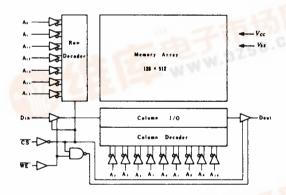
HM626770Series

捷多邦,专业PCBIMaInterlande Only

Refer to HM6287H Series

65536-word x 1-bit High Speed CMOS Static RAM


■ FEATURES


- High Speed: Fast Access Time 45/55/70ns (max.)
- Single 5V Supply and High Density 22 Pin Package
- Low Power Standby and Low Power Operation Standby: 100μW (typ.)/10μW (typ.) (L-version) Operation: 300mW (typ.)
- Completely Static Memory
 No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Directly TTL Compatible: All Inputs and Output
- Capability of Battery Back Up Operation (L-version)

■ ORDERING INFORMATION

Type No.	Access Time	Package
HM6287P-45	45ns	
HM6287P-55	55ns	
HM6287P-70	70ns	300 mil 22 pin Plastic DIP
HM6287LP-45	45ns	
HM6287LP-55	55ns	
HM6287LP-70	70ns	

BLOCK DIAGRAM

PIN ARRANGEMENT

TRUTH TABLE

CS	WE	Mode	V _{CC} Current	Dout Pin	Ref. Cycle
Н	х	Not Selected	I _{SB} , I _{SB1}	High Z	
L	Н	Read	Icc	Dout	Read Cycle
L	L	Write	I _{CC}	High Z	Write Cycle

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V_{SS}	V_T	-0.5°1 to +7.0	V
Power Dissipation	P_T	1.0	W
Operating Temperature	Topr	0 to +70	°c
Storage Temperature	Tetg	-55 to +125	°C
Temperature Under Bias	Tbias	-10 to +85	°C

Note) *1. -3.5V for pulse width ≤ 20 ns

■ RECOMMENDED DC OPERATING CONDITIONS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$)

Item	Symbol	min	typ	max	Unit
	Vcc	4.5	5.0	5.5	v
Supply Voltage	V _{SS}	0	0	0	V
	V _{IH}	2.2	-	6.0	v
Input Voltage	V_{IL}	-0.5 ^{*1}	-	0.8	V

Note) *1. -3.0V for pulse width ≤ 20ns

■ DC AND OPERATING CHARACTERISTICS (V_{CC} = 5V ± 10%, V_{SS} = 0V, T_a = 0 to +70°C)

Item	Symbol	Test Conditions	min	typ*1	max	Unit
Input Leakage Current	ILI	V_{CC} = 5.5V, V_{in} = V_{SS} to V_{CC}	_		2.0	μА
Output Leakage Current	ILOI	$\overline{CS} = V_{IH}, V_{out} = V_{SS} \text{ to } V_{CC}$			2.0	μA
Operating Power Supply Current	ICC	$\overline{CS} = V_{IL}$, $I_{out} = 0$ mA, min. cycle		60	100	mA
Operating to work depths,	I _{SB}	$\overline{\text{CS}} = V_{IH}$, min. cycle		10	30	mA
Standby Power Supply Current	- 55	$\overline{CS} \ge V_{CC}-0.2V$		0.02	2.0	mA
Standby rower supply current	I _{SB1}	$0V \leq V_{in} \leq 0.2V \text{ or } V_{CC} - 0.2V \leq V_{in}$	_	2*2	100°2	μA
	VOL	I _{OL} = 8mA		_	0.4	v
Output Voltage	VOH	$I_{OH} = -4.0$ mA	2.4	Ι-		V

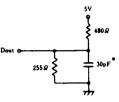
Notes) *1. Typical limits are at V_{CC} = 5.0V, T_a = 25°C and specified loading. *2. This characteristics is guaranteed only for L-version.

■ CAPACITANCE (f = 1 MHz, $T_a = 25 ^{\circ}\text{C}$)

Item	Symbol	Test Conditions	min	typ	max	Unit
Input Capacitance	Cin	V _{in} = 0V	-		5	pF
Output Capacitance	Cout	V _{out} = 0V		-	7.5	pF

Note) This parameter is sampled and not 100% tested.

■ AC CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $T_a = 0$ to +70°C, unless otherwise noted)


• AC TEST CONDITIONS

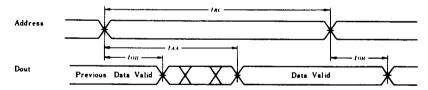
Input Pulse Levels: VSS to 3.0V Input Rise and Fall Times: 5ns

Input and Output Timing Reference Levels: 1.5V

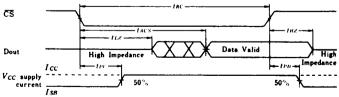
Output Load: See Figure

Output Load A

Output Load B


Including scope & jig capacitance

#Including scope & jig capacitance

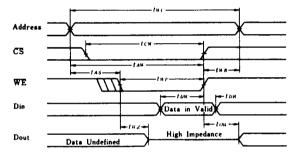

READ CYCLE

Item	Symbol	HM6287-45		HM6287-55		HM6287-70		11-:4	Ι., .
item	Symbol	min	max	min	max	min	max	Unit	Notes
Read Cycle Time	†RC	45	_	55	-	70	-	ns	1
Address Access Time	†AA	_	45	_	55	_	70	ns	
Chip Select Access Time	†ACS	_	45	_	55	-	70	ns	
Output Hold from Address Change	†OH	5		5	-	5	-	ns	
Chip Selection to Output in Low Z	tLZ	5	-	5	_	5	_	ns	2, 3, 7
Chip Deselection to Output in High Z	†HZ	0	30	0	30	0	30	ns	2, 3, 7
Chip Selection to Power Up Time	†PU	0	_	0	-	0	-	ns	7
Chip Deselection to Power Down Time	tPD	_	40		40		40	ns	7

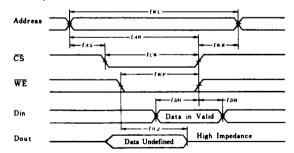
Timing Waveform of Read Cycle No. 1 (4)(5)

Timing Waveform of Read Cycle No. 2⁽⁴⁾⁽⁶⁾

Notes:


- 1. All Read Cycle timings are referenced from last valid address to the first transitioning address.
- 2. At any given temperature and voltage condition, tHZ max, is less than tLZ min, both for a given device and from device to device.
- Transition is measured ±500 mV from steady state voltage with specified loading in Load B.
- 4. WE is high for READ Cycle.
- 5. Device is continuously selected, while $\overline{CS} = V_{IL}$.
- 6. Address valid prior to or coincident with CS transition low.
- 7. This parameter is sampled and not 100% tested.

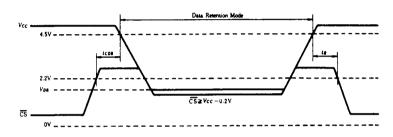
(C) HITACHI


WRITE CYCLE

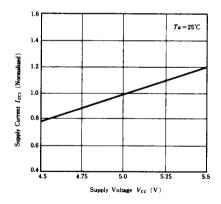
•	0	HM62	HM6287-45		HM6287-55		87-70	Unit	Notes
Item	Symbol	min	max	min	max	min	max	Omi	Notes
Write Cycle Time	tWC	45	-	55	-	70	-	ns	2
Chip Selection to End of Write	tCW	40		50	_	55	-	ns	
Address Valid to End of Write	tAW.	40	_	50	[-	55	-	ns	
Address Setup Time	tAS.	0	_	0		0	-	ns	
Write Pulse Width	tWP	25		35		40	-	ns	
Write Recovery Time	tWR	0	-	0	-	0		ns	
Data Valid to End of Write	†DW	25		25	-	30		ns	
Data Hold Time	t DH	0	_	0	-	0	-	ns	l
Write Enabled to Output in High Z	twz	0	25	0	25	0	30	ns	3,4
Output Active from End of Write	tow	0	T -	0	-	0	_	ns	3,4

● Timing Waveform of Write Cycle No. 1 (WE Controlled)

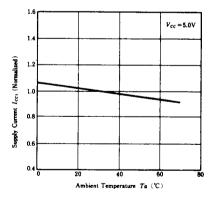
● Timing Waveform of Write Cycle No. 1 (CS Controlled)

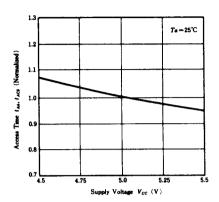

- Notes)
 1. If CS goes high Simultaneously with WE high, the output remains in a high impedance state.
 2. All Write Cycle timings are referenced from the last valid address to the first transitioning address.
 - 3. Transition is measured ±500mV from steady state voltage with specified loading in Load B.
 - 4. This parameter is sampled and not 100% tested.

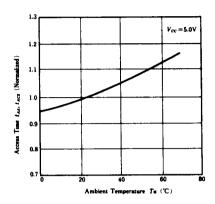
■ LOW V_{CC} DATA RETENTION CHARACTERISTICS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$) This characteristics is guaranteed only for L-version.

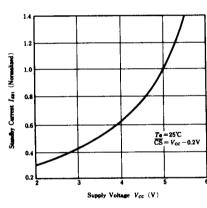

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
VCC for Data Retention	V _{DR}	$\frac{\overline{CS} \ge VCC - 0.2V}{Vin \ge VCC - 0.2V}$ or	2.0	-		V
Data Retention Current	ICCDR	$\begin{array}{c c} Vin \leq VCC^{-0.2}V & 0.2V \\ 0V \leq Vin \leq 0.2V \end{array}$	-	1	50*2	μA
Chip Deselect to Data Retention Time	†CDR	See retention wave-	0	-	-	ns
Operation Recovery Time	t _R	form	tRC*1	-	-	ns

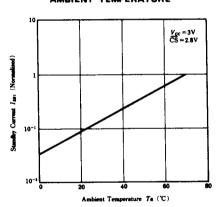
Note) *1. t_{RC} = Read Cycle Time *2. V_{CC} = 3.0V

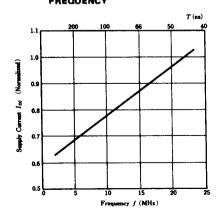

LOW V_{CC} DATA RETENTION WAVEFORM

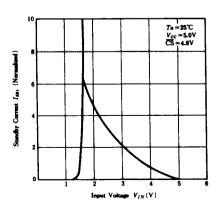

SUPPLY CURRENT vs. SUPPLY VOLTAGE

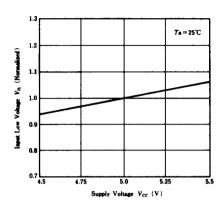

SUPPLY CURRENT Vs. AMBIENT TEMPERATURE

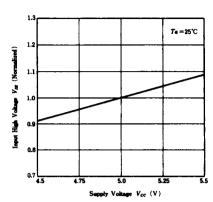

ACCESS TIME vs. SUPPLY VOLTAGE

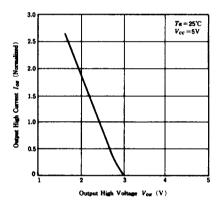

ACCESS TIME VS. AMBIENT TEMPERATURE

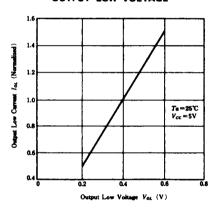

STANDBY CURRENT VS. SUPPLY VOLTAGE


STANDBY CURRENT vs. AMBIENT TEMPERATURE


SUPPLY CURRENT W. FREQUENCY


STANDBY CURRENT VS. INPUT VOLTAGE


INPUT LOW VOLTAGE VS. SUPPLY VOLTAGE


INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE

OUTPUT HIGH CURRENT VS. OUTPUT HIGH VOLTAGE

OUTPUT LOW CURRENT WS. OUTPUT LOW VOLTAGE

