

BUK9Y11-30B

N-channel TrenchMOS logic level FET Rev. 01 — 30 August 2007

Product data sheet

Product profile

1.1 General description

N-channel enhancement mode power Field-Effect Transistor (FET) in a plastic package using NXP High-Performance Automotive (HPA) TrenchMOS technology.

1.2 Features

- Very low on-state resistance
- 175 °C rated

- Q101 compliant
- Logic level compatible

1.3 Applications

- Automotive systems
- Motors, lamps and solenoids
- General purpose power switching

WWW.DZSC.CO

■ 12 V loads

1.4 Quick reference data

- \blacksquare $E_{DS(AL)S} \le 112 \text{ mJ}$
- $I_D \le 59 A$

- \blacksquare R_{DSon} = 9.3 mΩ (typ)
- $P_{tot} \le 75 \text{ W}$

Pinning information

Table 1. **Pinning**

Pin	Description	Simplified outline	Symbol		
1, 2, 3	source (S)				
4	gate (G)	mb (D		
mb	mounting base; connected to drain (D)	1 2 3 4	mb/798 S1 S2 S3		
		SOT669 (LFPAK)			

3. Ordering information

Table 2. Ordering information

Type number	Package		
	Name	Description	Version
BUK9Y11-30B	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

4. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	30	V
V_{DGR}	drain-gate voltage (DC)	$R_{GS} = 20 \text{ k}\Omega$	-	30	V
V_{GS}	gate-source voltage		-	±15	V
I_D	drain current	T_{mb} = 25 °C; V_{GS} = 5 V; see <u>Figure 2</u> and <u>3</u>	-	59	Α
		T_{mb} = 100 °C; V_{GS} = 5 V; see <u>Figure 2</u>	-	42	Α
I_{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \ \mu s$; see Figure 3	-	239	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 1</u>	-	75	W
T _{stg}	storage temperature		-55	+175	°C
T_j	junction temperature		-55	+175	°C
Source-d	Irain diode				
I_{DR}	reverse drain current	$T_{mb} = 25 ^{\circ}C$	-	59	Α
I_{DRM}	peak reverse drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \ \mu s$	-	239	Α
Avalanch	ne ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I_D = 59 A; $V_{DS} \le 30$ V; V_{GS} = 5 V; R_{GS} = 50 Ω ; starting at T_j = 25 °C	-	112	mJ
E _{DS(AL)R}	repetitive drain-source avalanche energy		-	<u>[1]</u>	-

[1] Conditions:

- a) Maximum value not quoted. Repetitive rating defined in Figure 16.
- b) Single-pulse avalanche rating limited by $T_{j(max)}$ of 175 $^{\circ}\text{C}.$
- c) Repetitive avalanche rating limited by an average junction temperature of 170 $^{\circ}\text{C}.$
- d) Refer to application note AN10273 for further information.

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 1. Normalized total power dissipation as a function of mounting base temperature

Fig 2. Continuous drain current as a function of mounting base temperature

 T_{mb} = 25 °C; I_{DM} is single pulse.

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

Thermal characteristics

Table 4: **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base -		-	-	2	K/W

Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

$ \begin{array}{c} T_j = 25 ^{\circ} C \\ T_j = -55 ^{\circ} C \\ \end{array} \begin{array}{c} 30 \\ 0 = 7 \\ \end{array} \begin{array}{c} -55 ^{\circ} C \\ \end{array} \begin{array}{c} -1175 ^{\circ} C \\ \end{array} \begin{array}{c} -55 ^{\circ} C \\ \end{array} \begin{array}{c} -175 ^{\circ} C \\ \end{array} \begin{array}{c} -$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static cha	aracteristics					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}$				
$V_{\text{GS(th)}} \ \begin{array}{c} \text{gate-source threshold voltage} \\ V_{\text{GS(th)}} \ \begin{array}{c} I_{D} = 1 \text{ mA; } V_{DS} = V_{\text{GS; see Figure 9}} \text{ and } 10 \\ \hline T_{j} = 25 ^{\circ}\text{C} & 1.1 & 1.5 & 2 & V \\ \hline T_{j} = 175 ^{\circ}\text{C} & 0.5 & - & - & V \\ \hline T_{j} = -55 ^{\circ}\text{C} & - & - & 2.3 & V \\ \hline V_{DS} \ & \begin{array}{c} V_{DS} = 30 \text{V; } V_{GS} = 0 \text{V} \\ \hline T_{j} = 25 ^{\circ}\text{C} & - & 0.02 & 1 & \mu \text{A} \\ \hline T_{j} = 25 ^{\circ}\text{C} & - & 0.02 & 1 & \mu \text{A} \\ \hline T_{j} = 175 ^{\circ}\text{C} & - & 0.02 & 1 & \mu \text{A} \\ \hline V_{DS} \ & \begin{array}{c} V_{DS} = 30 \text{V; } V_{CS} = 0 \text{V} \\ \hline T_{j} = 175 ^{\circ}\text{C} & - & 0.02 & 1 & \mu \text{A} \\ \hline V_{CS} \ & \begin{array}{c} V_{CS} = 15 \text{V; } V_{DS} = 0 \text{V} \\ \hline V_{CS} \ & \begin{array}{c} V_{CS} = 15 \text{V; } V_{DS} = 0 \text{V} \\ \hline V_{CS} \ & \begin{array}{c} V_{CS} = 15 \text{V; } V_{DS} = 0 \text{V} \\ \hline V_{CS} \ & \begin{array}{c} V_{CS} \ & \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \ & \begin{array}{c} V_{CS} \ & \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V_{CS} \ & \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V_{CS} \ & \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \ & \begin{array}{c} V_{CS} \ & \begin{array}{c} V$			T _j = 25 °C	30	-	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$T_j = -55 ^{\circ}C$	27	-	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
$T_{j} = -55 ^{\circ}\text{C} \qquad - \qquad - \qquad 2.3 V$ $T_{DSS} \qquad \text{drain leakage current} \qquad V_{DS} = 30 V; V_{GS} = 0 V$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 0.02 1 \qquad \mu A$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 0.02 1 \qquad \mu A$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad - \qquad 500 \mu A$ $R_{DSS} \qquad \text{gate leakage current} \qquad V_{GS} = \pm 15 V; V_{DS} = 0 V \qquad - \qquad 2 \qquad 100 nA$ $R_{DSOn} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = 5 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 9.3 11 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 9.3 11 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 4.5 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 9.3 11 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 21 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A; \text{vol} = 25 V; \text{fer in MHz}; \text{vol} = 25 V; \text{vol} = 25 V; \text{fer inse time} \qquad V_{OS} = 25 V; R_{L} = 2.5 \Omega; \text{vol} = 25 V; R_{L} = 2.5 \Omega; \text{vol} = 25 V; R_{L} = 2.5 \Omega; \text{vol} = 25 V; \text{vol} = 25 V; $			T _j = 25 °C	1.1	1.5	2	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 175 °C	0.5	-	-	V
$T_{j} = 25 ^{\circ}\text{C} \qquad - 0.02 1 \qquad \mu A$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 0.02 1 \qquad \mu A$ $R_{DSon} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = \pm 15 V; V_{DS} = 0 V \qquad - 2 \qquad 100 nA$ $R_{DSon} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = 5 V; I_{D} = 25 A; \text{see Figure 6 and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - 9.3 \qquad 11 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 9.3 \qquad 11 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 21 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 21 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 21 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 12 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 12 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 211 ^{\circ}\text{C} \qquad - 211 m \Omega$ $T_{j} = 175 ^{\circ}\text{C} \qquad - 211 ^{\circ}\text{C} \qquad - 211 m \Omega$ $T_{j} = 175 ^{\circ}C$			$T_j = -55 ^{\circ}\text{C}$	-	-	2.3	V
$T_{j} = 175 ^{\circ}\text{C} \qquad - \qquad 500 \mu A$ $R_{DSOn} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = \pm 15 V; V_{DS} = 0 V \qquad - \qquad 2 \qquad 100 nA$ $R_{DSOn} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = 5 V; I_{D} = 25 A; \text{see} \frac{\text{Figure 6}}{\text{and 8}} \text{and 8}$ $T_{j} = 25 ^{\circ}\text{C} \qquad - \qquad 9.3 11 m \Omega$ $V_{GS} = 4.5 V; I_{D} = 25 A \qquad - \qquad - \qquad 12 m \Omega$ $V_{GS} = 4.5 V; I_{D} = 25 A \qquad - \qquad 8.1 9 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A \qquad - \qquad 8.1 9 m \Omega$ $V_{GS} = 10 V; I_{D} = 25 A \qquad - \qquad 8.1 9 m \Omega$ $V_{GS} = 10 V; V_{DS} = 24 V; V_{GS} = 5 V; \qquad - \qquad 16.5 - \qquad n C$ $V_{GS} = 30 V; V_{DS} = 24 V; V_{GS} = 5 V; \qquad - \qquad 16.5 - \qquad n C$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 5 V; \qquad - \qquad 16.5 - \qquad n C$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 5 V; \qquad - \qquad 16.5 - \qquad n C$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 5 V; \qquad - \qquad 16.5 - \qquad n C$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 5 V; - \qquad 16.5 - \qquad n C$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 10 MHz; \qquad - \qquad 1211 1614 p F$ $V_{GS} = 10 V; V_{DS} = 25 V; V_{SS} = 10 \Omega$ $V_{DS} = 25 V; R_{L} = 2.5 \Omega; \qquad - \qquad 14 - \qquad n S$ $V_{GS} = 10 \Omega \qquad - \qquad$	I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			T _j = 25 °C	-	0.02	1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 175 °C	-	-	500	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0 \text{ V}$	-	2	100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{DSon}	drain-source on-state resistance	$V_{GS} = 5 \text{ V}$; $I_D = 25 \text{ A}$; see <u>Figure 6</u> and <u>8</u>				
$ V_{GS} = 4.5 \text{ V; } I_D = 25 \text{ A} \\ V_{GS} = 10 \text{ V; } I_D = 25 \text{ A} \\ V_{GS} = 10 \text{ V; } I_D = 25 \text{ A} \\ V_{GS} = 10 \text{ V; } I_D = 25 \text{ A} \\ V_{GS} = 5 \text{ V; } \\ V_{G$			T _j = 25 °C	-	9.3	11	$m\Omega$
$V_{GS} = 10 \text{ V}; \ I_D = 25 \text{ A} \qquad - & 8.1 9 \text{m}\Omega$ $\begin{array}{c} \textbf{Dynamic characteristics} \\ \textbf{Q}_{G(tot)} \qquad \text{total gate charge} \qquad I_D = 25 \text{ A}; \ V_{DS} = 24 \text{ V}; \ V_{GS} = 5 \text{ V}; \qquad - & 16.5 - \text{nC} \\ \textbf{Q}_{GS} \qquad \text{gate-source charge} \qquad - & 5.4 - \text{nC} \\ \textbf{Q}_{GD} \qquad \text{gate-drain charge} \qquad - & 5.4 - \text{nC} \\ \textbf{C}_{iss} \qquad \text{input capacitance} \qquad V_{GS} = 0 \text{ V}; \ V_{DS} = 25 \text{ V}; \ f = 1 \text{ MHz}; \qquad - & 1211 1614 pF \\ \textbf{C}_{OSS} \qquad \text{output capacitance} \qquad \text{see Figure 12} \qquad - & 341 409 pF \\ \textbf{C}_{CISS} \qquad \text{reverse transfer capacitance} \qquad - & 160 220 pF \\ \textbf{C}_{Id(on)} \qquad \text{turn-on delay time} \qquad V_{DS} = 25 \text{ V}; \ R_L = 2.5 \Omega; \qquad - & 14 - \text{ns} \\ \textbf{C}_{Id(off)} \qquad \text{turn-off delay time} \qquad V_{GS} = 5 \text{ V}; \ R_G = 10 \Omega \qquad - & 33 - \text{ns} \\ \textbf{C}_{IS} \qquad \text{fall time} \qquad - & 62 - \text{ns} \\ \textbf{C}_{IS} \qquad \text{source-drain diode} \\ \textbf{V}_{SD} \qquad \text{source-drain voltage} \qquad I_S = 25 \text{ A}; \ V_{GS} = 0 \text{ V}; \text{see Figure 15} \qquad - & 0.85 1.2 \text{V} \\ \textbf{C}_{IS} \qquad \text{reverse recovery time} \qquad I_S = 20 \text{ A}; \ \text{dIs/dt} = -100 \text{ A/}\mu\text{s}; \qquad - & 47 - \text{ns} \\ \textbf{C}_{IS} \qquad \text{reverse recovery time} \qquad \textbf{C}_{IS} \qquad \textbf{C}$			T _j = 175 °C	-	-	21	$m\Omega$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}$	-	-	12	$m\Omega$
$\begin{array}{c} Q_{G(tot)} \text{total gate charge} \\ Q_{GS} \text{gate-source charge} \\ Q_{GD} \text{gate-drain charge} \\ Q_{GS} \text{gate-drain dealy time} \\ Q_{GS}$			$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}$	-	8.1	9	$m\Omega$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dynamic	characteristics					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{G(tot)}	total gate charge		-	16.5	-	nC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_GS	gate-source charge	see Figure 14	-	3.3	-	nC
Cossoutput capacitancesee Figure 12- 341 409 pFCrssreverse transfer capacitance- 160 220 pF $t_{d(on)}$ turn-on delay time $V_{DS} = 25 \text{ V}$; $R_L = 2.5 \Omega$;- 14 - ns t_r rise time- 33 - ns $t_{d(off)}$ turn-off delay time- 62 - ns t_f fall time- 42 - nsSource-drain diode V_{SD} source-drain voltage $I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 15- 0.85 1.2 V I_{rr} reverse recovery time $I_S = 20 \text{ A}$; $I_S = 20 \text{ A}$ - 47 - ns	Q_GD	gate-drain charge		-	5.4	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	input capacitance		-	1211	1614	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coss	output capacitance	see <u>Figure 12</u>	-	341	409	pF
$V_{GS} = 5 \text{ V}; \text{ R}_G = 10 \ \Omega$ $- 33 - \text{ns}$ $t_{d(off)} \text{ turn-off delay time}$ $- 62 - \text{ns}$ $t_{f} \text{ fall time}$ $- 42 - \text{ns}$ $Source-drain diode$ $V_{SD} \text{ source-drain voltage}$	C_{rss}	reverse transfer capacitance		-	160	220	pF
the first time $t_{\text{d(off)}}$ turn-off delay turn-off d	$t_{d(on)}$	turn-on delay time		-	14	-	ns
Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figur	t _r	rise time	$V_{GS} = 5 \text{ V}; R_G = 10 \Omega$	-	33	-	ns
Source-drain diode V_{SD} source-drain voltage $I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 15 - 0.85 1.2 V V_{TT} reverse recovery time $I_S = 20 \text{ A}$; $V_{TS} = 20 $	$t_{d(off)}$	turn-off delay time		-	62	-	ns
V_{SD} source-drain voltage $I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 15 - 0.85 1.2 V I_{ST} reverse recovery time $I_S = 20 \text{ A}$; I_{ST} dt I_{ST} - 0.85 1.2 V I_{ST} - 0.85 1.2 V	t _f	fall time		-	42	-	ns
trr reverse recovery time $I_S = 20 \text{ A}$; $I_$	Source-d	rain diode					
V - 0 V: V - 20 V	V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 15	-	0.85	1.2	V
$V_{GS} = 0 \text{ V}; V_{R} = 30 \text{ V}$ - 20 - nC	t _{rr}	reverse recovery time		-	47	-	ns
	Q _r	recovered charge	$V_{GS} = 0 \text{ V}; V_{R} = 30 \text{ V}$	-	20	-	nC

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

Fig 7. Drain-source on-state resistance as a function of drain current; typical values

Fig 6. Drain-source on-state resistance as a function of gate-source voltage; typical values

 $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$

Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature

Fig 9. Gate-source threshold voltage as a function of junction temperature

Fig 11. Forward transconductance as a function of drain current; typical values

 $T_i = 25 \,^{\circ}\text{C}; \, V_{DS} = 25 \,^{\circ}\text{V}$

 $T_j = 25 \,^{\circ}C; \, V_{DS} = V_{GS}$

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $V_{GS} = 0 V; f = 1 MHz$

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

 $V_{DS} = 25 \text{ V}$

Fig 13. Transfer characteristics: drain current as a function of gate-source voltage; typical values

Fig 15. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values

 $T_j = 25 \,^{\circ}C; I_D = 25 \,^{\circ}A$

Fig 14. Gate-source voltage as a function of gate charge; typical values

See $\underline{\text{Table note 1}}$ of $\underline{\text{Table 3}}$ Limiting values.

- (1) Single-pulse; $T_i = 25$ °C.
- (2) Single-pulse; T_i = 150 °C.
- (3) Repetitive.

Fig 16. Single-pulse and repetitive avalanche rating; avalanche current as a function of avalanche time

7. Package outline

Plastic single-ended surface-mounted package (LFPAK); 4 leads

SOT669

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	RENCES		EUROPEAN PROJECTION	ISSUE DATE
VERSION	IEC	JEDEC	JEITA			ISSUE DATE
SOT669		MO-235				04-10-13 06-03-16
	L			I.		

Fig 17. Package outline SOT669 (LFPAK)

Revision history

Table 6. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK9Y11-30B_1	20070830	Product data sheet	-	-

BUK9Y11-30B

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

BUK9Y11-30B

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history
9	Legal information11
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information11
11	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by