<br>SURE<br>D ANI | IFIER<br>THE T<br>D E SI<br>D E SI<br>MENS | ARE<br>ERMIN<br>DE RE<br>THE T<br>ION F | JAL #1<br>N<br>ESPECT<br>ERMIN/<br>OR | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2<br>Y. | 3.00<br>3.00<br>3.40<br>3.40<br>*    | 3.10<br>3.10<br>3.50<br>3.50<br>SEE C   | 3.20<br>3.20<br>3.20<br>3.60<br>3.60<br>0<br>MMOT<br>ACKAC | 3.00<br>3.00<br>3.40<br>3.40<br>3.40<br>0.00<br>3.40<br>0.00<br>0.0                                                                                  | 3.10<br>3.10<br>3.10<br>3.50<br>3.50<br>SIONS | ) 3<br>) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>60<br>60<br>60<br>8LE |    |  |
| 1. DIM<br>2. ALL<br>3. N IS<br>COI<br>OPT<br>IDE<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0. | DIME<br>THE<br>TERM<br>TIONAL<br>NTIFIE<br>IENSIC<br>MAND N<br>POPUL<br>PLANA<br>AWING<br>055-3 A<br>RPAGE<br>RKING<br>MBER          | NSION<br>TOTA<br>MINAL<br>M TO J<br>IR MA<br>DN 6 A<br>ND 0 6<br>A<br>ND 0 6<br>A<br>ND 0 7<br>CON<br>ND 7<br>CON<br>T<br>S FC<br>OF LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS AF<br>- NUM<br>JESD<br>T MUS<br>Y BE<br>PPLII<br>30 m<br>FER <sup>-</sup><br>APPL<br>EDR<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | RE IN MILI<br>MBER OF<br>JENTIFIEF<br>95-1 SPP<br>ST BE LO<br>EITHER /<br>ES TO ME<br>MFROM N<br>POSSIBLE<br>IES TO T<br>MS TO JE<br>8.<br>DT EXCEP<br>CKAGE C<br>SHOWN / | IMETE<br>TERMI<br>AND<br>OTALLI<br>CATED<br>MOLE<br>TALLI<br>TERMI<br>UMBEF<br>IN A S<br>HE EXI<br>DEC M<br>ED 0.10<br>RIENT<br>ARE FO | RS. A<br>NALS.<br>TERM<br>DETAI<br>WITH<br>) OR N<br>ZED TI<br>NAL TI<br>R OF T<br>YMME<br>POSEI<br>O220,<br>I mm.<br>ATION<br>DR REI | NGL<br>IINAL<br>LS C<br>IIN T<br>MAR<br>ERM<br>IP<br>TERM<br>ETRI<br>ETRI<br>EXC<br>N RE<br>FER | LES AR                                                                                                   | e in e<br>Berin<br>Minai<br>Ne in<br>Satuf<br>Nd is<br>On e<br>Satuf<br>K sli<br>Xpos | EGRE<br>G COI<br>_ #1 IE<br>DICAT<br>RE.<br>I MEA<br>A<br>ACH I<br>N.<br>JG AS<br>ED P/            | EES.<br>NVEN<br>DENTI<br>EED. 1<br>SURE<br>D ANI | IFIER<br>THE T<br>D E SI<br>LL AS<br>MENS  | ARE<br>ERMIN<br>DE RE<br>THE T<br>ION F | JAL #1<br>N<br>ESPECT<br>ERMIN/<br>OR | TVEL       | T3255-4<br>T3255-5<br>T3255N-1<br>T4055-1<br>T4055-2<br>Y. | 3.00<br>3.00<br>3.40<br>3.40<br>*    | 3.10<br>3.10<br>3.50<br>3.50<br>SEE C   | 3.20<br>3.20<br>3.20<br>3.60<br>3.60<br>00MMOr<br>ACKAC    | 3.00<br>3.00<br>3.40<br>3.40<br>3.40<br>3.40<br>3.40<br>5.00<br>1.00<br>5.00<br>3.2,4<br>3.40<br>3.40<br>3.40<br>3.40<br>3.40<br>3.40<br>3.40<br>3.4 | 3.10<br>3.10<br>3.10<br>3.50<br>3.50<br>SIONS | ) 3<br>) 3<br>] 3] 3<br>] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3 | 20<br>20<br>20<br>60<br>60<br>60<br>HLE |    |  |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

26 \_\_\_\_\_

is a registered trademark of Maxim Integrated Products, Inc.