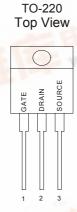


CMT09N20

Power MOSFET


GENERAL DESCRIPTION

This Power MOSFET is designed for low voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.

FEATURES

- Dynamic dv/dt Rating
- ◆ Repetitive Avalanche Rated
- ◆ Fast Switching
- ◆ Ease of Paralleling
- Simple Drive Requirements

PIN CONFIGURATION

SYMBOL

N-Channel MOSFET

ORDERING INFORMATION

Part Number	Package
CMT09N20N220	TO-220

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Current — Continuous — Pulsed (Note 1)	I_D	9.0	Α
Pulsed (Note 1)	I_{DM}	36	
Gate-to-Source Voltage — Continue	V_{GS}	±20	V
Total Power Dissipation	P_D	74	W
Derate above 25℃	17.12	0.59	W/°C
Single Pulse Avalanche Energy (Note 2)	E _{AS}	56	mJ
Avalanche Current (Note 1)	I _{AR}	9.0	Α
Repetitive Avalanche Energy (Note 1)	E _{AR}	7.4	mJ
Peak Diode Recovery dv/dt	dv/dt	5.0	V/ns
Operating and Storage Temperature Range	T_J , T_{STG}	-55 to 150	$^{\circ}\mathbb{C}$
Thermal Resistance — Junction to Case	θ_{JC}	1.70	°CW
 Junction to Ambient 	θ_{JA}	62	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	300	$^{\circ}\mathbb{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^{\circ}C$.

			CMT09N20			
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		$V_{(BR)DSS}$	200			V
$(V_{GS} = 0 \text{ V}, I_D = 250 \ \mu \text{ A})$						
Drain-Source Leakage Current		I _{DSS}				μA
$(V_{DS} = 200V, V_{GS} = 0 V)$					25	
$(V_{DS} = 160V, V_{GS} = 0 V, T_{J} = 125^{\circ}C)$					250	
Gate-Source Leakage Current-Forward		I_{GSSF}			100	nA
$(V_{gsf} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate-Source Leakage Current-Reve	rse	I_{GSSR}			-100	nA
$(V_{gsr} = -20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate Threshold Voltage		$V_{GS(th)}$	2.0		4.0	V
$(V_{DS} = V_{GS}, I_D = 250 \ \mu A)$						
Static Drain-Source On-Resistance	$(V_{GS} = 10 \text{ V}, I_D = 5.4\text{A}) \text{ (Note 4)}$	R _{DS(on)}			0.40	Ω
Forward Transconductance ($V_{DS} = 50V$, $I_{D} = 5.4$ A) (Note 4)		g FS	3.8			mhos
Input Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz)	C _{iss}		800		pF
Output Capacitance		C _{oss}		240		pF
Reverse Transfer Capacitance		C_{rss}		76		pF
Turn-On Delay Time		$t_{d(on)}$		9.4		ns
Rise Time	$(V_{DD} = 100 \text{ V}, I_D = 5.9 \text{ A},$	t _r		28		ns
Turn-Off Delay Time	$R_G = 12\Omega, R_D = 16\Omega)$ (Note 4)	$t_{d(off)}$		39		ns
Fall Time		t _f		20		ns
Total Gate Charge	(V _{DS} = 160V, I _D = 5.9A V _{GS} = 10 V) (Note 4)	Q_g			43	nC
Gate-Source Charge		Q_gs			7.0	nC
Gate-Drain Charge		Q_gd			23	nC
Internal Drain Inductance		L _D		4.5		nH
(Measured from the drain lead 0.2	5" from package to center of die)					
Internal Drain Inductance		Ls		7.5		nH
(Measured from the source lead 0.25" from package to source bond pad)						
SOURCE-DRAIN DIODE CHARAC	TERISTICS					
Reverse Recovery Charge	I _F = 5.9A, di/dt = 100A/μs , T _J = 25°C (Note 4)	Q _{rr}		1.1	2.2	μC
Forward Turn-On Time		t _{on}		**		
Reverse Recovery Time		t _{rr}		170	340	ns
Diode Forward Voltage	$I_S = 9.0A, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$ (Note 4)	V_{SD}			1.5	V

Note

- (1) Repetitive rating; pulse width limited by max. junction temperature
- (2) V_{DD} = 100V, V_{GS} = 10V , starting T_J = 25 $^{\circ}$ C, L=1.38mH, R_G = 25 Ω , I_{AS} = 9.0A
- (4) Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$
- ** Negligible, Dominated by circuit inductance

TYPICAL ELECTRICAL CHARACTERISTICS

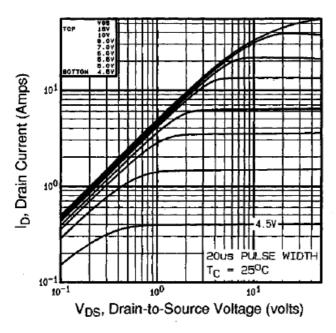


Fig 1. Typical Output Characteristics, Tc=25°C

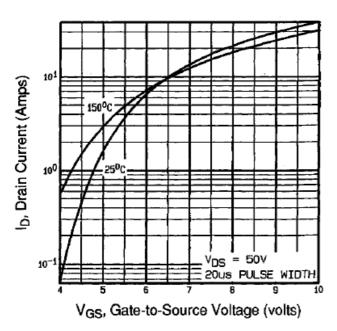


Fig 3. Typical Transfer Characteristics

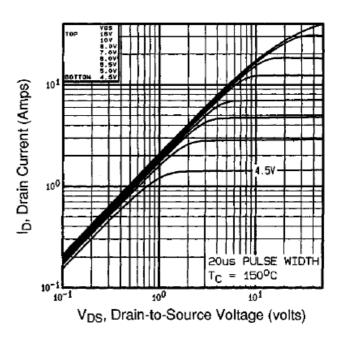


Fig 2. Typical Output Characteristics, Tc=150°C

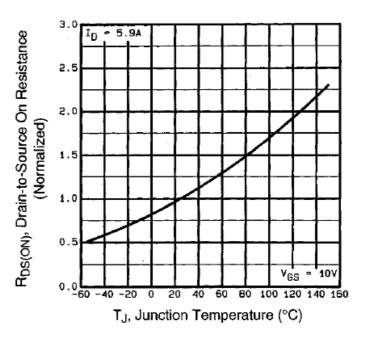


Fig 4. Normalized On-Resistance Vs. Temperature

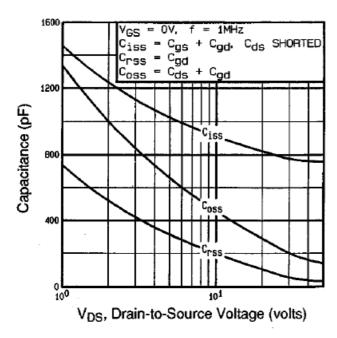


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

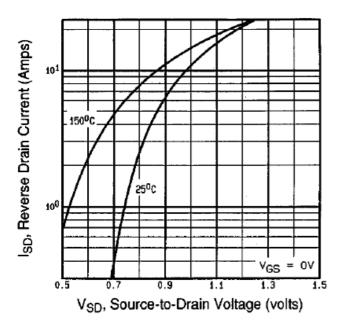


Fig 7. Typical Source-Drain Diode Forward Voltage

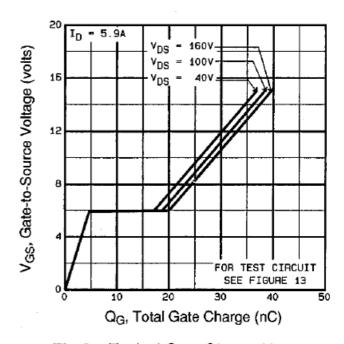


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

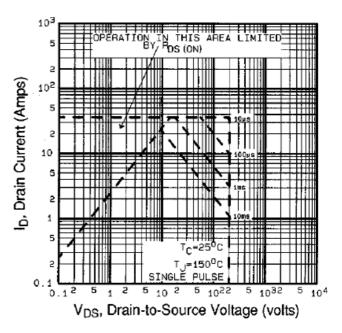


Fig 8. Maximum Safe Operating Area

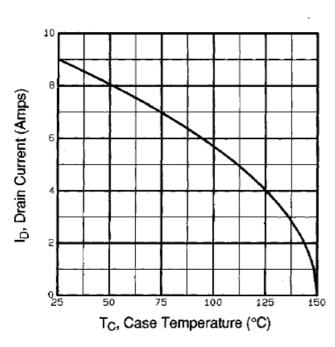


Fig 9. Maximum Drain Current Vs. Case Temperature

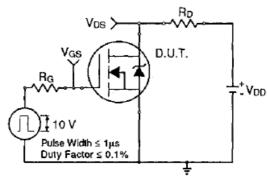


Fig 10a. Switching Time Test Circuit

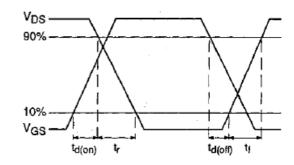


Fig 10b. Switching Time Waveforms

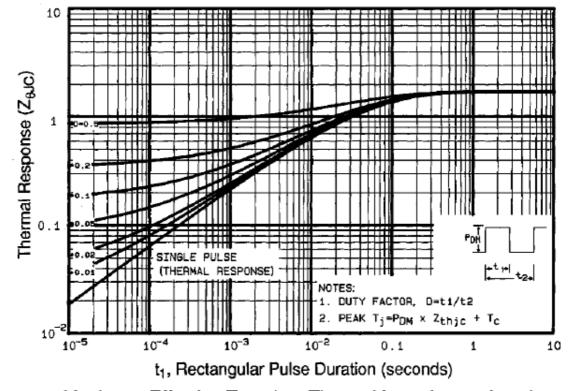


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

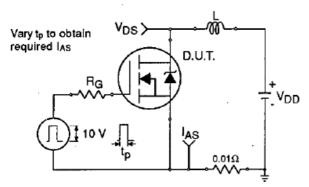


Fig 12a. Unclamped Inductive Test Circuit

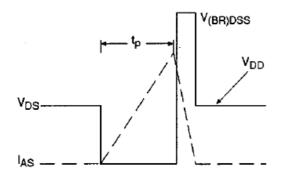


Fig 12b. Unclamped Inductive Waveforms

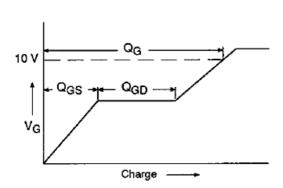


Fig 13a. Basic Gate Charge Waveform

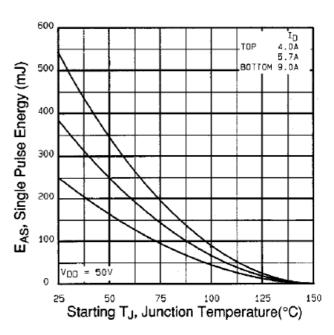


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

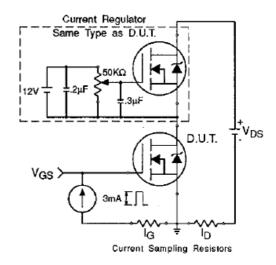
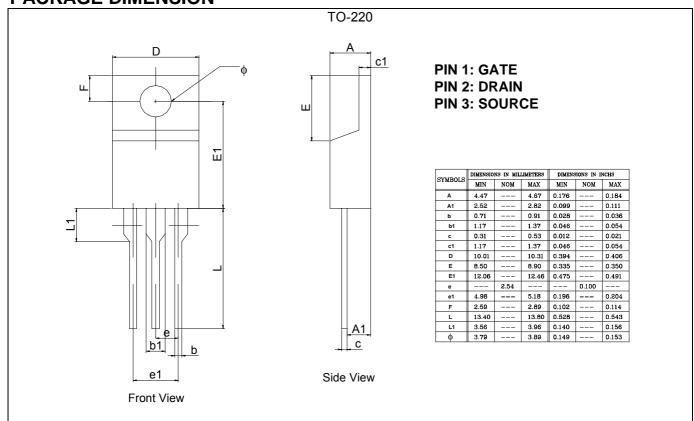



Fig 13b. Gate Charge Test Circuit

PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596