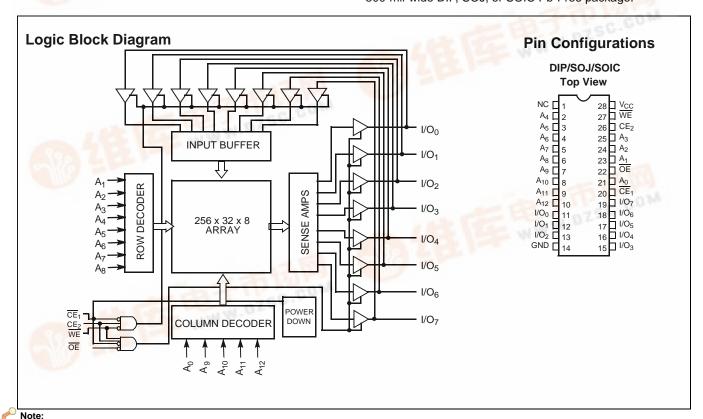


## PRELIMINARY

CY7C185D

# 64K (8K x 8) Static RAM

### **Features**


- Pin- and function-compatible with CY7C185
- · High speed
  - $t_{AA} = 10 \text{ ns}$
- Low active power
  - I<sub>CC</sub> = 60 mA @ 10 ns
- Low CMOS standby power
  - $-I_{SB2} = 3 \text{ mA}$
- · CMOS for optimum speed/power
- Data Retention at 2.0V
- Easy memory expansion with  $\overline{CE}_1$ ,  $\overline{CE}_2$ , and  $\overline{OE}$  features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Available in Lead (Pb)-Free Packages

### Functional Description[1]

The CY7C185D is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ( $CE_1$ ), an active HIGH chip enable ( $CE_2$ ), and active LOW output enable ( $CE_1$ ) and three-state drivers. This device has an automatic power-down feature ( $CE_1$  or  $CE_2$ ), reducing the power consumption when deselected.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When  $\overline{\text{CE}_1}$  and  $\overline{\text{WE}}$  inputs are both LOW and  $\overline{\text{CE}_2}$  is HIGH, data on the eight data input/output pins (I/O $_0$  through I/O $_7$ ) is written into the memory location addressed by the address present on the address pins (A $_0$  through A $_1$ 2). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{\text{CE}_1}$  and  $\overline{\text{OE}}$  active LOW,  $\overline{\text{CE}_2}$  active HIGH, while  $\overline{\text{WE}}$  remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.The CY7C185D is in a standard 28-pin 300-mil-wide DIP, SOJ, or SOIC Pb-Free package.



programmes on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.



# **Selection Guide**

|                           | CY7C185D-10 | CY7C185D-12 | CY7C185D-15 | Unit |
|---------------------------|-------------|-------------|-------------|------|
| Maximum Access Time       | 10          | 12          | 15          | ns   |
| Maximum Operating Current | 60          | 50          | 40          | mA   |
| Maximum Standby Current   | 3           | 3           | 3           | mA   |



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature .....-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential ..... -0.5V to +7.0V 

| DC Input Voltage <sup>[2]</sup> 0.5V to V <sub>CC</sub> +    | 0.5V |
|--------------------------------------------------------------|------|
| Output Current into Outputs (LOW)20                          | ) mA |
| Static Discharge Voltage > 20 (per MIL-STD-883, Method 3015) | )01V |
| Latch-up Current > 200                                       | ) mA |

## **Operating Range**

| Range      | V <sub>CC</sub> |          |
|------------|-----------------|----------|
| Commercial | 0°C to +70°C    | 5V ± 10% |
| Industrial | -40°C to +85°C  | 5V ± 10% |

## **Electrical Characteristics** Over the Operating Range

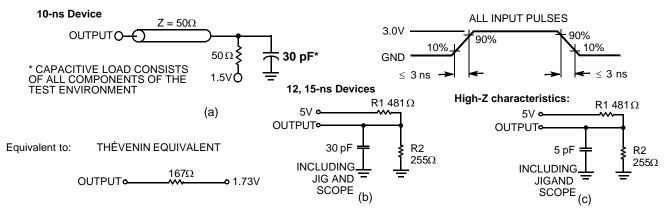
|                  |                                             | 7C185D-10                                                                                                                                                                                                                              |                     |                 |      | 7C185D-12       |      |  |
|------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|------|-----------------|------|--|
| Parameter        | Description                                 | Test Conditions                                                                                                                                                                                                                        | Min.                | Max.            | Min. | Max.            | Unit |  |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC}$ = Min., $I_{OH}$ = -4.0 mA                                                                                                                                                                                                    | 2.4                 |                 | 2.4  |                 | V    |  |
| $V_{OL}$         | Output LOW Voltage                          | V <sub>CC</sub> = Min., I <sub>OL</sub> = 8.0 mA                                                                                                                                                                                       |                     | 0.4             |      | 0.4             | V    |  |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                                                                                                                                                                                        | 2.0                 | $V_{CC} + 0.3V$ | 2.0  | $V_{CC} + 0.3V$ | V    |  |
| V <sub>IL</sub>  | Input LOW Voltage <sup>[2]</sup>            |                                                                                                                                                                                                                                        | -0.5                | 0.8             | -0.5 | 0.8             | V    |  |
| I <sub>IX</sub>  | Input Load Current                          | $GND \le V_I \le V_{CC}$                                                                                                                                                                                                               | -1                  | +1              | -1   | +1              | μΑ   |  |
| l <sub>OZ</sub>  | Output Leakage Current                      | $GND \le V_I \le V_{CC}$ , Output Disabled                                                                                                                                                                                             | -1                  | +1              | -1   | +1              | μА   |  |
| Ios              | Output Short Circuit Current <sup>[3]</sup> | V <sub>CC</sub> = Max., V <sub>OUT</sub> = GND                                                                                                                                                                                         |                     | -300            |      | -300            | mA   |  |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply Current    | V <sub>CC</sub> = Max., I <sub>OUT</sub> = 0 mA                                                                                                                                                                                        |                     | 60              |      | 50              | mA   |  |
| I <sub>SB1</sub> | Automatic Power-down Current                | Max. $V_{CC}$ , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$<br>Min. Duty Cycle = 100%                                                                                                                                            |                     | 10              |      | 10              | mA   |  |
| I <sub>SB2</sub> | Automatic Power-down Current                | $\begin{aligned} &\text{Max. V}_{CC}, \overline{CE}_1 \geq \text{V}_{CC} - 0.3\text{V}, \\ &\text{or CE}_2 \leq 0.3\text{V} \\ &\text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V or V}_{\text{IN}} \leq 0.3\text{V} \end{aligned}$ |                     | 3.0             |      | 3.0             | mA   |  |
|                  |                                             |                                                                                                                                                                                                                                        |                     | l               | 7C   | 185D-15         |      |  |
| Parameter        | Description                                 | Test Conditions                                                                                                                                                                                                                        | 5                   |                 | Min. | Max.            | Unit |  |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC}$ = Min., $I_{OH}$ = -4.0 mA                                                                                                                                                                                                    |                     |                 | 2.4  |                 | V    |  |
| $V_{OL}$         | Output LOW Voltage                          | V <sub>CC</sub> = Min., I <sub>OL</sub> = 8.0 mA                                                                                                                                                                                       |                     |                 |      | 0.4             | V    |  |
| $V_{IH}$         | Input HIGH Voltage                          |                                                                                                                                                                                                                                        |                     |                 | 2.0  | $V_{CC} + 0.3V$ | V    |  |
| $V_{IL}$         | Input LOW Voltage <sup>[2]</sup>            |                                                                                                                                                                                                                                        |                     |                 | -0.5 | 0.8             | V    |  |
| I <sub>IX</sub>  | Input Load Current                          | $GND \le V_I \le V_{CC}$                                                                                                                                                                                                               |                     |                 | -1   | +1              | μА   |  |
| I <sub>OZ</sub>  | Output Leakage Current                      | $GND \le V_I \le V_{CC}$ , Output Disabled                                                                                                                                                                                             |                     |                 | -1   | +1              | μА   |  |
| I <sub>OS</sub>  | Output Short Circuit Current[3]             | V <sub>CC</sub> = Max., V <sub>OUT</sub> = GND                                                                                                                                                                                         |                     |                 |      | -300            | mA   |  |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply Current    | V <sub>CC</sub> = Max., I <sub>OUT</sub> = 0 mA                                                                                                                                                                                        |                     |                 |      | 40              | mA   |  |
| I <sub>SB1</sub> | Automatic Power-down Current                | Max. $V_{CC}$ , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$<br>Min. Duty Cycle = 100%                                                                                                                                            |                     |                 |      | 10              | mA   |  |
| I <sub>SB2</sub> | Automatic Power-down Current                | Max. $V_{CC}$ , $\overline{CE}_1 \ge V_{CC} - 0.3V$ or $CE$<br>$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$                                                                                                                         | <sub>2</sub> ≤ 0.3\ | 1               |      | 3.0             | mA   |  |

## Capacitance<sup>[4]</sup>

| Parameter        | Description        | Test Conditions                    | Max. | Unit |
|------------------|--------------------|------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1$ MHz, | 7    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                    | 7    | pF   |

- 2. V<sub>IL</sub> (min.) = -2.0V and V<sub>IH</sub> (max) = V<sub>CC</sub> + 2V for pulse durations of less than 20 ns.
  3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 4. Tested initially and after any design or process changes that may affect these parameters.

Document #: 38-05466 Rev. \*C.


Page 3 of 10



### Thermal Resistance<sup>[4]</sup>

| Parameter       | Description                                             | Test Conditions                                                        | All-Packages | Unit |
|-----------------|---------------------------------------------------------|------------------------------------------------------------------------|--------------|------|
| $\Theta_{JA}$   | Thermal Resistance (Junction to Ambient) <sup>[4]</sup> | Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board | TBD          | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance (Junction to Case) <sup>[4]</sup>    |                                                                        | TBD          | °C/W |

### **AC Test Loads and Waveforms**



## Switching Characteristics Over the Operating Range [6]

|                                   |                                                                                   | 7C18 | S5D-10 | 7C18 | 5D-12 | 7C185D-15 |      |      |
|-----------------------------------|-----------------------------------------------------------------------------------|------|--------|------|-------|-----------|------|------|
| Parameter                         | Description                                                                       | Min. | Max.   | Min. | Max.  | Min.      | Max. | Unit |
| Read Cycle                        |                                                                                   | 1    | 1      |      |       | •         |      |      |
| t <sub>power</sub> <sup>[5]</sup> | V <sub>CC</sub> (typical) to the first access                                     | 100  |        | 100  |       | 100       |      | μS   |
| t <sub>RC</sub>                   | Read Cycle Time                                                                   | 10   |        | 12   |       | 15        |      | ns   |
| t <sub>AA</sub>                   | Address to Data Valid                                                             |      | 10     |      | 12    |           | 15   | ns   |
| t <sub>OHA</sub>                  | Data Hold from Address Change                                                     | 3    |        | 3    |       | 3         |      | ns   |
| t <sub>ACE1</sub>                 | CE <sub>1</sub> LOW to Data Valid                                                 |      | 10     |      | 12    |           | 15   | ns   |
| t <sub>ACE2</sub>                 | CE <sub>2</sub> HIGH to Data Valid                                                |      | 10     |      | 12    |           | 15   | ns   |
| t <sub>DOE</sub>                  | OE LOW to Data Valid                                                              |      | 5      |      | 6     |           | 8    | ns   |
| t <sub>LZOE</sub>                 | OE LOW to Low Z                                                                   | 3    |        | 3    |       | 3         |      | ns   |
| t <sub>HZOE</sub>                 | OE HIGH to High Z <sup>[7]</sup>                                                  |      | 5      |      | 6     |           | 7    | ns   |
| t <sub>LZCE1</sub>                | CE <sub>1</sub> LOW to Low Z <sup>[8]</sup>                                       | 3    |        | 3    |       | 3         |      | ns   |
| t <sub>LZCE2</sub>                | CE <sub>2</sub> HIGH to Low Z                                                     | 3    |        | 3    |       | 3         |      | ns   |
| t <sub>HZCE</sub>                 | CE <sub>1</sub> HIGH to High Z <sup>[7, 8]</sup><br>CE <sub>2</sub> LOW to High Z |      | 5      |      | 6     |           | 7    | ns   |
| t <sub>PU</sub>                   | CE <sub>1</sub> LOW to Power-Up<br>CE <sub>2</sub> to HIGH to Power-Up            |      |        | 0    |       | 0         |      | ns   |
| t <sub>PD</sub>                   | CE <sub>1</sub> HIGH to Power-Down<br>CE <sub>2</sub> LOW to Power-Down           |      | 10     |      | 12    |           | 15   | ns   |

### Notes:

- 5. t<sub>POWER</sub> gives the minimum amount of time that the power supply should be at typical V<sub>CC</sub> values until the first memory access can be performed.
  6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo<sub>L</sub>/l<sub>OH</sub> and 30-pF load capacitance.
  7. The power law to the conditions are the conditions are the conditions are the conditions.
- 7.  $t_{HZOE}$ ,  $t_{HZOE}$ , and  $t_{HZWE}$  are specified with  $C_L = 5$  pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady state voltage.

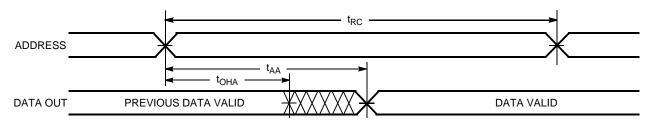
  8. At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE1}$  and  $t_{LZCE2}$  for any given device.



## Switching Characteristics Over the Operating Range (continued)<sup>[6]</sup>

|                            |                                   | 7C18 | 5D-10 | 7C185D-12 |      | 7C185D-15 |      |      |
|----------------------------|-----------------------------------|------|-------|-----------|------|-----------|------|------|
| Parameter                  | Description                       | Min. | Max.  | Min.      | Max. | Min.      | Max. | Unit |
| Write Cycle <sup>[9]</sup> |                                   |      |       |           |      |           | l .  | 1    |
| t <sub>WC</sub>            | Write Cycle Time                  | 10   |       | 12        |      | 15        |      | ns   |
| t <sub>SCE1</sub>          | CE <sub>1</sub> LOW to Write End  | 8    |       | 10        |      | 12        |      | ns   |
| t <sub>SCE2</sub>          | CE <sub>2</sub> HIGH to Write End | 8    |       | 10        |      | 12        |      | ns   |
| t <sub>AW</sub>            | Address Set-up to Write End       | 7    |       | 10        |      | 12        |      | ns   |
| t <sub>HA</sub>            | Address Hold from Write End       | 0    |       | 0         |      | 0         |      | ns   |
| t <sub>SA</sub>            | Address Set-up to Write Start     | 0    |       | 0         |      | 0         |      | ns   |
| t <sub>PWE</sub>           | WE Pulse Width                    | 7    |       | 10        |      | 12        |      | ns   |
| t <sub>SD</sub>            | Data Set-up to Write End          | 6    |       | 7         |      | 8         |      | ns   |
| t <sub>HD</sub>            | Data Hold from Write End          | 0    |       | 0         |      | 0         |      | ns   |
| t <sub>HZWE</sub>          | WE LOW to High Z <sup>[7]</sup>   |      | 6     |           | 6    |           | 7    | ns   |
| t <sub>LZWE</sub>          | WE HIGH to Low Z                  | 3    |       | 3         |      | 3         |      | ns   |

### Data Retention Characteristics (Over the Operating Range)


| Parameter                      | Des                                  | cription             | Conditions                                                               | Min.            | Max. | Unit |
|--------------------------------|--------------------------------------|----------------------|--------------------------------------------------------------------------|-----------------|------|------|
| $V_{DR}$                       | V <sub>CC</sub> for Data Retention   |                      |                                                                          | 2.0             |      | V    |
| I <sub>CCDR</sub>              | Data Retention Current               | Non-L, Com'l / Ind'l | $\frac{V_{CC}}{QE} = V_{DR} = 2.0V,$                                     |                 | 3    | mA   |
|                                |                                      | L-Version Only       | $\overrightarrow{CE} \ge V_{CC} - 0.3V$ ,<br>$V_{IN} > V_{CC} - 0.3V$ or |                 | 1.2  | mA   |
| t <sub>CDR</sub> [4]           | Chip Deselect to Data Retention Time |                      | $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$                          | 0               |      | ns   |
| t <sub>R</sub> <sup>[10]</sup> | Operation Recovery Tim               | е                    |                                                                          | t <sub>RC</sub> |      | ns   |

### **Data Retention Waveform**



### **Switching Waveforms**

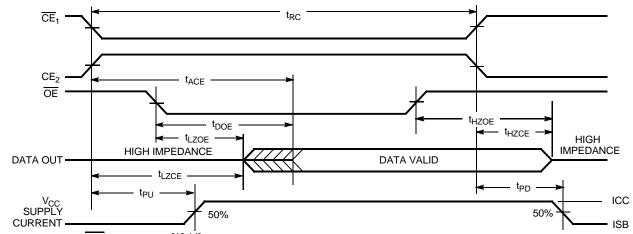
Read Cycle No.1<sup>[11,12]</sup>



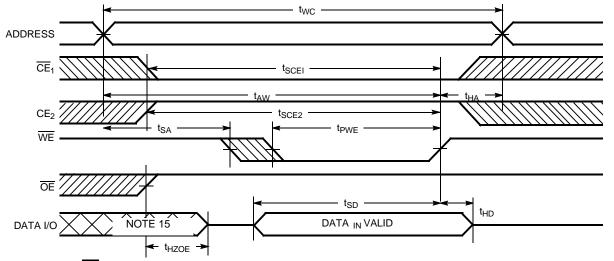
Document #: 38-05466 Rev. \*C

<sup>9.</sup> The internal write time of the memory is defined by the overlap of  $\overline{\text{CE}}_1$  LOW, CE<sub>2</sub> HIGH, and  $\overline{\text{WE}}$  LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

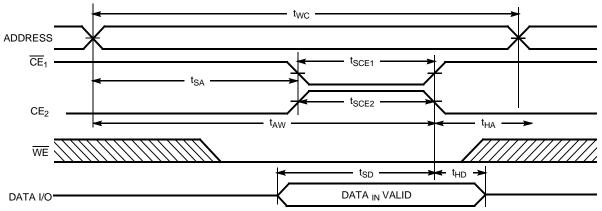
10. Full device operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min.)</sub> ≥ 50 μs or stable at V<sub>CC(min.)</sub> ≥ 50 μs.


11. Device is continuously selected.  $\overline{\text{OE}}$ ,  $\overline{\text{CE}}_1 = \text{V}_{\text{IL}}$ .  $\overline{\text{CE}}_2 = \text{V}_{\text{IH}}$ .

12. WE is HIGH for read cycle.




### Switching Waveforms (continued)


### **Read Cycle No.2**<sup>[13,14]</sup>



# Write Cycle No. 1 (WE Controlled)[12,14]



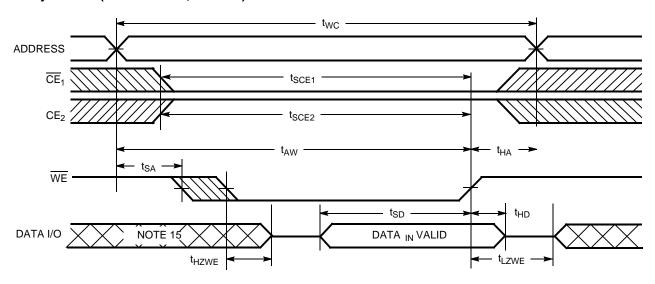
# Write Cycle No. 2 ( $\overline{\text{CE}}$ Controlled)[14,15,16]



Document #: 38-05466 Rev. \*C.

NOTES:

13. Data I/O is High Z if  $\overline{OE} = V_{IH}$ ,  $\overline{CE}_1 = V_{IH}$ ,  $\overline{WE} = V_{IL}$ , or  $CE_2 = V_{IL}$ .


14. The internal write time of the memory is defined by the overlap of  $\overline{CE}_1$  LOW,  $\overline{CE}_2$  HIGH and  $\overline{WE}$  LOW.  $\overline{CE}_1$  and  $\overline{WE}$  must be LOW and  $\overline{CE}_2$  must be HIGH to initiate write. A write can be terminated by  $\overline{CE}_1$  or  $\overline{WE}$  going HIGH or  $\overline{CE}_2$  going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

<sup>15.</sup> During this period, the I/Os are in the output state and input signals should not be applied.
16. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.



# Switching Waveforms (continued)

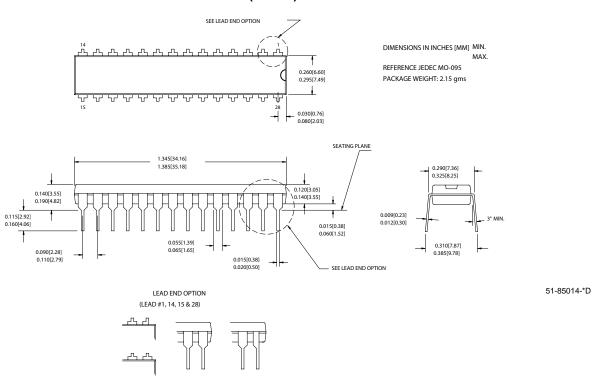
Write Cycle No. 3 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  LOW)[14,15,16,17]



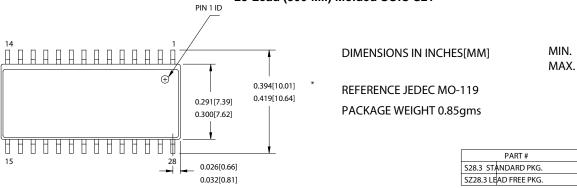
### **Truth Table**

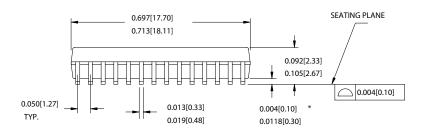
| CE <sub>1</sub> | CE <sub>2</sub> | WE | OE | Input/Output | Mode                |
|-----------------|-----------------|----|----|--------------|---------------------|
| Н               | Х               | Х  | Х  | High Z       | Deselect/Power-down |
| Х               | L               | Х  | Х  | High Z       | Deselect/Power-down |
| L               | Н               | Н  | L  | Data Out     | Read                |
| L               | Н               | L  | Х  | Data In      | Write               |
| L               | Н               | Н  | Н  | High Z       | Deselect            |

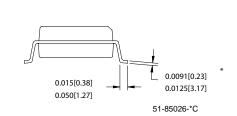
## **Ordering Information**


| Speed<br>(ns) | Ordering Code  | Package<br>Name | Package Type                           | Operating<br>Range |
|---------------|----------------|-----------------|----------------------------------------|--------------------|
| 10            | CY7C185D-10PXC | P21             | 28-Lead (300-Mil) Molded DIP (Pb-Free) | Commercial         |
|               | CY7C185D-10SXC | S21             | 28-Lead Molded SOIC (Pb-Free)          |                    |
|               | CY7C185D-10VXC | V21             | 28-Lead Molded SOJ (Pb-Free)           |                    |
|               | CY7C185D-10VXI | V21             | 28-Lead Molded SOJ (Pb-Free)           | Industrial         |
| 12            | CY7C185D-12PXC | P21             | 28-Lead (300-Mil) Molded DIP (Pb-Free) | Commercial         |
|               | CY7C185D-12SXC | S21             | 28-Lead Molded SOIC (Pb-Free)          |                    |
|               | CY7C185D-12VXC | V21             | 28-Lead Molded SOJ (Pb-Free)           |                    |
|               | CY7C185D-12VXI | V21             | 28-Lead Molded SOJ (Pb-Free)           | Industrial         |
| 15            | CY7C185D-15PXC | P21             | 28-Lead (300-Mil) Molded DIP (Pb-Free) | Commercial         |
|               | CY7C185D-15SXC | S21             | 28-Lead Molded SOIC (Pb-Free)          |                    |
|               | CY7C185D-15VXC | V21             | 28-Lead Molded SOJ (Pb-Free)           |                    |
|               | CY7C185D-15VXI | V21             | 28-Lead Molded SOJ (Pb-Free)           | Industrial         |

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

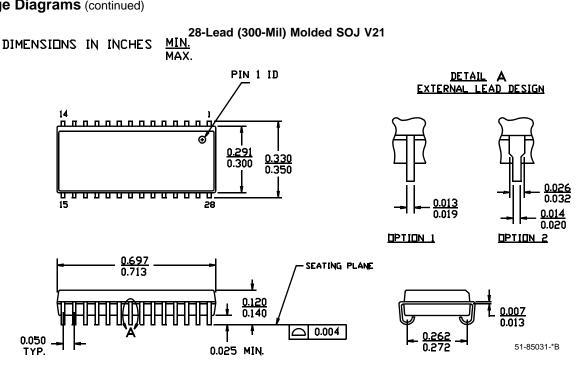




### **Package Diagrams**


### 28-Lead (300-Mil) PDIP P21



### 28-Lead (300-Mil) Molded SOIC S21










# Package Diagrams (continued)



All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05466 Rev. \*C



# **Document History Page**

| Document Title: CY7C185D 64K (8K x 8) Static RAM (Preliminary) Document Number: 38-05466 |         |            |                    |                                                                                                                                                       |  |  |  |
|------------------------------------------------------------------------------------------|---------|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| REV.                                                                                     | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                                                                                                 |  |  |  |
| **                                                                                       | 201560  | See ECN    | SWI                | Advance Datasheet for C9 IPP                                                                                                                          |  |  |  |
| *A                                                                                       | 233715  | See ECN    | RKF                | DC parameters are modified as per EROS (Spec # 01-2165) Pb-free offering in Ordering Information                                                      |  |  |  |
| *B                                                                                       | 262950  | See ECN    | RKF                | Added T <sub>power</sub> Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information |  |  |  |
| *C                                                                                       | 307593  | See ECN    | RKF                | 1) Reduced Speed bins to -10, -12 and -15 ns 2) Added 'Industrial' grade parts to the Ordering Info on Page #6                                        |  |  |  |