

April 2006

LM185QML Adjustable Micropower Voltage References

General Description

The LM185 are micropower 3-terminal adjustable band-gap voltage reference diodes. Operating from 1.24 to 5.3V and over a 10µA to 20mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long-term stability result. Careful design of the LM185 has made the device tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent

The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

Features

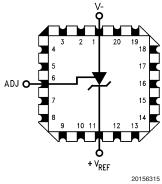
- Adjustable from 1.24V to 5.30V
- Operating current of 10µA to 20mA
- 1Ω dynamic impedance
- Low temperature coefficient

Ordering Information

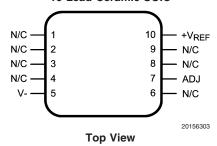
regulation.

NS Part Number	SMD Part Number	NS Package Number	Package Description
LM185BE/883	WWW.OZB	E20A	20LD Leadless Chip Carrier
LM185BH/883	- March	H03H	3LD; T0-46 Metal Can
LM185BYH/883		H03H	3LD; T0-46 Metal Can
LM185BYH-SMD	5962-9091401MXA	H03H	3LD; T0-46 Metal Can
LM185BWG/883	5962-9091402QYA	WG10A	10LD Ceramic SOIC

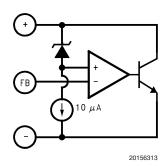
Connection Diagrams


TO-46
Metal Can Package

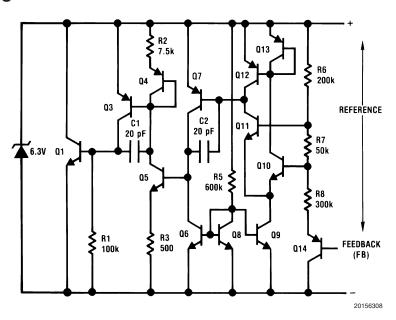
Bottom View


Connection Diagrams (Continued)

20-Leadless Chip Carrier



Top View


10-Lead Ceramic SOIC

Block Diagram

Schematic Diagram

Absolute Maximum Ratings (Note 1)

Forward Current 10mA $-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$ Operating Temperature Range $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 150^{\circ}\text{C}$ Storage Temperature Maximum Junction Temperature T_{Jmax} 150°C Lead Temperature (soldering, 10 seconds) 300°C Thermal Resistance θ_{JA} LCC Package (Still Air) 100°C/W LCC Package (500LF/Min Air flow) 73°C/W Metal Can Package (Still Air) 300°C/W 139°C/W Metal Can Package (500LF/Min Air flow) Ceramic SOIC Package (Still Air) 194°C/W

30mA

128°C/W

 θ_{JC}

Reverse Current

LCC Package25°C/WMetal Can Package57°C/WCeramic SOIC Package23°C/W

Package Weight (Typical)

LCC Package TBD

Metal Can Package TBD

Ceramic SOIC Package 210mg

ESD Tolerance (Note 2) 500V

Quality Conformance Inspection

Ceramic SOIC Package (500LF/Min Air flow)

Mil-Std-883, Method 5005 - Group A

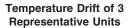
Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

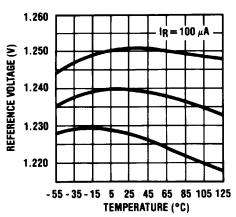
LM185B Electrical Characteristics DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V_{Ref}	Reference Voltage	I _R = 100μA		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		I _R = 9μA		1.228	1.252	V	1
		I _R = 10μA		1.215	1.255	V	2, 3
		I _R = 1mA		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		I _R = 20mA		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		$V_R = 5.3V, I_R = 100\mu A$		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		$V_{R} = 5.3V, I_{R} = 45\mu A$		1.288	1.252	V	1
		$V_{R} = 5.3V, I_{R} = 50\mu A$		1.215	1.255	V	2, 3
		$V_R = 5.3V, I_R = 1.0mA$		1.288	1.252	V	1
				1.215	1.255	V	2, 3
		$V_R = 5.3V, I_R = 20mA$		1.288	1.252	V	1
				1.215	1.255	V	2, 3
$\Delta V_{Ref} / \Delta I_{R}$	Reference Voltage Change with	9μA ≤ I _R ≤ 1mA			1.0	mV	1
	Current	10μA ≤ I _R ≤ 1mA			1.5	mV	2, 3
		1mA ≤ I _R ≤ 20mA			10	mV	1
					20	mV	2, 3
		$V_{R} = 5.3V, 45\mu A \le I_{R} \le 1mA$			1.0	mV	1
		$V_{R} = 5.3V, 50\mu A \le I_{R} \le 1mA$			1.5	mV	2, 3
		$V_R = 5.3V$, $1mA \le I_R \le 20mA$			10	mV	1
					20	mV	2, 3
∆V _{Ref} /	Reference Voltage Change with	$V_{R} = 5.3V, I_{R} = 100\mu A$			3.0	mV	1
V_{O}	Output Voltage				6.0	mV	2, 3
F	Feedback Current	I _R = 9μA			20	nA	1
		I _R = 10μA			25	nA	2, 3
		$I_R = 20mA$			20	nA	1
					25	nA	2, 3
		$V_R = 5.3V, I_R = 45\mu A$			20	nA	1
		$V_R = 5.3V, I_R = 50\mu A$			25	nA	2, 3
		$V_{R} = 5.3V, I_{R} = 20mA$			20	nA	1
					25	nA	2, 3
С	Minimum Operating Current	$V_R = V_{Ref}$	(Note 3)	9.0		μΑ	1
			(Note 3)	10		μΑ	2, 3
		V _R = 5.3V	(Note 3)	45		μΑ	1
			(Note 3)	50		μΑ	2, 3

LM185BY Electrical Characteristics DC Parameters

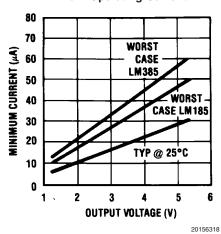
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{Ref}	Reference Voltage	$I_R = 100 \mu A$		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		I _R = 9μΑ		1.228	1.252	V	1
		I _R = 10μA		1.215	1.255	V	2, 3
		I _R = 1mA		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		I _R = 20mA		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		$V_{R} = 5.3V, I_{R} = 100\mu A$		1.228	1.252	V	1
				1.215	1.255	V	2, 3
		$V_{R} = 5.3V, I_{R} = 45\mu A$		1.288	1.252	V	1
		$V_{R} = 5.3V, I_{R} = 50\mu A$		1.215	1.255	V	2, 3
		$V_R = 5.3V, I_R = 1.0mA$		1.288	1.252	V	1
				1.215	1.255	V	2, 3
		$V_{R} = 5.3V, I_{R} = 20mA$		1.288	1.252	V	1
				1.215	1.255	V	2, 3
$\Delta V_{Ref}/\Delta I_{R}$	Reference Voltage Change with	9μA ≤ I _R ≤ 1mA			1.0	mV	1
	Current	10μA ≤ I _R ≤ 1mA			1.5	mV	2, 3
		$1mA \le I_R \le 20mA$			10	mV	1
					20	mV	2, 3
		$V_{R} = 5.3V, 45\mu A \le I_{R} \le 1mA$			1.0	mV	1
		$V_{R} = 5.3V, 50\mu A \le I_{R} \le 1mA$			1.5	mV	2, 3
		$V_R = 5.3V$, $1mA \le I_R \le 20mA$			10	mV	1
					20	mV	2, 3
ΔV _{Ref} /	Reference Voltage Change with	$V_{R} = 5.3V, I_{R} = 100\mu A$			3.0	mV	1
ΔV_{O}	Output Voltage				6.0	mV	2, 3
I _F	Feedback Current	I _R = 9μΑ			20	nA	1
		I _R = 10μA			25	nA	2, 3
		I _R = 20mA			20	nA	1
					25	nA	2, 3
		$V_{R} = 5.3V, I_{R} = 45\mu A$			20	nA	1
		$V_{R} = 5.3V, I_{R} = 50\mu A$			25	nA	2, 3
		$V_{R} = 5.3V, I_{R} = 20mA$			20	nA	1
					25	nA	2, 3
I _C	Minimum Operating Current	$V_R = V_{Ref}$	(Note 3)	9.0		μA	1
			(Note 3)	10		μΑ	2, 3
		V _R = 5.3V	(Note 3)	45		μΑ	1
			(Note 3)	50		μA	2, 3
T _C	Temperature Coefficient		(Note 4)		50	PPM/°C	1, 2, 3

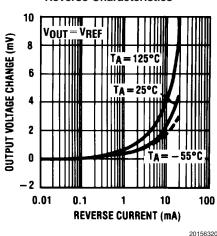

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.


Note 2: Human body model, 1.5 k $\!\Omega$ in series with 100 pF.

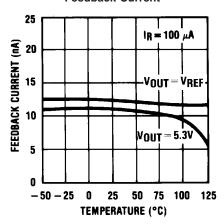
Note 3: Functional test.

Note 4: The average temperature coefficient is defined as the maximum deviation of reference voltage, at all measured temperatures between the operating T_{Min} & T_{Max} , divided by $(T_{Max} - T_{Min})$. The measured temperatures $(T_{Measured})$ are $-55^{\circ}C$, $25^{\circ}C$, & $125^{\circ}C$ or $\Delta V_{Ref} / (T_{Max} - T_{Min})$

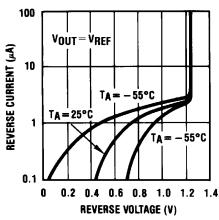

Typical Performance Characteristics



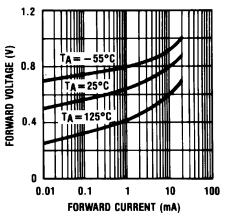
20156316


Minimum Operating Current

Reverse Characteristics



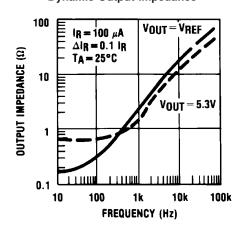
Feedback Current


20156317

Reverse Characteristics

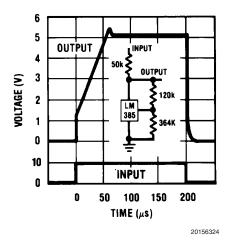
20156319

Forward Characteristics

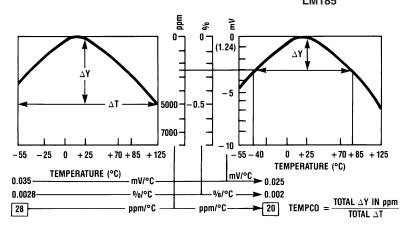


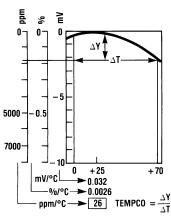
Typical Performance Characteristics (Continued)

Output Noise Voltage

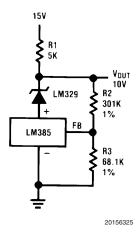


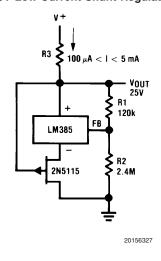
Dynamic Output Impedance



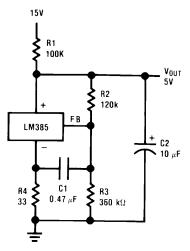

20156323

Temperature Coefficient Typical LM185

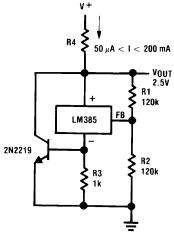



20156304

Typical Applications

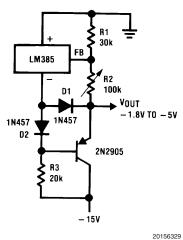

Precision 10V Reference

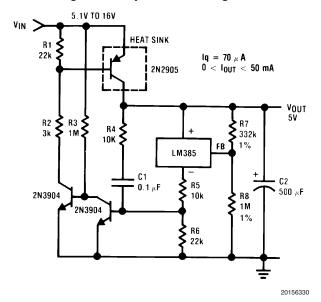
25V Low Current Shunt Regulator



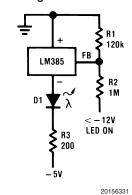
Low AC Noise Reference

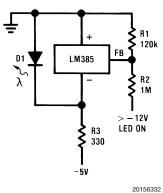
20156326

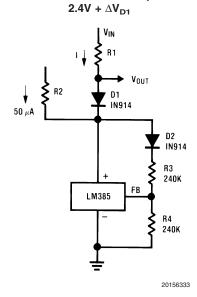

200 mA Shunt Regulator

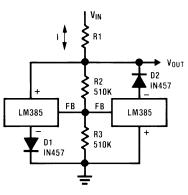

20156328

Typical Applications (Continued)

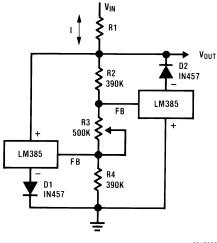

Series-Shunt 20 mA Regulator


High Efficiency Low Power Regulator

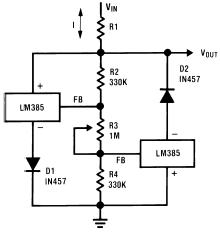

Voltage Level Detector


Voltage Level Detector

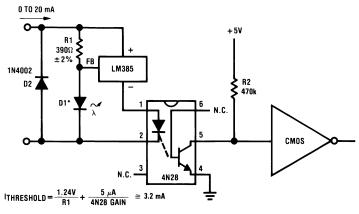
Fast Positive Clamp


Bidirectional Clamp ±2.4V

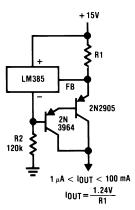
20156334


Typical Applications (Continued)

Bidirectional Adjustable Clamp ±1.8V to ±2.4V

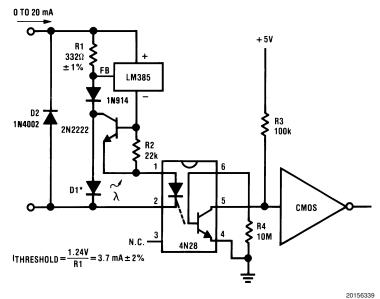

20156335

Bidirectional Adjustable Clamp ±2.4V to ±6V

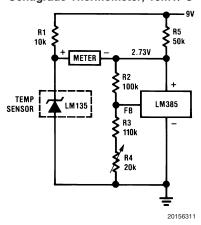

20156336

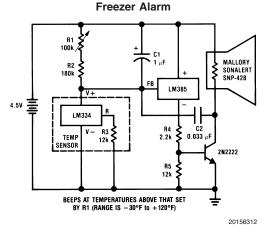
Simple Floating Current Detector

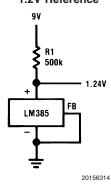
20156337


Current Source

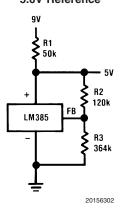
20156338


Typical Applications (Continued)

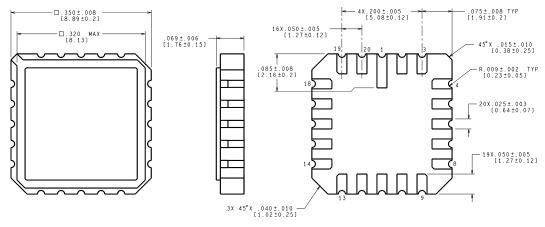

Precision Floating Current Detector


*D1 can be any LED, V_F=1.5V to 2.2V at 3 mA. D1 may act as an indicator. D1 will be on if I_{THRESHOLD} falls below the threshold current, except with I=O.

Centigrade Thermometer, 10mV/°C

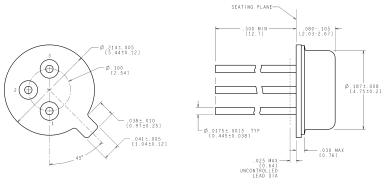


1.2V Reference


5.0V Reference

$$V_{OUT} = 1.24 \left(\frac{R3}{R2} + 1 \right)$$

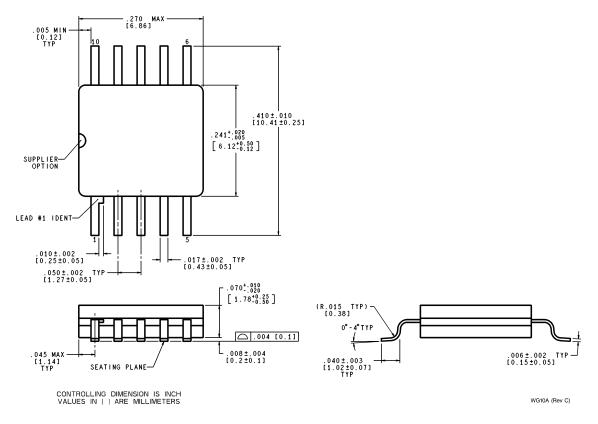
Revision History Section						
Released	Revision	Section	Originator	Changes		
11/08/05	A	New Release, Corporate format	L. Lytle	2 MDS data sheets converted into one Corp. data sheet format. MNLM185B-X Rev 0B0 and MNLM185BY-X Rev 0B0 will be archived.		
04/06/06	В	Ordering Information Table, WG Connection Diagram, Absolute Maximum Ratings Section, Physical Dimensions Section	R. Malone	Added NSID, Connection Diagram, Physical Dimension Dwg, Thermal Resistance and Package Weight for WG package. Revision A will be Archived.		


Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

E20A (Rev F)

20-Leadless Chip Carrier (E) NS Package Number E20A



CONTROLLING DIMENSION IS INCH VALUES IN [] ARE IN MILLIMETERS

H03H (Rev F)

TO-46 Metal Can Package (H) NS Package Number H03H

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Ceramic SOIC Package (WG) NS Package Number WG10A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: ipn.feedback@nsc.com Tel: 81-3-5639-7560