

October 2004

ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3 EcoSPARK[™] 500mJ, 360V, N-Channel Ignition IGBT

General Description

The ISL9V5036S3S, ISL9V5036P3, and ISL9V5036S3 are the next generation IGBTs that offer outstanding SCIS capability in the D²-Pak (TO-263) and TO-220 plastic package. These devices are intended for use in automotive ignition circuits, specifically as coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK[™] devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Formerly Developmental Type 49443

Symbol Package COLLECTOR JEDEC TO-262AA JEDEC TO-263AB JEDEC TO-220AB ^Ec_G D²-Pak ^Ес_б GATE G Е **EMITTER** COLLECTOR COLLECTOR (FLANGE) (FLANGE)

Applications

Features

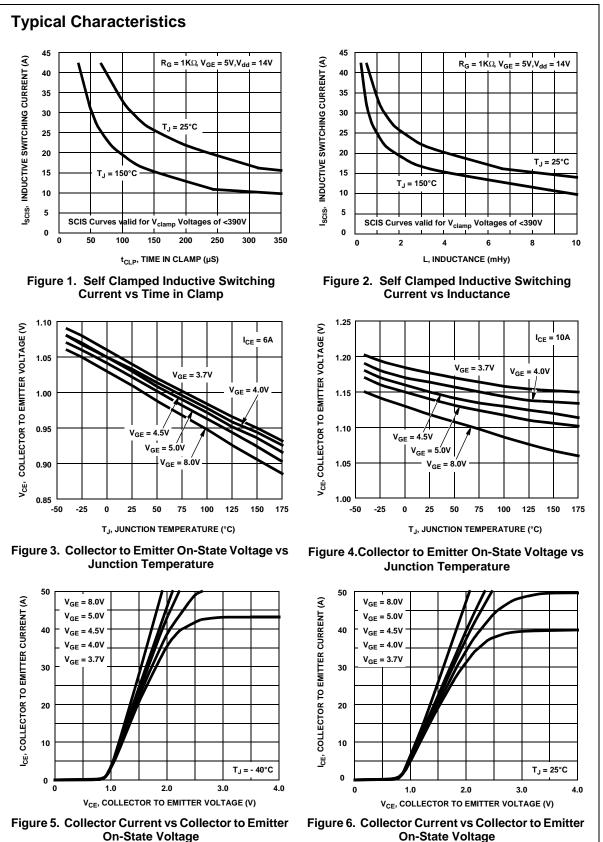
• Automotive Ignition Coil Driver Circuits

• Industry Standard D²-Pak package

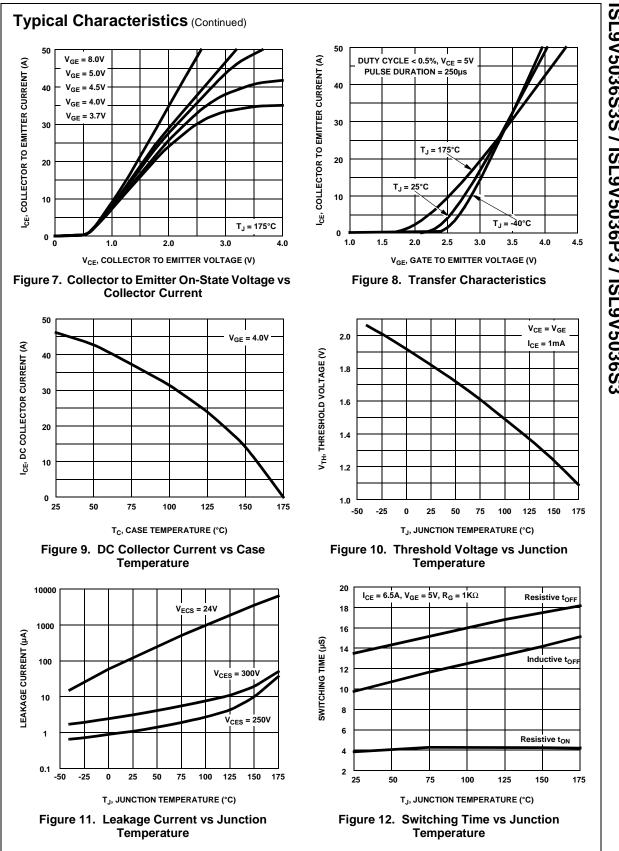
• SCIS Energy = 500mJ at $T_J = 25^{\circ}C$

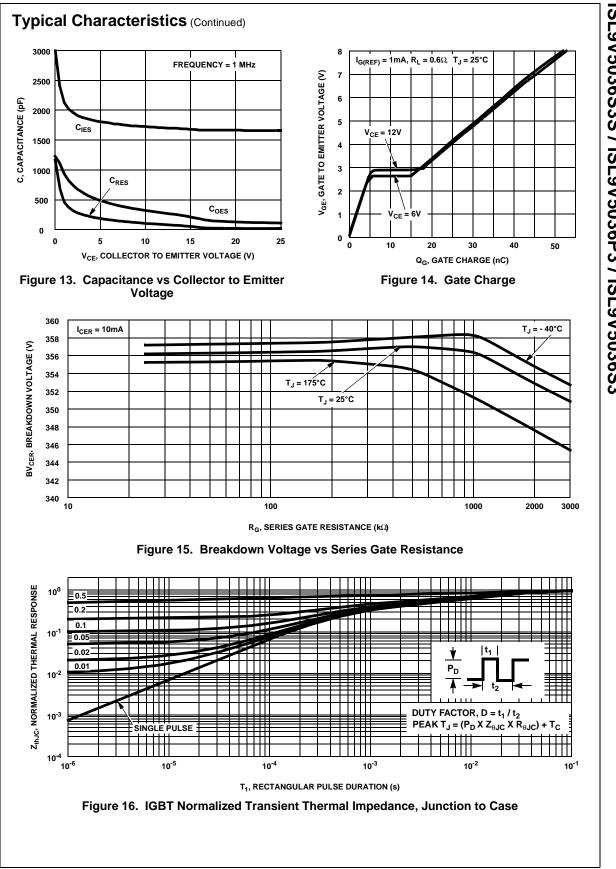
Coil-On Plug Applications

· Logic Level Gate Drive

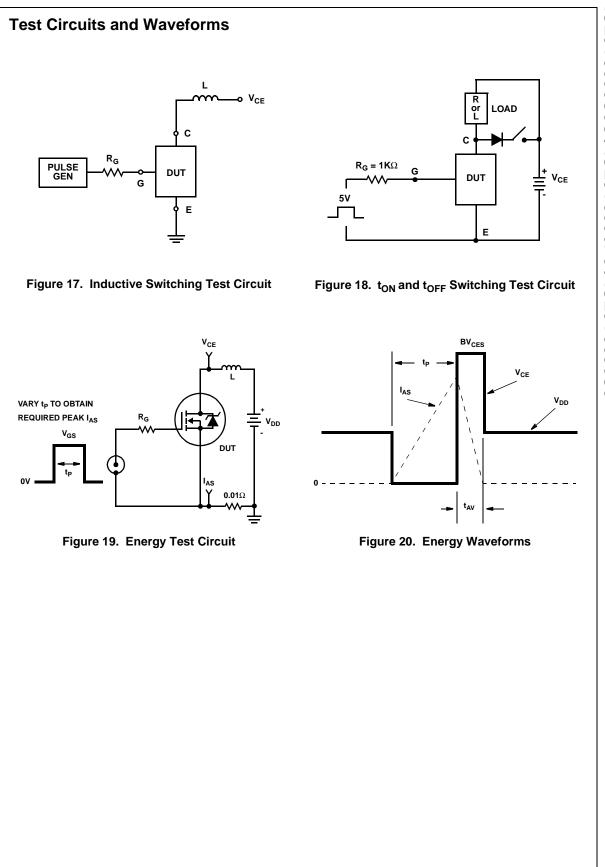

Device Maximum Ratings T_A = 25°C unless otherwise noted

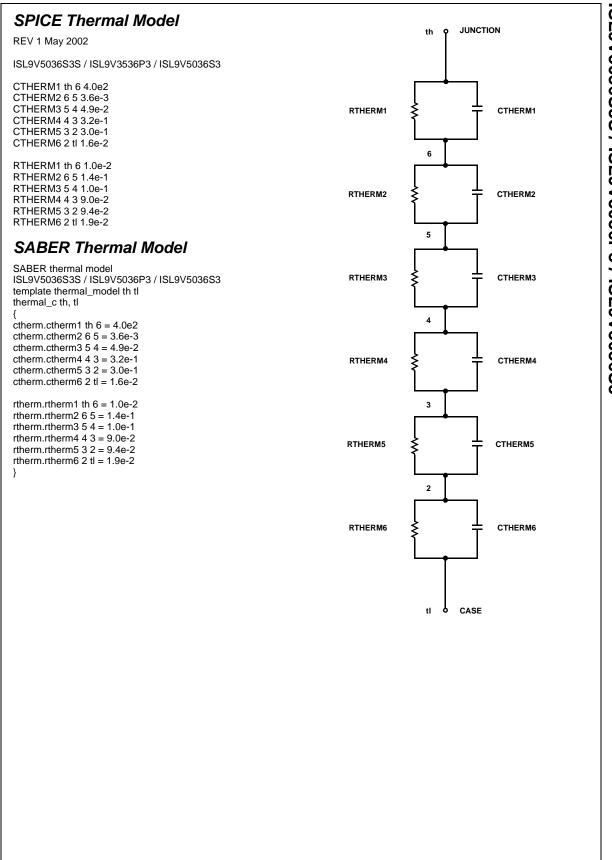
Symbol	Parameter	Ratings	Units	
BVCER	CER Collector to Emitter Breakdown Voltage (I _C = 1 mA)		V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25^{\circ}$ C, $I_{SCIS} = 38.5$ A, L = 670 μ Hy	500	mJ	
E _{SCIS150}	At Starting $T_J = 150^{\circ}$ C, $I_{SCIS} = 30$ A, $L = 670 \mu$ Hy	300	mJ	
I _{C25}			А	
I _{C110}	I _{C110} Collector Current Continuous, At T _C = 110°C, See Fig 9		A	
V_{GEM}	V _{GEM} Gate to Emitter Voltage Continuous		V	
PD	P_D Power Dissipation Total $T_C = 25^{\circ}C$		W	
	Power Dissipation Derating T _C > 25°C		W/°C	
Τ _J	Operating Junction Temperature Range	-40 to 175	°C	
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
TL	T _L Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)		°C	
Tpkg	T _{pkg} Max Lead Temp for Soldering (Package Body for 10s)		°C	
ESD			kV	


ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3


CONTRACTOR CONTRACTOR

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Device Marking		Device	Package	Reel Size	e	Tape Wic	lth	Quantity
V5038S ISL9V5036S3 TO-262AA Tube N/A V5036S ISL9V5036S3S TO-263AB Tube N/A Idectrical Characteristics Symbol Parameter Test Conditions Min Typ M ff State Characteristics BV _{CER} Collector to Emitter Breakdown Voltage $[c = 2mA, V_{GE} = 0, R_G = 1K0, See Fig. 15, T_J = 40 to 150°C 330 360 34 BVCES Collector to Emitter Breakdown Voltage [c = 75mA, V_{GE} = 0, R_G = 160, R_G = 40 to 150°C 300 - - BVCES Collector to Emitter Breakdown Voltage [c = 75mA, V_{GE} = 0, R_G = 160, $			ISL9V5036S3ST	TO-263AB	330mm		24mm		800
V5036SISL9V5036S3STO-263ABTubeN/Alectrical CharacteristicsSymbolParameterTest ConditionsMinTypMff State Characteristics BV_{CER} Collector to Emitter Breakdown Voltage $I_C = 2mA, V_{GE} = 0, R_G = 1K\Omega, See Fig. 15 T_1 = -40 to 150°C36039042BV_{CES}Collector to Emitter Breakdown VoltageI_C = 2mA, V_{GE} = 0, R_G = 0, See Fig. 15 T_1 = -40 to 150°C36039042BV_{CES}Collector to Emitter Breakdown VoltageI_C = -75mA, V_{GE} = 0, R_G = 0, See Fig. 15 T_1 = -40 to 150°C30BV_{CES}Emitter to Collector Breakdown VoltageI_C = -75mA, V_{GE} = 0, R_G = 150°C30BV_{CES}Gate to Emitter Breakdown VoltageI_{CE} = 25°CI_{CER}Collector to Emitter Leakage CurrentV_{CE} = 24V, See Fig. 11T_C = 25°CI_{ECS}Emitter to Collector Leakage CurrentV_{CE} = 24V, See Fig. 16T_C = 150°CI_{ECS}Emitter to Collector to Emitter Resistance10KR_2Gate to Emitter Resistance10KV_{CE(SAT)}Collector to Emitter Saturation VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 12V, V_{CE} = 12V, V_{CE} = 10N, V_{CE} = 12V$	V5036P ISL9V5036P3		TO-220AA	Tube		N/A		50	
	V5036S ISL9V5036S3		TO-262AA	Tube		N/A		50	
Interval in the second secon	V5036	S	ISL9V5036S3S	TO-263AB	TO-263AB Tube		N/A		50
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	trical	Chara	acteristics T _A = 25°C u	Inless otherwise n	oted				
				Ĩ		Min	Тур	Мах	Units
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tate Cl	haracte	ristics						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Collector to	o Emitter Breakdown Voltage	$I_{C} = 2mA, V_{GE}$	= 0,	330	360	390	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	OLIV			$R_G = 1K\Omega$, See Fig. 15					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_{CES} (Collector to Emitter Breakdown Voltage		$R_G = 0$, See Fig. 15		360	390	420	V
$ \begin{array}{c c_{CER}} & \mbox{Collector to Emitter Leakage Current} & \mbox{V}_{CER} = 250V, \\ R_G = 1K\Omega, \\ See Fig. 11 & \mbox{T}_G = 150^\circ C & - & - & 2 \\ \hline T_G = 150^\circ C & - & - & - & - & - \\ \hline T_G = 150^\circ C & - & - & - & - & - & - & - \\ \hline T_G = 150^\circ C & - & - & - & - & - & - & - & - & - &$	_{ECS} E	Emitter to Collector Breakdown Voltage				30	-	-	V
$\begin{array}{ c c c c c } \hline R_G = 1K\Omega & T_C = 150^\circ C & - & - & - & - & - & - & - & - & - &$	010		•				±14	-	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ER C	Collector to Emitter Leakage Current				-	-	25	μA
Fig. 11 $T_C = 150^{\circ}C$ 4R1Series Gate Resistance-75-R2Gate to Emitter Resistance10K-30n State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.0V$ $See Fig. 4$ -1.171. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $V_{GE} = 4.0V$ $See Fig. 4$ -1.501. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $V_{GE} = 4.5V$ T_C = 150°C-1.501. $V_{CE(SAT)}$ Gate Charge $I_C = 10A, V_{CE} = 12V, V_{GE} = 5V, See Fig. 14-32-V_{GE(TH)}Gate to Emitter Threshold VoltageI_C = 1.0mA, V_{CE} = V_{GE}, See Fig. 10T_C = 25°C1.3-22V_{GE}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 150°C0.75-1V_{GE}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 150°C0.75-1V_{GE}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 3.00-2.0-V_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 14V, R_L = 1\Omega, V_{CE} = 12V, V_{CE} = 3.00-2.1-V_{GE}U_{GE}U_{GE} = 5V, R_G = 1K\Omega, T_{J} = 25°C, See Fig. 12-2.1V_{GE}U_{GE}U_{GE} = 10V, R_G = 1K\Omega, T_{G} = 12V, V_{GE} = 5V, R_G = 1K\Omega, V_{GE} = 5V, R_G = 1K\Omega, V_{GE} = 5V, R_G = 1K\Omega, V_{GE}$				See Fig. 11	Ũ	-	-	1	mA
R1Series Gate Resistance-75R2Gate to Emitter Resistance10K-30n State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.0V$ $T_C = 25^{\circ}C$, $-$ 1.171. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.0V$ See Fig. 41.171. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $T_C = 150^{\circ}C$ -1.501. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{CE} = 12V$, $V_{GE} = 5V$, See Fig. 14-32 $V_{GE(TH)}$ Gate Charge $I_C = 10A$, $V_{CE} = 12V$, $V_{CE} = 25^{\circ}C$ 1.3-22 $V_{GE}(TH)$ Gate to Emitter Threshold Voltage $I_C = 10A$, $V_{CE} = 12V$ -3.0 V_{GEP} Gate to Emitter Plateau Voltage $I_C = 10A$, $V_{CE} = 12V$ -3.0 V_{GEP} Gate to Emitter Plateau Voltage $I_C = 10A$, $V_{CE} = 12V$ -3.0 V_{GEP} Gate to Emitter Plateau Voltage $I_C = 10A$, $V_{CE} = 12V$ -3.0 V_{GEP} Gate to Emitter Plateau Voltage $I_C = 10A$, $V_{CE} = 14V$, $R_L = 1\Omega$ -0.7 V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 30V$, $R_G = 1K\Omega$ -2.1 T_{TR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ -2.1 $T_{4}(OFF)L$ Current Turn-Off Delay Time-Inductive $V_{CE} = 5V$, $R_G = 1K\Omega$ -2.8 T_{4} Current Fa	cs E	Emitter to Collector Leakage Current			-	-	-	1	mA
R2Gate to Emitter Resistance10K-3Cn State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.0V$ $T_C = 25^{\circ}C$, $-$ 1.171. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $V_{GE} = 4.0V$ $T_C = 150^{\circ}C$ -1.501. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ -1.501.ynamic Characteristics $Q_{G(ON)}$ Gate Charge $I_C = 10A, V_{CE} = 12V, V_{CE} = 12V, V_{CE} = 5V, See Fig. 14-32-V_{GE(TH)}Gate to Emitter Threshold VoltageI_C = 1.0mA, V_{CE} = 12V, V_{CE} = 130^{\circ}C1.3-22V_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 130^{\circ}C3.0-V_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V, V_{CE} = 12V, V_{CE} = 130^{\circ}C-3.0witching CharacteristicsV_{CE} = 14V, R_L = 1\Omega, V_{CE} = 12V, $				Fig. 11	T _C = 150°C	-		40	mA
nState Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.0V$ $T_C = 25^{\circ}C$, See Fig. 41.171. $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ -1.501.ynamic Characteristics $Q_{G(ON)}$ Gate Charge $I_C = 10A$, $V_{CE} = 12V$, $V_{GE} = 5V$, See Fig. 14-32 $V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_C = 1.0mA$, $V_{CE} = V_{GE}$, See Fig. 10T_C = 25^{\circ}C1.3- V_{GEP} Gate to Emitter Plateau Voltage $I_C = 10A$, $V_{CE} = 14V$, $R_L = 10$, $V_{CE} = 12V$ -3.0witching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive T_R $V_{CE} = 14V$, $R_L = 10$, $T_J = 25^{\circ}C$, See Fig. 12-0.7 $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 2mH$, $T_J = 25^{\circ}C$, See Fig. 12-10.8 t_{fL} Current Fall Time-Inductive $V_{CE} = 30V$, $L = 670 \mu$ H, $T_J = 25^{\circ}C$, $C_F = 5V$, See SCISSelf Clamped Inductive Switching $T_J = 25^{\circ}C$, $L = 670 \mu$ H, $R_G = 1K\Omega$ SCISSelf Clamped Inductive Switching $T_J = 25^{\circ}C$, $L = 670 \mu$ H, $R_G = 1K\Omega$							75	-	Ω Ω
VGE = 4.5VQG(ON)Gate ChargeIC = 10A, VCE = 12V, VGE = 5V, See Fig. 14VGE(TH)Gate to Emitter Threshold VoltageIC = 1.0mA, VCE = VGE, See Fig. 14VGE(TH)Gate to Emitter Threshold VoltageIC = 1.0mA, VCE = VGE, See Fig. 10VGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPGate to Emitter Plateau VoltageIC = 10A, VCE = 12VVGEPCurrent Turn-On Delay Time-ResistiveVCE = 14V, RL = 10, VCE = 12Vtq(ON)RCurrent Rise Time-ResistiveVCE = 300V, L = 20H, TJ = 25°C, See Fig. 12tq(OFF)LCurrent Turn-Off Delay Time-InductiveVCE = 300V, L = 2mH, VGE = 5V, RG = 1KQtqLCurrent Fall Time-InductiveVGE = 5V, RG = 1KQTJ = 25°C, See Fig. 12ZSCISSelf Clamped Inductive SwitchingTJ = 25°C, L = 670 \muH, RG = 1KQ, VGE = 5V, See	(SAT)	Collector to Emitter Saturation Voltage		•		-	1.17	1.60	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(SAT) C	Collector to Emitter Saturation Voltage			T _C = 150°C	-	1.50	1.80	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	mic Cl	haracte	ristics						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(ON)	Gate Charge		I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14		-	32	-	nC
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(TH)	Gate to Er	nitter Threshold Voltage			1.3	-	2.2	V
witching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.7 t_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -2.1 $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 2mH,$ -10.8 t_{fL} Current Fall Time-Inductive $V_{GE} = 5V, R_G = 1K\Omega$ -2.8 $T_J = 25^{\circ}C, See Fig. 12$ SCISSelf Clamped Inductive Switching $T_J = 25^{\circ}C, L = 670 \mu H,$ 5 $R_G = 1K\Omega, V_{GE} = 5V, See$ 55				See Fig. 10		0.75	-	1.8	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GEP (Gate to Er	nitter Plateau Voltage	I _C = 10A,	$V_{CE} = 12V$	-	3.0	-	V
$ \begin{array}{c} t_{rR} \\ t_{rR} \\ t_{rR} \end{array} \begin{array}{c} \text{Current Rise Time-Resistive} \\ t_{d(OFF)L} \\ t_{d(OFF)L} \end{array} \begin{array}{c} \text{Current Turn-Off Delay Time-Inductive} \\ t_{fL} \\ t_{fL} \\ t_{fL} \end{array} \begin{array}{c} \text{Current Fall Time-Inductive} \\ \text{Current Fall Time-Inductive} \\ t_{fL} \\ \text{SCIS} \end{array} \begin{array}{c} \text{Self Clamped Inductive Switching} \\ \text{SCIS} \\ \text{Self Clamped Inductive Switching} \end{array} \begin{array}{c} \text{V}_{GE} = 5\text{V}, \text{ R}_{G} = 1\text{K}\Omega \\ \text{T}_{J} = 25^{\circ}\text{C}, \text{ See Fig. 12} \\ \text{T}_{J} = 25^{\circ}\text{C}, \text{ See Fig. 12} \\ \text{T}_{J} = 25^{\circ}\text{C}, \text{ See Fig. 12} \\ \text{Current Fall Time-Inductive Switching} \\ \text{T}_{J} = 25^{\circ}\text{C}, \text{ L} = 670 \ \mu\text{H}, \\ \text{R}_{G} = 1\text{K}\Omega, \ \text{V}_{GE} = 5\text{V}, \text{ See} \\ \text{Current Fall Time-Inductive Switching} \\ Curr$	hing C	Charact	eristics						
$ \begin{array}{c c} t_{rR} & \mbox{Current Rise Time-Resistive} & V_{GE} = 5V, R_G = 1K\Omega \\ T_J = 25^\circ C, See Fig. 12 & & & & & & \\ t_{d(OFF)L} & \mbox{Current Turn-Off Delay Time-Inductive} & V_{CE} = 300V, L = 2mH, & & & & & & \\ t_{fL} & \mbox{Current Fall Time-Inductive} & V_{GE} = 5V, R_G = 1K\Omega \\ T_J = 25^\circ C, See Fig. 12 & & & & & \\ T_J = 25^\circ C, See Fig. 12 & & & & & \\ SCIS & \mbox{Self Clamped Inductive Switching} & T_J = 25^\circ C, L = 670 \mu\text{H}, \\ R_G = 1K\Omega, V_{GE} = 5V, See & & & & & \\ \end{array} $	N)R	Current Tu	rn-On Delay Time-Resistive	V _{CE} = 14V, R _L =	V _{CE} = 14V, R _L = 1Ω,		0.7	4	μs
$ \begin{array}{c c} \hline c_{ICIT/L} & \hline c_{IT} & \hline c_{IT}$		Current Ri	se Time-Resistive	$V_{GE} = 5V, R_G = 1K\Omega$		-	2.1	7	μs
t_{fL} Current Fall Time-Inductive $V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25°C$, See Fig. 12-2.8SCISSelf Clamped Inductive Switching $T_J = 25°C$, $L = 670 \mu\text{H}$, $R_G = 1K\Omega$, $V_{GE} = 5V$, See-5						-	10.8	15	μs
$R_{G} = 1K\Omega$, $V_{GE} = 5V$, See	L			$T_J = 25^{\circ}C$, See Fig. 12		-	2.8	15	μs
	SIS	Self Clamped Inductive Switching			$R_G = 1K\Omega$, $V_{GE} = 5V$, See		-	500	mJ
nermal Characteristics	nal Ch	aracter	istics						
R _{θJC} Thermal Resistance Junction-Case TO-263, TO-220, TO-262 0	JC J	Thermal R	esistance Junction-Case	TO-263, TO-22	0, TO-262	-	-	0.6	°C/V





ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3

TRADEMARKS						
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.						
ACEx™ ActiveArray™		ISOPLANAR™ LittleFET™	Power247™ PowerEdge™	Stealth™ SuperFET™		
Bottomless™	FASTr™ FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3		
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6		
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8		
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™		
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic [®]		
E ² CMOS [™]	l²C™	MSXPro™	Quiet Series [™]	TINYOPTO™		
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™		
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™		
FACT Quiet Series™		OPTOLOGIC [®]	µSerDes™	UltraFET [®]		
Across the board. Around the world.™ The Power Franchise [®] Programmable Active Droop™		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER [®] SMART START™ SPM™	VCX™		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.