

October 2004

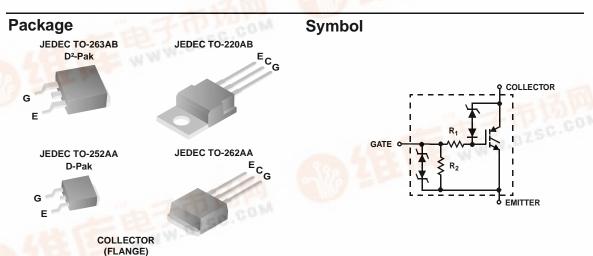
ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

EcoSPARK[™] 300mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V3040D3S, ISL9V3040S3S, ISL9V3040P3, and ISL9V3040S3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-262 and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK[™] devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.


Formerly Developmental Type 49362

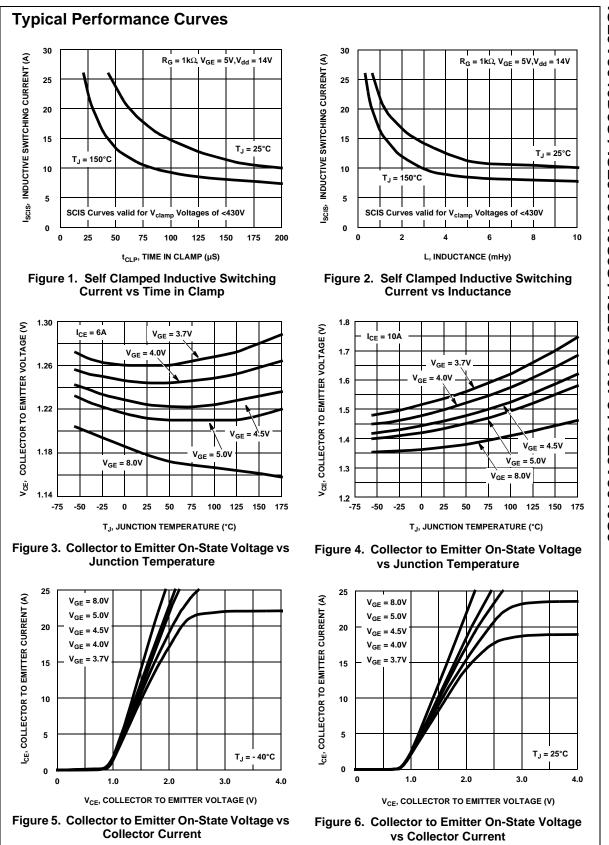
Applications

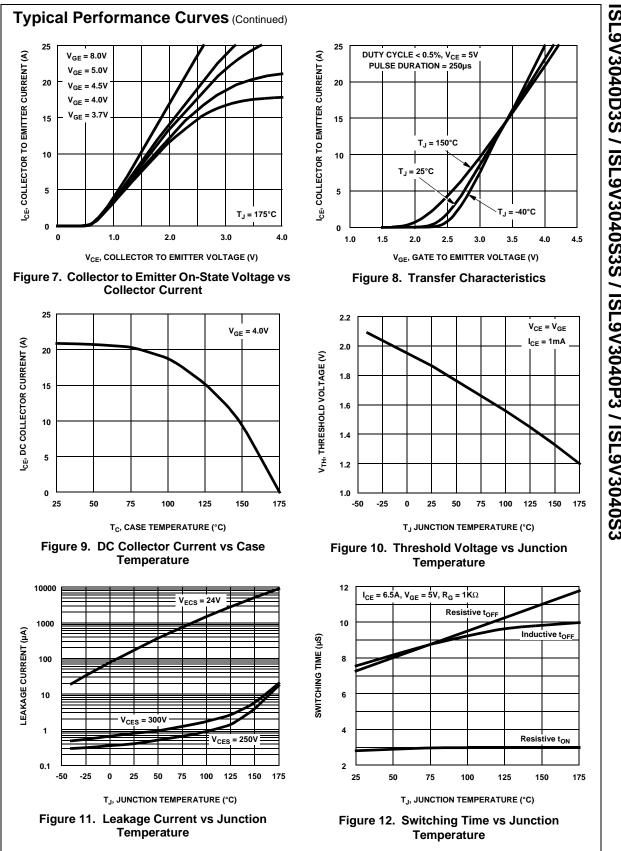
- Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

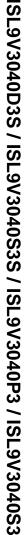
Features

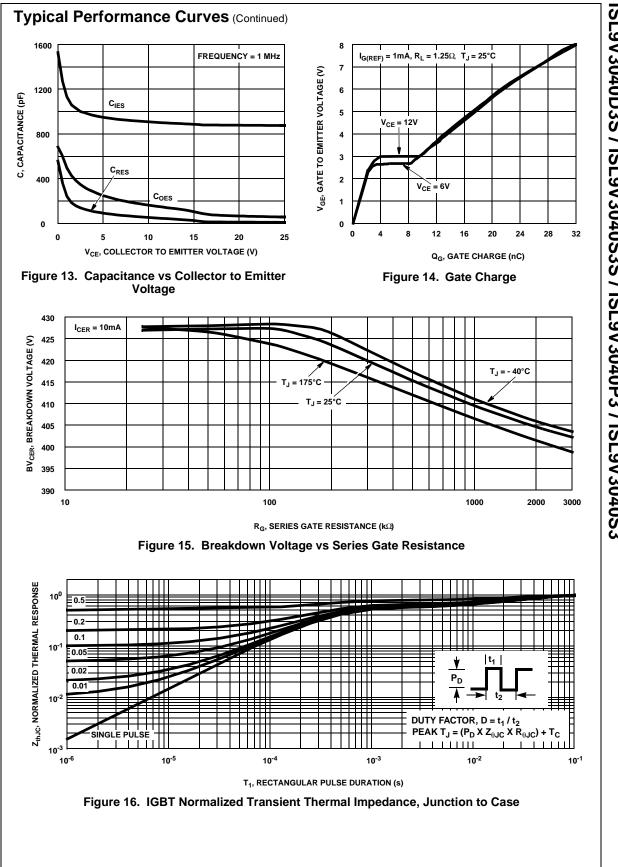
- Space saving D-Pak package availability
- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive

Device Maximum Ratings T_A = 25°C unless otherwise noted

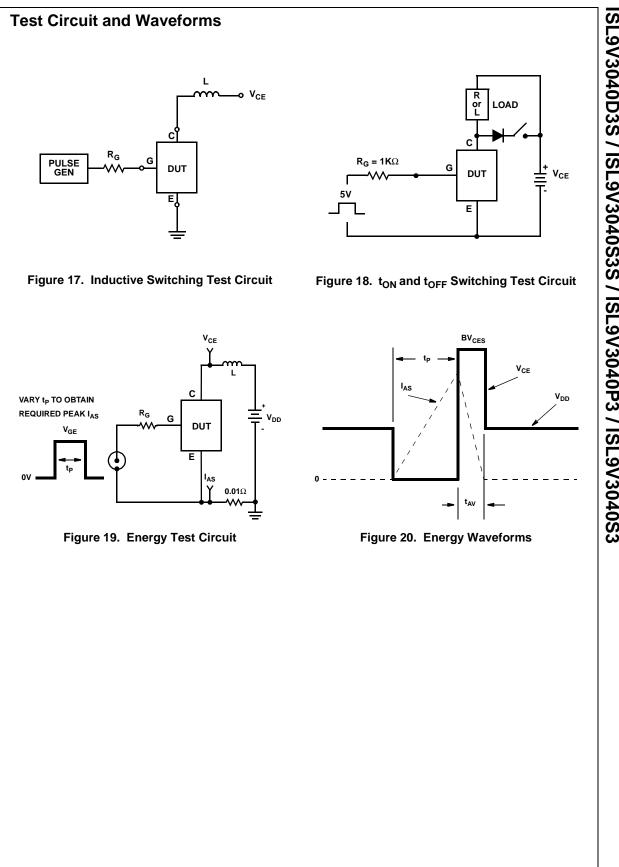

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25^{\circ}$ C, $I_{SCIS} = 14.2$ A, $L = 3.0$ mHy	300	mJ	
E _{SCIS150}	At Starting T _J = 150°C, I _{SCIS} = 10.6A, L = 3.0 mHy	170	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α	
I _{C110}	I _{C110} Collector Current Continuous, At T _C = 110°C, See Fig 9		Α	
V _{GEM}	GEM Gate to Emitter Voltage Continuous		V	
PD	P_D Power Dissipation Total $T_C = 25^{\circ}C$		W	
LES	Power Dissipation Derating T _C > 25°C	1.0	W/°C	
TJ Operating Junction Temperature Range		-40 to 175	°C	
T _{STG} Storage Junction Temperature Range		-40 to 175	°C	
T _L Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)		300	°C	
T _{pkg} Max Lead Temp for Soldering (Package Body for 10s)		260	°C	
ESD	ESD Electrostatic Discharge Voltage at 100pF, 1500 Ω 4			

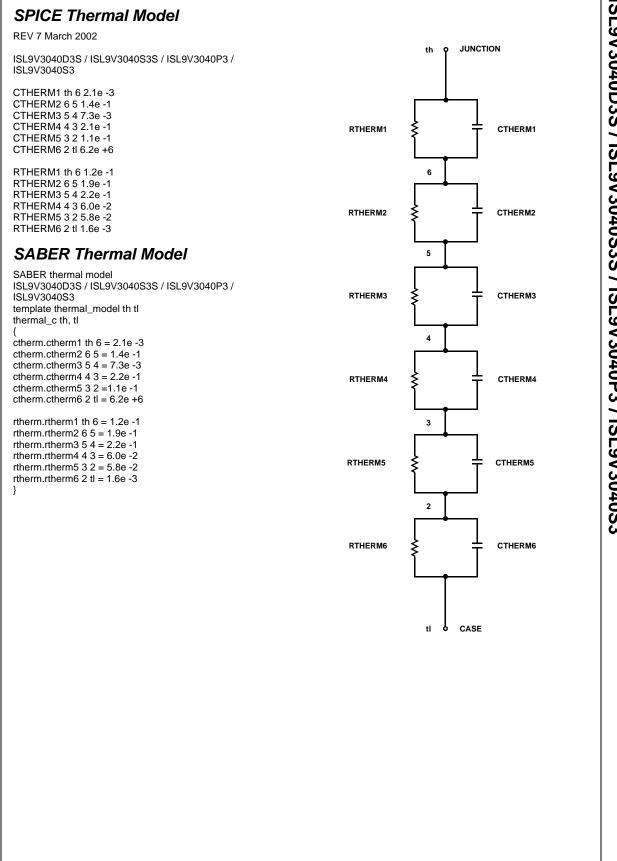

62004 Fairchild Semiconductor Corporation


	Device w	arking Device F		Package Reel Size		Tape Width		Quantity		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V304	0D	ISL9V3040D3ST TO		D-252AA	330mm	10			500
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V3040S ISL9V3040S3ST TC		D-263AB 330mm		24mm		800			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V304	0P		TC	D-220AA Tube		N/A		50	
V3040SISL9V3040S3STO-263ABTubeN/A50lectrical CharacteristicsSymbolParameterTest ConditionsMinTypMaxUnitsff State Characteristics BV_{CER} Collector to Emitter Breakdown Voltage $I_C = 2mA, V_{QE} = 0, R_Q = 1K\Omega, See Fig. 15$ $T_J = -40 to 150^{\circ}C$ 370400430V BV_{CES} Collector to Emitter Breakdown Voltage $I_C = 1mA, V_{QE} = 0, R_Q = 1K\Omega, See Fig. 15$ $T_J = -40 to 150^{\circ}C$ 390420450V BV_{CES} Collector to Emitter Breakdown Voltage $I_C = 75mA, V_{QE} = 0, R_Q = 0, R_Q = 1K\Omega, See Fig. 15$ $T_C = 40 to 150^{\circ}C$ 30V BV_{CES} Emitter to Collector Breakdown Voltage $I_C = 75mA, V_{QE} = 0, R_Q = 1K\Omega, R_Q = 180, R_Q = 1$			ISL9V3040S3		O-262AA Tube		N/A		50	
					D-252AA Tube		N/A		75	
								N/A		50
ff State Characteristics BV_{CER} Collector to Emitter Breakdown Voltage $I_C = 2mA, V_{QE} = 0, R_G = 1K\Omega, See Fig. 15 T_J = -40 to 150°C370400430VBV_{CES}Collector to Emitter Breakdown VoltageI_C = 10mA, V_{QE} = 0, R_G = 0, See Fig. 15 T_J = -40 to 150°C390420450VBV_{CES}Emitter to Collector Breakdown VoltageI_C = 75mA, V_{QE} = 0V, R_G = 0, See Fig. 15 T_J = -40 to 150°C30VBV_{CES}Gate to Emitter Breakdown VoltageI_{CE} = 25°C25\muAR_{CER}Collector to Emitter Leakage CurrentV_{CER} = 250V, R_G = 140, N_G = 150°C-1mAI_{CER}Collector to Emitter Leakage CurrentV_{CER} = 250V, R_G = 150°C1mAI_{ECS}Emitter to Collector Leakage CurrentV_{EC} = 24V, See Fig. 11T_C = 150°C1mAI_{ECS}Gate to Emitter Resistance10K-26K\OmegaN_{2E} = 320V, R_{2G} = 4VSee Fig. 1010K-26K\OmegaR_2Gate to Emitter Saturation VoltageI_C = 16A, V_{See} Fig. 4-70-\OmegaV_{CE(SAT)}Collector to Emitter Saturation VoltageI_C = 16A, V_{See} Fig. 14-17-nCV_{QE} = SA, See Fig. 12Collector to Emitter Saturation VoltageI_C = 16A, V_{GE} = 12V, See Fig. 14-17-nCV_{QE} = SA, See Fig. 14Collector to Emitter Saturation Voltage$	lectrica	al Cha	racteristics T _A = 2	5°C un	less otherwise n	oted				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				Test Conditions		Min	Тур	Max	Units
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Charact	eristics							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV _{CER}	Collecto	ector to Emitter Breakdown Voltage		$R_G = 1K\Omega$, See Fig. 15		370	400	430	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV _{CES}	Collecto	or to Emitter Breakdown Voltage		$R_G = 0$, See Fig. 15		390	420	450	V
$ \begin{array}{c c_{CR} \\ C_{CR} \\$	BV _{ECS}	Emitter t	o Collector Breakdown Vo	oltage	I _C = -75mA, V _{GE} = 0V,		30	-	-	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV _{GES}	Gate to	Emitter Breakdown Voltag	je	$I_{GES} = \pm 2mA$		±12	±14	-	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{CER}	Collecto	r to Emitter Leakage Curr	ent			-	-	25	μA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					See Fig. 11	Ĵ	-	-	1	mA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{ECS}	Emitter t	o Collector Leakage Curr	ent			-	-	1	mA
R2Gate to Emitter Resistance10K-26KΩn State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$, $V_{GE} = 4V$ $T_C = 25^{\circ}C$, See Fig. 3-1.251.60V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$, See Fig. 4-1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$, See Fig. 4-1.902.20Vynamic Characteristics $Q_{G(ON)}$ Gate Charge $I_C = 10A$, $V_{CE} = 12V$, $V_{CE} = 5V$, See Fig. 14-17-nC $V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_C = 10A, V_{CE} = 12V$, $V_{CE} = V_{GE}$, $See Fig. 10-1.8VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V-3.0-VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V-3.0-VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V-3.0-Vwitching CharacteristicsV_{CE} = 5V, R_G = 1K\Omega-0.74\must_{q(ON)R}Current Turn-On Delay Time-ResistiveV_{CE} = 300V, L = 500\mu-2.815\must_{q(OFF)L}Current Rise Time-ResistiveV_{CE} = 5V, R_G = 1K\Omega-2.815\must_{qL}Current Turn-Off Delay Tim$					Fig. 11	T _C = 150°C	-		40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						TUK	-	20K	Ω
$\begin{array}{ c c c c c c } \hline V_{GE} = 4V & See Fig. 3 & & & & & \\ \hline V_{GE}(SAT) & Collector to Emitter Saturation Voltage & I_C = 10A, & T_C = 150^\circ C, & - & 1.58 & 1.80 & V \\ \hline V_{CE}(SAT) & Collector to Emitter Saturation Voltage & I_C = 15A, & T_C = 150^\circ C & - & 1.90 & 2.20 & V \\ \hline V_{CE}(SAT) & Collector to Emitter Saturation Voltage & I_C = 15A, & T_C = 150^\circ C & - & 1.90 & 2.20 & V \\ \hline V_{GE}(AT) & Gate Characteristics & & & & \\ \hline V_{GE}(DN) & Gate Charge & I_C = 10A, V_{CE} = 12V, & - & 17 & - & nC \\ \hline V_{GE}(TH) & Gate to Emitter Threshold Voltage & I_C = 1.0mA, & & T_C = 25^\circ C & 1.3 & - & 2.2 & V \\ \hline V_{CE} = V_{GE}, & & & \\ \hline See Fig. 10 & & & & \\ \hline V_{GE} P & Gate to Emitter Plateau Voltage & I_C = 10A, V_{CE} = 12V & - & 3.0 & - & V \\ \hline \textbf{witching Characteristics} & & & \\ \hline t_{rR} & Current Turn-On Delay Time-Resistive & V_{CE} = 14V, R_L = 1\Omega, & & & & \\ \hline t_{rR} & Current Rise Time-Resistive & V_{CE} = 5V, R_G = 1K\Omega & & & & & \\ \hline t_{fL} & Current Turn-Off Delay Time-Inductive & V_{CE} = 300V, L = 500\muHy, & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & & & & & & & & \\ \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & & & & & & & & & & & & & & & & & & &$						T 0500		4.05	4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	$V_{GE} = 4V$	See Fig. 3	-			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				-	V _{GE} = 4.5V	See Fig. 4	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{CE(SAT)}	Collecto	r to Emitter Saturation Voltage		•	T _C = 150°C	-	1.90	2.20	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ynamic (Charact	eristics							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{G(ON)}	Gate Ch	arge		I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14		-	17	-	nC
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{GE(TH)}	Gate to	Emitter Threshold Voltage)			1.3	-	2.2	-
					See Fig. 10	Ũ	0.75	-	1.8	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V_{GEP}	Gate to	Emitter Plateau Voltage		$I_{C} = 10A, V_{CE} = 12V$		-	3.0	-	V
$ \begin{array}{c} \hline t_{rR} \\ t_{rR} \\ \hline t_{rR} \\ \hline current Rise Time-Resistive \\ \hline t_{d(OFF)L} \\ \hline t_{d(OFF)L} \\ \hline current Turn-Off Delay Time-Inductive \\ \hline t_{fL} \\ \hline current Fall Time-Inductive \\ \hline current Fall Time-I$	witching	Charao	cteristics							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{d(ON)R}	Current	Turn-On Delay Time-Resi	stive			-	0.7	4	μs
$ \begin{array}{c c} \hline t_{fL} & Current Fall Time-Inductive & V_{GE} = 5V, R_G = 1K\Omega & - & 2.8 & 15 & \mu s \\ \hline T_J = 25^\circ C, See Fig. 12 & - & 2.8 & 15 & \mu s \\ \hline T_J = 25^\circ C, See Fig. 12 & - & 300 & mJ \\ \hline R_G = 1K\Omega, V_{GE} = 5V, See & - & 0 & mJ \\ \hline \end{array} $	t _{rR}				T _J = 25°C, See Fig. 12		-	2.1		μs
$T_{J} = 25^{\circ}C, \text{ See Fig. 12}$ SCIS Self Clamped Inductive Switching $T_{J} = 25^{\circ}C, \text{ L} = 3.0 \text{ mHy}, - 300 \text{ mJ}$ $R_{G} = 1K\Omega, V_{GE} = 5V, \text{ See}$	t _{d(OFF)L}	-	•	ctive			-	-		μs
$R_G = 1K\Omega$, $V_{GE} = 5V$, See	t _{fL}	Current	Fall Time-Inductive				-	2.8	15	μs
	SCIS	Self Cla	mped Inductive Switching		$R_G = 1K\Omega$, $V_{GE} = 5V$, See		-	-	300	mJ
	nermal C				All packages					


©2004 Fairchild Semiconductor Corporation

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 Rev. D3, October 2004





ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

TRADEMARKS						
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.						
ACEx™ ActiveArray™		ISOPLANAR™ LittleFET™	Power247™ PowerEdge™	Stealth™ SuperFET™		
Bottomless™	FASTr™ FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3		
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6		
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8		
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™		
EcoSPARK™ HiSeC™		MSX™	QT Optoelectronics [™]	TinyLogic [®]		
E ² CMOS [™]	l²C™	MSXPro™	Quiet Series [™]	TINYOPTO™		
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™		
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™		
FACT Quiet Series [™]		OPTOLOGIC [®]	μSerDes™	UltraFET [®]		
Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER [®] SMART START™ SPM™	VCX™		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.