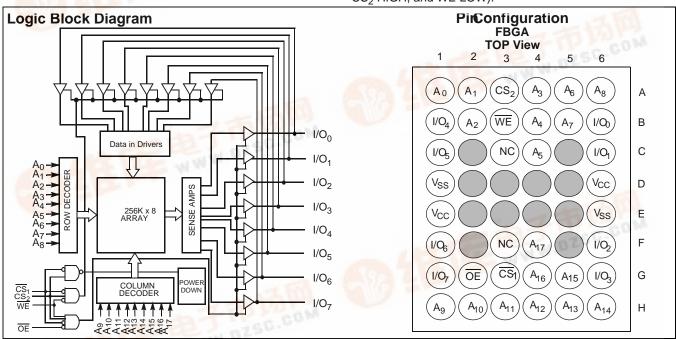


CY62138VN MoBL®


256K x 8 Static RAM

Features

- Temperature Ranges
 - Industrial: –40°C to 85°C
- · Low voltage range:
 - 2.7-3.6V
- Ultra-low active power
- Low standby power
- Easy memory expansion with CS₁/CS₂ and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- · Offered in standard non-lead-free 36-ball FBGA package

Functional Description

The CY62138VN is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected (CS₁ HIGH or CS2 LOW). Writing to the device is accomplished by taking Chip Enable One (CS₁) and Write Enable (WE) inputs LOW and Chip Enable Two (CS₂) HIGH. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{17}$).Reading from the device is accomplished by taking Chip Enable One (CS1) and Output Enable (OE) LOW while forcing Write Enable (WE) and Chip Enable Two (CS₂) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O₀) through I/O7) are placed in a high-impedance state when the device is deselected (CS₁ HIGH or CS₂ LOW), the outputs are disabled (\overrightarrow{OE} HIGH), or during a write operation (\overrightarrow{CS}_1 LOW, \overrightarrow{CS}_2 HIGH, and \overrightarrow{WE} LOW).

Product Portfolio

df.dzsc.com

51/6 B						Power Dis	sipation (In	dustrial)
	V _{CC} Range			Operating (I _{cc})		Standby (I _{SB2})		
Product	V _{CC(min)}	V _{CC(typ)} ^[1]	V _{CC(max)}	Speed	Typ. ^[1]	Maximum	Typ. ^[1]	Maximum
CY62138VN	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 μΑ

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{
m CC}$ = $V_{
m CC}$ Typ, $T_{
m A}$ = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State $^{[2]}$ -0.5V to $\rm V_{CC}$ + 0.5V

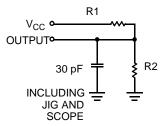
DC Input Voltage ^[2] –0.5V to V _{CC} + 0.5V	,
Output Current into Outputs (LOW)20 mA	ı
Static Discharge Voltage > 2001V (per MIL-STD-883, Method 3015)	,
Latch-up Current > 200 mA	

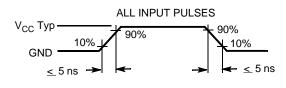
Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62138VN	Industrial	–40°C to +85°C	2.7V to 3.6V

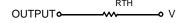
Electrical Characteristics Over the Operating Range

					CY62138V	N	
Parameter	Description	Test Condit	tions	Min.	Typ . ^[1]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		V _{CC} = 3.6V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	±1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	–1	+1	+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = f_{MAX}$				100	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs		$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ $V_{CC} = 3.6V$			15	μА


Capacitance^[3]

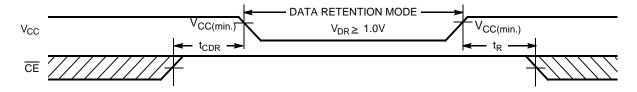

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

 ^{2.} V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 3. Tested initially and after any design or process changes that may affect these parameters.


AC Test Loads and Waveforms

Equivalent to:

THÉVENIN EQUIVALENT



Parameters	Value	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

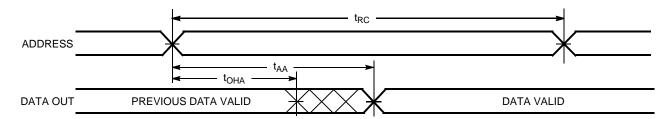
Parameter	Description	Conditions ^[4]		Typ. ^[1]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} &\frac{V_{CC}}{\text{CE}} = 1.0\text{V} \\ &\text{CE} \geq V_{CC} - 0.3\text{V}, \\ &V_{IN} \geq V_{CC} - 0.3\text{V or} \\ &V_{IN} \leq 0.3\text{V} \\ &\text{No input may exceed} \\ &V_{CC} + 0.3\text{V} \end{split}$		0.1	5	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time		100			ms

Data Retention Waveform^[5]

Notes:

- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified $\frac{|O_1|}{|O_1|}$ and 30-pF load capacitance.

 5. CE is the combination of both \overline{CS}_1 and \overline{CS}_2 .

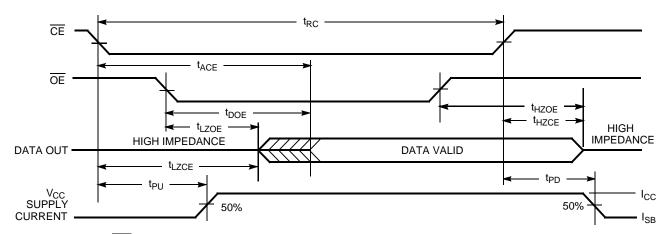


Switching Characteristics Over the Operating Range^[4]

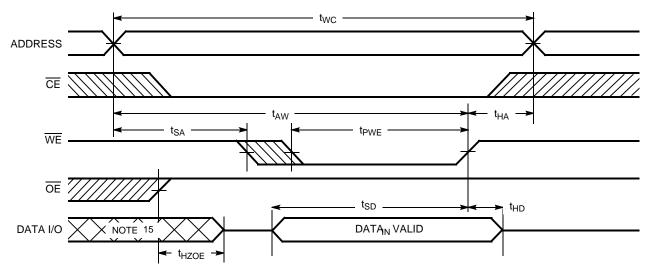
		CY62	138VN	
Parameter	Description	Min.	Max.	Unit
Read Cycle	•			•
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low-Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High-Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low-Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High-Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-up	0		ns
t _{PD}	CE HIGH to Power-down		70	ns
Write Cycle ^[8, 9]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	10		ns

Switching Waveforms

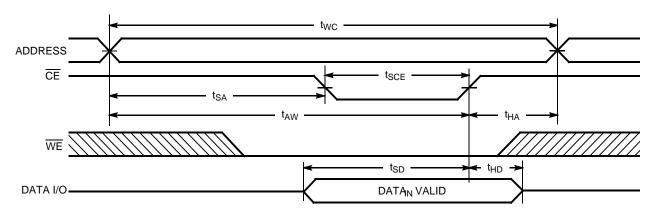
Read Cycle No. 1^[10, 11]


Notes:

- Notes:
 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 9. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
 10. Device is continuously selected. OE, CE = V_{IL}.
 11. WE is HIGH for read cycle.

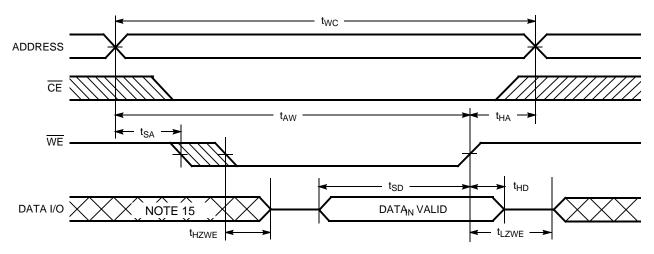


Switching Waveforms (continued)

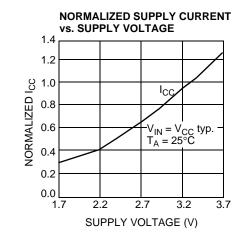

Read Cycle No. 2^[5., 11, 12]

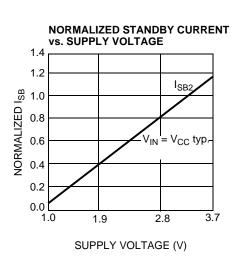
Write Cycle No. 1 (WE Controlled)^[5, 8, 13, 14]

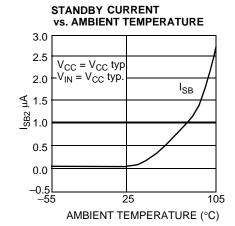
Write Cycle No. 2 (CE Controlled)^[5, 8, 13, 14]

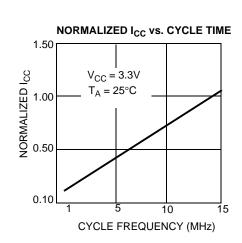

Notes:

- 12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 13. Data I/O is high impedance if OE = V_{IH}.
 14. If OE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 15. During this period, the I/Os are in output state and input signals should not be applied.




Switching Waveforms (continued)

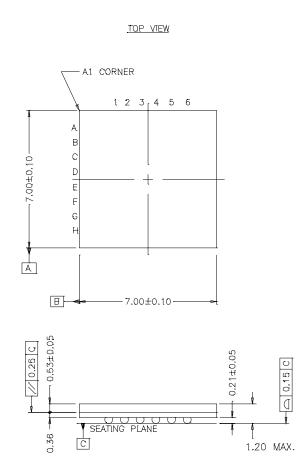

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[5, 9, 14]

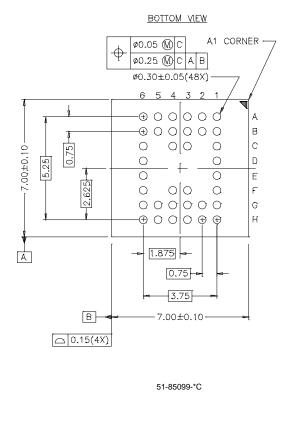


Typical DC and AC Characteristics

Truth Table

CS ₁	CS ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	X	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62138VNLL-70BAI	51-85099	36-ball (7.0 mm × 7.0 mm × 1.2 mm) FBGA	Industrial

Please contact your local Cypress sales representative for availability of other parts

Package Diagram

36-Ball FBGA (7 x 7 x 1.2 mm) (51-85099)

More Battery Life is a trademark, and MoBL is a registered trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY62138VN MoBL [®] 256K x 8 Static RAM Document Number: 001-06513						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	426504	See ECN	NXR	New Data Sheet		