

TISP1070H3BJ THRU TISP1120H3BJ

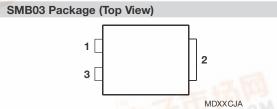
DUAL FORWARD-CONDUCTING UNIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

TISP1xxxH3BJ Overvoltage Protector Series

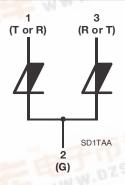
Overvoltage Protection for Negative Rail SLICs

Dual High Current Protectors in a Space Efficient Package

- 2 x 100 A 10/1000 Current Rating
- SMB03 Package (3-pin Modified SMB/DO-214AA) 50 % Space Saving over Two SMBs


Ion-Implanted Breakdown Region

- Precise and Stable Voltage
- Low Voltage Overshoot under Surge


Device Name	V _{DRM}	V _(BO)
Device Name	V	V
TISP1070H3BJ	-58	-70
TISP1080H3BJ	-65	-80
TISP1095H3BJ	-75	-95
TISP1120H3BJ	-95	-120

Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{PPSM}
wave Snape	Standard	Α
2/10	GR-1089-CORE	500
8/20	IEC 61000-4-5	300
10/160	TIA-968-A (FCC Part 68)	200
10/700	ITU-T K.20/21/45	150
10/560	TIA-968-A (FCC Part 68)	120
10/1000	GR-1089-CORE	100

Device Symbol

Description

These dual unidirectional thyristor devices protect SLICs and ISDN power feeds in central office, access and customer premises equipment against overvoltages on the telecom line. Each protector section consists of a voltage-triggered unidirectional thyristor with an anti-parallel diode. In the negative polarity, the thyristor allows signal voltages, without clipping, up to the maximum off-state voltage value, V_{DRM}, see Figure 1. Voltages exceeding V_{DRM} are limited and will not exceed the breakover voltage, V_(BO), level. If sufficient current flows due to the overvoltage, the thyristor switches into a low-voltage on-state condition, which diverts the current from the overvoltage through the thyristor. When the diverted current falls below the holding current, I_H, level the thyristor switches off and restores normal system operation. Positive overvoltages are limited by the conduction of the anti-parallel diode.

The TISP1xxxH3BJ is available in four voltages and has a 100 A 10/1000 current rating. These protectors have been designed particularly for use in equipment that must meet the following standards and recommendations: GR-1089-CORE, TIA-968-A (replaces FCC Part 68), ITU-T K.20, K.21 and K.45. Housed in a SMB03 package (3-pin modified SMB/DO-214AA), these parts are space efficient to replace protection designs of 100 A 10/1000 or less which use multiple SMBs or a 6-pin SMT package.

How to Order

	Device	Package	Carrier	For Standard Termination Finish Order As	For Lead Free Termination Finish Order As	Marking Code	Std. Qty.
0	TISP1xxxH3BJ	SMB03 (3-pin modified SMB/DO-214AA)	Embossed Tape Reeled	TISP1xxxH3BJR	TISP1xxxH3BJR-S	1xxxH3	3000

Insert xxx value corresponding to device name.

RoHS Directive 2002/95/EC Jan 27 2003 including Annex

JUNE 2003 - REVISED FEBRUARY 2005

Specifications are subject to change without notice.

TISP1xxxH3BJ Overvoltage Protector Series

BOURNS®

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating	Symbol	Value	Unit
'1070 '1080 Repetitive peak off-state voltage, (Terminals 1-2 and 3-2) (see Note 1) '1095 '1120		-58 -65 -75 -95	V
Non-repetitive peak on-state pulse current (see Notes 2 and 3) 2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape) 8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape) 10/160 (TIA-968-A (replaces FCC Part 68), 10/160 μs voltage wave shape) 5/310 (ITU-T K.44, 10/700 μs voltage wave shape used in K.20/45/21) 5/320 (TIA-968-A (replaces FCC Part 68), 9/720 μs voltage wave shape) 10/560 (TIA-968-A (replaces FCC Part 68), 10/560 μs voltage wave shape) 10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)	I _{PPSM}	2x500 2x300 2x200 2x150 2x150 2x120 2x100	А
Non-repetitive peak on-state current (see Notes 2 and 3) 50 Hz, 1 cycle 60 Hz, 1 cycle 1000 s 50 Hz/60 Hz a.c. Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 50 A	I _{TSM}	2x30 2x35 2x1.2	Α A/μs
Junction temperature	T. ₁	-40 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

NOTES: 1. At -40 $^{\circ}\text{C}$ derate linearly to 0.93 x V_{DRM} (25 $^{\circ}\text{C})$

2. Initially the device must be in thermal equilibrium with T_J = 25 °C.

Electrical Characteristics for the 1 and 2 or the 3 and 2 Terminals, T_A = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Max	Unit
	Repetitive peak off-	V -V	T _A = 25 °C			-5	
IDRM	state current	$V_D = V_{DRM}$	$T_A = 85 ^{\circ}C$			-10	μΑ
			'1070			-70	
V	AC breakover voltage	dy/dt = 250 V/ms	'1080			-80	V
V _(BO)	AC Dieakovei voltage	voltage $dv/dt = -250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$	'1095			-95	V
			'1120			-120	
I _(BO)	Breakover current	$dv/dt = -250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$				-800	mA
I _H	Holding current	$I_T = -5 \text{ A, di/dt} = +30 \text{ mA/ms}$		-150			mA
dv/dt	Critical rate of rise of	Linear voltage ramp, Maximum ramp value < 0.85 x V _{DRM}		-5			kV/μs
dv/dt	off-state voltage	Elliear voltage ramp, Maximum ramp value < 0.65 x v _{DRM}		ין			κν/μδ
I _D	Off-state current	$V_D = -50 \text{ V}$	T _A = 85 °C			-10	μΑ
V_{F}	Forward voltage	$I_F = +5 \text{ A}, t_W = 500 \mu s$				3	V

^{3.} These non-repetitive rated currents are peak values of either polarity. The rated current values are applied to the terminals 1 and 3 simultaneously (in this case the terminal 2 return current will be the sum of the currents applied to the terminals 1 and 3). The surge may be repeated after the device returns to its initial conditions.

TISP1xxxH3BJ Overvoltage Protector Series

BOURNS®

Electrical Characteristics for the 1 and 2 or the 3 and 2 Terminals, T_A = 25 $^{\circ}C$ (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Max	Unit
$f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D$ $C_{off} \text{Off-state capacitance}$ $f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D$		'1070		161			
	f 1 MH= \/ 1 \/ mma \/ 0 \/	'1080		152			
	$V_d = V_d $	rms, $V_D = -2 V$ '1095		139			
	'1120		116				
		'1070		58		pF	
	5 d MU= 1/ d 1/ 1/	1080		55			
	$t = 1 \text{ MHz}, v_d = 1 \text{ V rms}, v_D = -50 \text{ V}$ (1095)		50				
		'1120		42			

Thermal Characteristics

Parameter	Test Conditions	Min	Тур	Max	Unit
	EIA/JESD51-3 PCB, T _A = 25 °C, (see Note 4)			113	
$R_{\theta JA}$ Junction to free air thermal resistance	265 mm x 210 mm populated line card, 4-layer PCB, I _T = I _{TSM(1000)} , T _A = 25 °C		52		°C/W

NOTE 4: EIA/JESD51-2 environment and PCB have standard footprint dimensions connected with 5 A rated printed wiring track widths.

Parameter Measurement Information

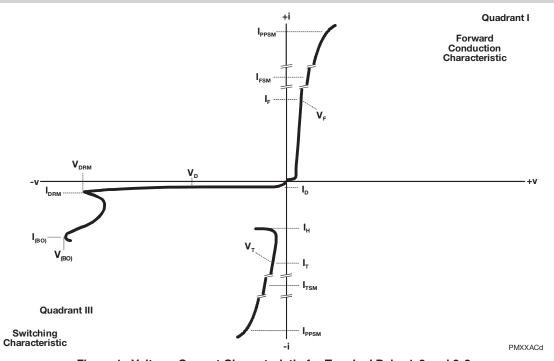


Figure 1. Voltage-Current Characteristic for Terminal Pairs 1-2 and 3-2
All Measurements are Referenced to Terminal 2

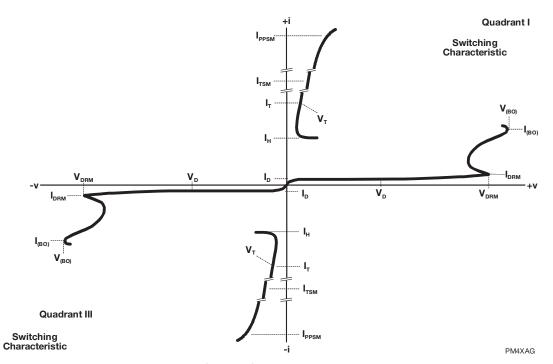
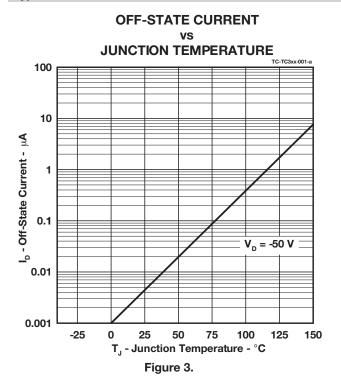
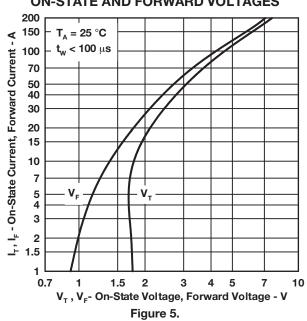
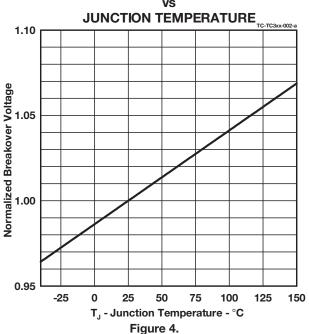
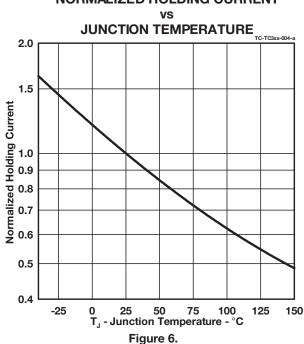




Figure 2. Voltage-Current Characteristic for Terminal Pair 1-3
All Measurements are Referenced to Terminal 3


Typical Characteristics


ON-STATE AND FORWARD CURRENTS vs ON-STATE AND FORWARD VOLTAGES

NORMALIZED BREAKOVER VOLTAGE

NORMALIZED HOLDING CURRENT

Typical Characteristics (Continued)

NORMALIZED CAPACITANCE

OFF-STATE VOLTAGE

1.5

T_J = 25°C

V_d = 1 Vrms

0.9

0.7

0.6

0.5

0.4

0.9

0.2

1 2 3 5 10 20 30 50

Rating and Thermal Information

NON-REPETITIVE PEAK ON-STATE CURRENT

 ${f V}_{\rm D}$ - Negative Off-state Voltage - V Figure 7.

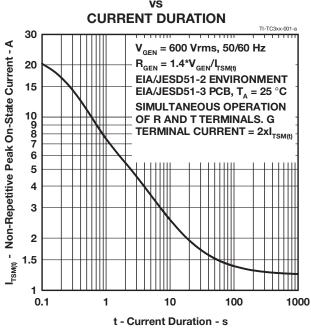


Figure 8.

Bourns Sales Offices

Region	Phone	Fax
The Americas:	+1-909-781-5500	+1-909-781-5700
	+1-951-781-5500	+1-951-781-5700 (after 7/17/04)
Europe:	+41 (0)41-7685555	+41 (0)41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

Technical Assistance

Region	Phone	Fax
The Americas:	+1-909-781-5500	+1-909-781-5700
	+1-951-781-5500	+1-951-781-5700 (after 7/17/04)
Europe:	+41 (0)41-7685555	+41 (0)41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

www.bourns.com

Bourns® products are available through an extensive network of manufacturer's representatives, agents and distributors. To obtain technical applications assistance, a quotation, or to place an order, contact a Bourns representative in your area.

