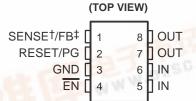
D. P. OR PW PACKAGE


SLVS102G - MARCH 1995 - REVISED JUNE 2000

- Available in 5-V, 4.85-V, 3.3-V, 3.0-V, and
 2.5-V Fixed-Output and Adjustable Versions
- Dropout Voltage <85 mV Max at I_O = 100 mA (TPS7250)
- Low Quiescent Current, Independent of Load, 180 μA Typ
- 8-Pin SOIC and 8-Pin TSSOP Package
- Output Regulated to ±2% Over Full
 Operating Range for Fixed-Output Versions
- Extremely Low Sleep-State Current,
 0.5 µA Max
- Power-Good (PG) Status Output

description

The TPS72xx family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage, micropower operation, and miniaturized packaging. These regulators feature extremely low dropout voltages and quiescent currents compared to conventional LDO regulators. Offered in small-outline integrated-circuit (SOIC) packages and 8-terminal thin shrink small-outline (TSSOP), the TPS72xx series devices are ideal for cost-sensitive designs and for designs where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual pnp pass transistor to be replaced by a PMOS device. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is very low – maximum of 85 mV at 100 mA of load current (TPS7250) – and is directly proportional to the load current (see Figure 1). Since the PMOS pass

†SENSE – Fixed voltage options only (TPS7225, TPS7230, TPS7233, TPS7248, and TPS7250)

‡FB – Adjustable version only (TPS7201)

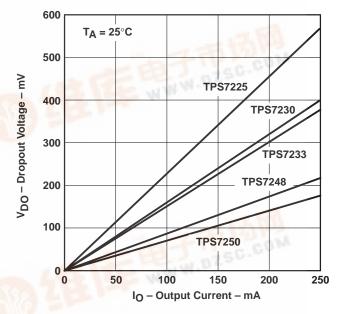


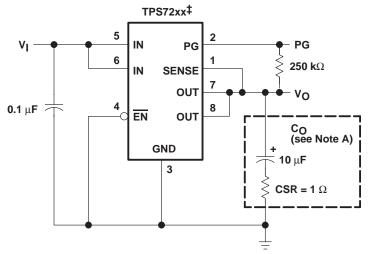
Figure 1. Typical Dropout Voltage Versus
Output Current

element is a voltage-driven device, the quiescent current is very low (300 μA maximum) and is stable over the entire range of output load current (0 mA to 250 mA). Intended for use in portable systems such as laptops and cellular phones, the low-dropout voltage and micropower operation result in a significant increase in system battery operating life.

The TPS72xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to $0.5 \,\mu\text{A}$ maximum at $T_J = 25^{\circ}\text{C}$. Other features include a power-good function that reports low output voltage and may be used to implement a power-on reset or a low-battery indicator.

The TPS72xx is offered in 2.5-V, 3-V, 3.3-V, 4.85-V, and 5-V fixed-voltage versions and in an adjustable version (programmable over the range of 1.2 V to 9.75 V). Output voltage tolerance is specified as a maximum of 2% over line, load, and temperature ranges (3% for adjustable version).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

AVAILABLE OPTIONS

т.	OUTP	JT VOLT (V)	AGE	P	ACKAGED DEVICES		CHIP FORM
TJ	MIN	TYP	MAX	SMALL OUTLINE (D)	PDIP (P)	TSSOP (PW)	(Y)
	4.9	5	5.1	TPS7250QD	TPS7250QP	TPS7250QPWR	TPS7250Y
	4.75	4.85	4.95	TPS7248QD	TPS7248QP	TPS7248QPWR	TPS7248Y
	3.23	3.3	3.37	TPS7233QD	TPS7233QP	TPS7233QPWR	TPS7233Y
−55°C to 150°C	2.94	3	3.06	TPS7230QD	TPS7230QP	TPS7230QPWR	TPS7230Y
	2.45	2.5	2.55	TPS7225QD	TPS7225QP	TPS7225QPWR	TPS7225Y
		djustable V to 9.75		TPS7201QD	TPS7201QP	TPS7201QPWR	TPS7201Y

The D package is available taped and reeled. Add R suffix to device type (e.g., TPS7250QDR). The PW package is only available left-end taped and reeled. The TPS7201Q is programmable using an external resistor divider (see application information). The chip form is tested at 25°C.

‡TPS7225Q, TPS7230Q, TPS7233Q, TPS7248Q, TPS7250Q (fixed-voltage options)

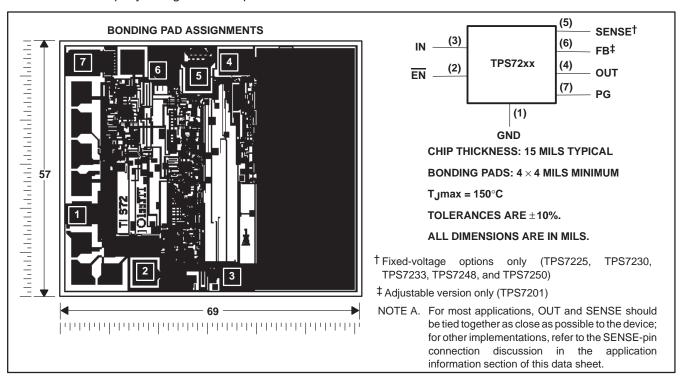
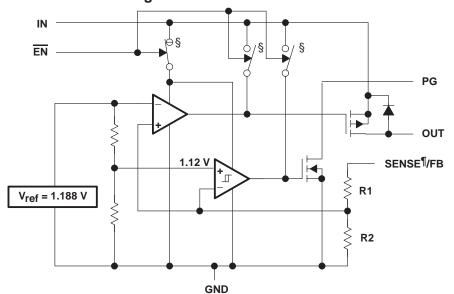

NOTE A: Capacitor selection is nontrivial. See application information section for details.

Figure 2. Typical Application Configuration



TPS72xx chip information

These chips, when properly assembled, display characteristics similar to the TPS72xxQ. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

functional block diagram

RESISTOR DIVIDER OPTIONS

DEVICE	R1	R2	UNIT
TPS7201	0	∞	Ω
TPS7225	257	233	kΩ
TPS7230	357	233	kΩ
TPS7233	420	233	kΩ
TPS7248	726	233	kΩ
TPS7250	756	233	kΩ

NOTE A: Resistors are nominal values only.

COMPONENT COUNT					
MOS transistors	108				
Bilpolar transistors	41				
Diodes	4				
Capacitors	15				
Resistors	75				

[¶] For most applications, SENSE should be externally connected to OUT as close as possible to the device. For other implementations, refer to the SENSE-pin connection discussion in application information section.

[§] Switch positions are shown with EN low (active).

TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input voltage range [‡] , V _I , PG, SENSE, EN	0.3 V to 11 V
Output current, IO	1.5 A
Continuous total power dissipation	. See Dissipation Rating Tables 1 and 2
Operating virtual junction temperature range, T _J	–55°C to 150°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE (see Note 1 and Figure 3)

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
Р	1175 mW	8.74 mW/°C	782 mW	650 mW	301 mW
PW	525 mW	4.2 mW/°C	336 mW	273 mW	105 mW

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE (see Note 1 and Figure 4)

PACKAGE	$T_C \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _C = 25°C	T _C = 70°C POWER RATING	T _C = 85°C POWER RATING	T _C = 125°C POWER RATING
D	2063 mW	16.5 mW/°C	1320 mW	1073 mW	413 mW
Р	2738 mW	20.49 mW/°C	1816 mW	1508 mW	689 mW
PW	2900 mW	23.2 mW/°C	1856 mW	1508 mW	580 mW

NOTE 1: Dissipation rating tables and figures are provided for maintenance of junction temperature at or below absolute maximum of 150°C. For guidelines on maintaining junction temperature within the recommended operating range, see application information section.

MAXIMUM CONTINUOUS DISSIPATION FREE-AIR TEMPERATURE

1200 $P_D-Maximum$ Continuous Dissipation – mW 1100 P Package 1000 $R_{\theta JA} = \bar{114.4}^{\circ}C/W$ 900 800 D Package 700 $R_{\theta JA} = 172^{\circ}C/W$ 600 500 400

PW Package

 $R_{\theta JA} = 238^{\circ}C/W$

50

300

200

100 0

25

Figure 3

T_A - Free-Air Temperature - °C

100

75

MAXIMUM CONTINUOUS DISSIPATION

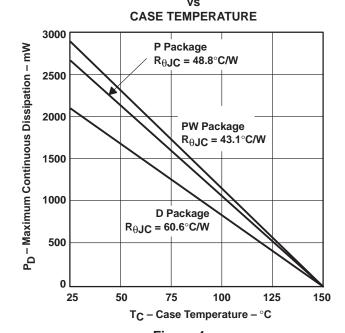


Figure 4

[‡] All voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	MAX	UNIT
	TPS7201Q	3	10	
	TPS7225Q	3.65	10	
Input valtage V/t	TPS7230Q	3.96	10	V
Input voltage, V _I †	TPS7233Q	3.98	10	l
	TPS7248Q	5.24	10	
	TPS7250Q	5.41	10	
High-level input voltage at EN, VIH		2		V
Low-level input voltage at EN, V _{IL}			0.5	V
Output current, IO		0	250	mA
Operating virtual junction temperature, TJ		-40	125	°C

[†] Minimum input voltage defined in the recommended operating conditions is the maximum specified output voltage plus dropout voltage at the maximum specified load range. Since dropout voltage is a function of output current, the usable range can be extended for lighter loads. To calculate the minimum input voltage for the maximum load current used in a given application, use the following equation:

$$V_{I(min)} = V_{O(max)} + V_{DO(max load)}$$

Because the TPS7201 is programmable, $r_{DS(on)}$ should be used to calculate V_{DO} before applying the above equation. The equation for calculating V_{DO} from $r_{DS(on)}$ is given in Note 3 under the TPS7201 electrical characteristics table. The minimum value of 3 V is the absolute lower limit for the recommended input-voltage range for the TPS7201.

electrical characteristics, I $_{O}$ = 10 mA, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), SENSE/FB shorted to OUT (unless otherwise noted)

DADAMETER	7507.001	TEST CONDITIONS‡		TF	S72xxQ			
PARAMETER	TEST CONDITIONS+		TJ	MIN	TYP	MAX	UNIT	
	<u>EN</u> ≤ 0.5 V,	$V_I = V_O + 1 V_s$	25°C		180	225	^	
Ground current (active mode)	$0 \text{ mA} \le I_{O} \le 250 \text{ mA}$, ,	-40°C to 125°C			325	μΑ	
Input current (standby mode)	EN V	0.1/ < 1/ < 40.1/	25°C			0.5		
input current (standby mode)	$\overline{EN} = V_{I},$	$3 \text{ V} \leq \text{V}_{\text{I}} \leq 10 \text{ V}$	-40°C to 125°C			1	μΑ	
Output current limit threshold	V= = 0.V	V _I = 10 V	25°C		0.6	1	Α	
Output current innit trireshold	nt limit threshold $V_O = 0 V$ $V_I = 10 V$	V = 10 V	-40°C to 125°C			1.5	A	
Pass-element leakage current in	EN V	3 V ≤ V _I ≤ 10 V	25°C			0.5		
standby mode	$\overline{EN} = V_{I},$		-40°C to 125°C			1	μΑ	
PG leakage current	V=0 - 10 V	Normal operation	25°C			0.5	μΑ	
	VpG = 10 V,	Normal operation	-40°C to 125°C			0.5		
Output voltage temperature coefficient			-40°C to 125°C		31	75	ppm/°C	
Thermal shutdown junction temperature					165		°C	
EN to sign binds (store albert as a de)	3 V ≤ V _I ≤ 6 V		-40°C to 125°C	2			V	
EN logic high (standby mode)	6 V ≤ V _I ≤ 10 V		-40°C to 125°C	2.7			V	
TALlegie less (active mode)	3 V ≤ V _I ≤ 10 V		25°C			0.5	V	
EN logic low (active mode)	3 V \(\sqrt{10 V}		-40°C to 125°C			0.5		
EN hysteresis voltage			25°C		50		mV	
EN input sument	0 V ≤ V _I ≤ 10 V		25°C	-0.5		0.5	μА	
EN input current	0 0 5 0 5 10 0		-40°C to 125°C	-0.5		0.5	μΑ	
Minimum V _I for active pass element			25°C		1.9	2.5	V	
williming vi for active pass element			-40°C to 125°C			2.5	V	
Minimum V _I for valid PG	Ino - 300 !! A		25°C		1.1	1.5	V	
Willimian VI 101 Valla FG	1PG = 300 μΑ	IPG = 300 μA				1.9	1 °	

[†] CSR(compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CO.

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

TPS7201Q electrical characteristics, I_O = 10 mA, V_I = 3.5 V, \overline{EN} = 0 V, C_O = 4.7 μF (CSR[†] = 1 Ω), FB shorted to OUT at device leads (unless otherwise noted)

DADAMETED	TEST CO.	TEST CONDITIONS‡			TPS7201Q		UNIT
PARAMETER	TEST CO	NDITION5+	TJ	MIN	TYP	MAX	UNII
Reference voltage (measured	V _I = 3.5 V,	$I_O = 10 \text{ mA}$	25°C		1.188		V
at FB with OUT connected to FB)	$3 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$ See Note 2	$5~\text{mA} \leq I_{\mbox{O}} \leq 250~\text{mA},$	-40°C to 125°C	1.152		1.224	٧
Reference voltage temperature coefficient			-40°C to 125°C		31	75	ppm/°C
	V _I = 2.4 V,§	50 μ A ≤ I _O ≤ 100 mA	25°C		2.1		
	V _I = 2.4 V,§	$100 \text{ mA} \le I_{O} \le 200 \text{ mA}$	25°C		2.9		
Pass-element series	V _I = 2.9 V,	50 μA ≤ I _O ≤ 250 mA	25°C		1.6	2.7	Ω
resistance (see Note 3)	V = 2.9 V,	30 μA ≤ 10 ≤ 230 IIIA	-40°C to 125°C			4.5	52
	V _I = 3.9 V,	$50~\mu A \leq I_O \leq 250~mA$	25°C		1		
	V _I = 5.9 V,	$50~\mu\text{A} \leq \text{I}_{O} \leq 250~\text{mA}$	25°C		0.8		
Input regulation	V _I = 3 V to 10 V,	50 μ A ≤ I _O ≤ 250 mA,	25°C			23	mV
input regulation	See Note 2		-40°C to 125°C			36	36
	I _O = 5 mA to 250 mA, See Note 2	$3 \text{ V} \leq \text{V}_{\text{I}} \leq 10 \text{ V},$	25°C		15	25	mV
Output regulation			-40°C to 125°C			36	
Output regulation	$I_0 = 50 \mu\text{A} \text{ to } 250 \text{mA},$	3 V ≤ V _I ≤ 10 V,	25°C		17	27	
	See Note 2		-40°C to 125°C			43	
		$I_{O} = 50 \mu A$ $I_{O} = 250 \text{ mA},$	25°C	49	60		
Ripple rejection	f = 120 Hz		-40°C to 125°C	32			dB
Tapple rejection	1 - 120112		25°C	45	50		
		See Note 2	-40°C to 125°C	30			
Output noise spectral density	f = 120 Hz		25°C		2		μV/√Hz
	40.11 - 47 - 400.111	$C_O = 4.7 \mu F$	25°C		235		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	$C_{O} = 10 \mu F$	25°C		190		μVrms
	1 2 2	C _O = 100 μF	25°C		125		
PG trip-threshold voltage¶	V _{FB} voltage decreasing	g from above V _{PG}	-40°C to 125°C		$0.95 \times V_{FB(nom)}$		V
PG hysteresis voltage¶	Measured at V _{FB}		25°C		12		mV
DC output low voltogo¶	In a - 400 u.A	\/ı = 2.42.\/	25°C		0.1	0.4	W
PG output low voltage¶	I _{PG} = 400 μA,	V _I = 2.13 V	-40°C to 125°C			0.4	·
ER input current			25°C	-10	0.1	10	nA
FB input current			-40°C to 125°C	-20		20	IIA

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to Co.

 $V_{DO} = I_O \cdot r_{DS(on)}$

 $r_{DS(on)}$ is a function of both output current and input voltage. The parametric table lists $r_{DS(on)}$ for $V_I = 2.4 \text{ V}$, 2.9 V, 3.9 V, and 5.9 V, which corresponds to dropout conditions for programmed output voltages of 2.5 V, 3 V, 4 V, and 6 V, respectively. For other programmed values, refer to Figures 10 and 11.

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

[§] This voltage is not recommended.

[¶] Output voltage programmed to 2.5 V with closed-loop configuration (see application information).

NOTES: 2. When V_I < 2.9 V and I_O > 100 mA simultaneously, pass element r_{DS(on)} increases (see Figure 10) to a point such that the resulting dropout voltage prevents the regulator from maintaining the specified tolerance range.

^{3.} To calculate dropout voltage, use equation:

TPS7225Q electrical characteristics, I $_{O}$ = 10 mA, V $_{I}$ = 3.5 V, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), SENSE shorted to OUT (unless otherwise noted)

DADAMETER	TEST CONDITIONS‡		т.		TPS7225Q		UNIT
PARAMETER	TEST CON	IDITION5+	TJ	MIN	TYP	MAX	UNII
Output voltage	V _I = 3.5 V,	I _O = 10 mA	25°C		2.5		V
Output voltage	$3.5 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$	$5 \text{ mA} \le I_O \le 250 \text{ mA}$	-40°C to 125°C	2.45		2.55	V
Dropout voltogo	I _O = 250 mA,	V _I = 2.97 V	25°C		560	850	mV
Dropout voltage	10 = 230 IIIA,	V = 2.97 V	-40°C to 125°C			1.1	V
Pass-element series resistance	(2.97 V – V _O)/I _O ,	V _I = 2.97 V,	25°C		2.24	3.4	Ω
1 ass-element series resistance	I _O = 250 mA		-40°C to 125°C			3.84	22
Input regulation	V _I = 3.5 V to 10 V,	50 μA ≤ I _O ≤ 250 mA	25°C		9	27	mV
Input regulation	V = 3.5 V to 10 V,	30 μA ≤ 10 ≤ 230 IIIA	-40°C to 125°C			33	IIIV
	I _O = 5 mA to 250 mA,	35 \/ < \/, < 10 \/	25°C		28	36	
Output regulation	10 = 5 mA to 250 mA,	3.5 V ≤ V ≤ 10 V	-40°C to 125°C			60	m∨
Output regulation	$I_O = 50 \mu\text{A} \text{ to } 250 \text{mA},$	3.5 V ≤ V _I ≤ 10 V	25°C		24	41	
			-40°C to 125°C			73	
	f = 120 Hz	$I_{O} = 50 \mu A$ $I_{O} = 250 \text{ mA}$	25°C	47	58		
Ripple rejection			-40°C to 125°C	45			dB
Kipple rejection	1 = 120112		25°C	40	46		
			-40°C to 125°C	38			
Output noise spectral density	f = 120 Hz		25°C		2		μV/√ Hz
	40.11 - 46.4400.111	C _O = 4.7 μF	25°C		248		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	C _O = 10 μF	25°C		200		μVrms
		C _O = 100 μF	25°C		130		
PG trip-threshold voltage	V _O voltage decreasing from above V _{PG}		-40°C to 125°C		0.95 × VO(nom)		V
PG hysteresis voltage			25°C		50		mV
PG output low voltage	In a - 1 2 mA	V ₁ = 2.12 V	25°C		0.3	0.44	V
r G output low voltage	Ipg = 1.2 mA,	V _I = 2.13 V	-40°C to 125°C			0.5	V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7230Q electrical characteristics, I $_{O}$ = 10 mA, V $_{I}$ = 4 V, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), SENSE shorted to OUT (unless otherwise noted)

DADAMETED	TEST CON	DITIONS	т.	1	PS7230Q		UNIT
PARAMETER	IESI CON	DITIONS+	TJ	MIN	TYP	MAX	UNII
Output voltage	V _I = 4 V,	$I_O = 10 \text{ mA}$	25°C		3		V
Output voltage	$4 \text{ V} \le V_{I} \le 10 \text{ V},$	$5 \text{ mA} \leq I_{O} \leq 250 \text{ mA}$	-40°C to 125°C	2.94		3.06	V
	I _O = 100 mA,	V _I = 2.97 V	25°C		145	185	
Drangut valtage	10 = 100 IIIA,	V = 2.97 V	-40°C to 125°C			270	mV
Dropout voltage	I _O = 250 mA,	V _I = 2.97 V	25°C		390	502	IIIV
	10 = 230 IIIA,	V = 2.97 V	-40°C to 125°C			900	
Pass-element series resistance	$(2.97 \text{ V} - \text{V}_0)/\text{I}_0, \qquad \text{V}_1 = 2.97 \text{ V},$	25°C		1.56	2.01	Ω	
r ass-element series resistance	$I_{O} = 250 \text{ mA}$		-40°C to 125°C			3.6	22
Input regulation	on $V_{\parallel} = 4 \text{ V to } 10 \text{ V}, \qquad 50 \mu\text{A} \leq I_{0} \leq 250 \text{ m/s}$	50 u A < lo < 250 m A	25°C		9	27	mV
Input regulation	V = 4 V to 10 V,	30 μA ≤ 1O ≤ 230 IIIA	-40°C to 125°C			33	IIIV
	$I_O = 5$ mA to 250 mA,	4 V ≤ V _I ≤ 10 V	25°C		34	45	mV
Output regulation			-40°C to 125°C			74	
Output regulation	$I_{O} = 50 \mu\text{A} \text{ to } 250 \text{mA},$	4 V ≤ V _I ≤ 10 V	25°C		42	60	
			-40°C to 125°C			98	
		ΙΟ = 50 μΑ	25°C	45	56		
Binnle rejection	f = 120 Hz		-40°C to 125°C	44			dB
Ripple rejection	1 = 120 HZ	I _O = 250 mA	25°C	40	45		
			-40°C to 125°C	38			
Output noise spectral density	f = 120 Hz		25°C		2		μV/√Hz
		C _O = 4.7 μF	25°C		256		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	C _O = 10 μF	25°C		206		μVrms
	001(1 = 1 32	C _O = 100 μF	25°C		132		
PG trip-threshold voltage	VO voltage decreasing	from above V _{PG}	-40°C to 125°C		0.95 × VO(nom)		V
PG hysteresis voltage			25°C		50		mV
DO autout law alta aa	1.0	\/ 0.55\/	25°C		0.25	0.44	
PG output low voltage	$I_{PG} = 1.2 \text{ mA}, \qquad V_{I} = 2.55 \text{ V}$		-40°C to 125°C			0.44	V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7233Q electrical characteristics, I $_{O}$ = 10 mA, V $_{I}$ = 4.3 V, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), SENSE shorted to OUT (unless otherwise noted)

PARAMETER	TEST CONDITIONS‡		TJ	-	TPS7233Q		UNIT
PARAMETER	TEST CON	DITIONS+	1,1	MIN	TYP	MAX	UNIT
Output voltage	V _I = 4.3 V,	I _O = 10 mA	25°C		3.3		V
Output voitage	$4.3 \text{ V} \le \text{V}_{I} \le 10 \text{ V},$	$5 \text{ mA} \le I_{O} \le 250 \text{ mA}$	-40°C to 125°C	3.23		3.37	٧
	I _O = 10 mA,	V _I = 3.23 V	25°C		14	20	
		V = 3.23 V	-40°C to 125°C			30	
Dropout voltage	I _O = 100 mA,	V _I = 3.23 V	25°C		140	180	mV
Dropout voltage	10 = 100 m/A,	V = 5.25 V	-40°C to 125°C			232	1110
	IO = 250 mA,	V _I = 3.23 V	25°C		360	460	
	10 = 230 IIIA,	V = 3.23 V	-40°C to 125°C			610	
Pass-element series resistance	(3.23 V – V _O)/I _O ,	V _I = 3.23 V,	25°C		1.5	1.84	Ω
r ass-element series resistance	$I_{O} = 250 \text{ mA}$		-40°C to 125°C			2.5	22
Input regulation	V _I = 4.3 V to 10 V,	50 μA ≤ I _O ≤ 250 mA	25°C		8	25	mV
mpat regulation	V = 4.5 V to 10 V,	30 μA ≤ 10 ≤ 230 IIIA	-40°C to 125°C			33	1117
	$I_O = 5$ mA to 250 mA,	4.3 V ≤ V _I ≤ 10 V	25°C		32	42	mV
Output regulation			-40°C to 125°C			71	
Output regulation	$I_O = 50 \mu A \text{ to } 250 \text{ mA},$	4.3 V ≤ V _I ≤ 10 V	25°C		41	55	
			-40°C to 125°C			98	
		ΙΟ = 50 μΑ	25°C	40	52		
Ripple rejection	f = 120 Hz		-40°C to 125°C	38			dB
Ripple rejection	T = 120 HZ	I _O = 250 mA	25°C	35	44		uБ
		10 = 520 HIY	-40°C to 125°C	33]
Output noise spectral density	f = 120 Hz		25°C		2		μV/√ Hz
		$C_O = 4.7 \mu F$	25°C		265		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	C _O = 10 μF	25°C		212		μVrms
	001(1 = 1 32	C _O = 100 μF	25°C		135		1
PG trip-threshold voltage	VO voltage decreasing from above VPG		-40°C to 125°C		0.95 × V _O (nom)		V
PG hysteresis voltage			25°C		32		mV
PG output low voltage	In a = 1.2 mA	V 2 9 V	25°C		0.22	0.4	V
r G output low voltage	$I_{PG} = 1.2 \text{ mA},$	V _I = 2.8 V	-40°C to 125°C			0.4	v

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7248Q electrical characteristics, I_O = 10 mA, V_I = 5.85 V, $\overline{\text{EN}}$ = 0 V, C_O = 4.7 μF (CSR† = 1 Ω), SENSE shorted to OUT (unless otherwise noted)

DADAMETED	TEOT 001	DITIONS [†]	I	Т	PS7248Q		
PARAMETER	TEST CON	DITIONS+	TJ	MIN	TYP	MAX	UNIT
Output voltage	V _I = 5.85 V,	I _O = 10 mA	25°C		4.85		V
Output voltage	$5.85 \text{ V} \le \text{V}_{I} \le 10 \text{ V},$	$5~\text{mA} \leq I_{\mbox{\scriptsize O}} \leq 250~\text{mA}$	-40°C to 125°C	4.75		4.95	V
	I _O = 10 mA,	V _I = 4.75 V	25°C		10	19	
	10 = 10 IIIA,	V = 4.73 V	-40°C to 125°C			30	
Dropout voltage	IO = 100 mA,	V _I = 4.75 V	25°C		90	100	mV
Dropout voltage	-40	-40°C to 125°C			150	IIIV	
	$I_{O} = 250 \text{ mA}, \qquad V_{I} = 4.75 \text{ V}$	25°C		216	250		
	10 = 250 IIIA,	V = 4.73 V	-40°C to 125°C			285	
Pass-element series resistance	(4.75 V – V _O)/I _O ,	V _I = 4.75 V,	25°C		8.0	1	Ω
Pass-element series resistance	$I_{O} = 250 \text{ mA}$		-40°C to 125°C			1.4	22
Input regulation	V _I = 5.85 V to 10 V,	$^{\prime}$, 50 μA ≤ I _O ≤ 250 mA	25°C			34	mV
Input regulation	v = 5.85 v to 10 v,	30 μA ≤ 10 ≤ 230 IIIA	-40°C to 125°C			50	IIIV
	I _O = 5 mA to 250 mA,) µA to 250 mA	25°C		43	55	
Output regulation	10 = 3 111A to 230 111A,		-40°C to 125°C			95	mV
Output regulation	10 - 50 u \ to 250 m \		25°C		55	75	IIIV
	$10 = 30 \mu\text{A} \cdot 10 230 \text{HA},$		-40°C to 125°C			135	
		ΙΟ = 50 μΑ	25°C	42	53		
Ripple rejection	f = 120 Hz	ΙΟ = 30 μΑ	-40°C to 125°C	36			dB
Ripple rejection	1 = 120112	I _O = 250 mA	25°C	36	46		uБ
		10 = 250 IIIA	-40°C to 125°C	34			
Output noise spectral density	f = 120 Hz		25°C		2		μV/√Hz
		C _O = 4.7 μF	25°C		370		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	C _O = 10 μF	25°C		290		μVrms
	001(1 = 1 32	C _O = 100 μF	25°C		168		
PG trip-threshold voltage	V _O voltage decreasing	from above V _{PG}	-40°C to 125°C		0.95 × VO(nom)		V
PG hysteresis voltage			25°C		50		mV
DC autout law veltara	l= - 4.0 == ^	V: 440.V	25°C		0.2	0.4	V
PG output low voltage	IpG = 1.2 mA,	V _I = 4.12 V	-40°C to 125°C			0.4	V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7250Q electrical characteristics, I $_{O}$ = 10 mA, V $_{I}$ = 6 V, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), SENSE shorted to OUT (unless otherwise noted)

PARAMETER	TEST CON	IDITIONET	TJ	T	PS7250Q		UNIT
PARAMETER	TEST CON	IDITIONS+	1,1	MIN	TYP	MAX	UNIT
Output voltage	V _I = 6 V,	I _O = 10 mA	25°C		5		V
Output voilage	6 V ≤ V _I ≤ 10 V,	$5 \text{ mA} \le I_{O} \le 250 \text{ mA}$	-40°C to 125°C	4.9		5.1	V
	I _O = 10 mA,	V _I = 4.88 V	25°C		8	12	
	10 = 10 111A,	V = 4.00 V	-40°C to 125°C			30	
Dropout voltage	I _O = 100 mA,	V _I = 4.88 V	25°C		76	85	m∨
Dropout voltage	10 = 100 1117,	V - 4.00 V	-40°C to 125°C			136	1117
	IO = 250 mA,	V _I = 4.88 V	25°C		190	206	
	10 = 250 IIIA,	V = 4.00 V	-40°C to 125°C			312	
Pass-element series resistance	(4.88 V – V _O)/I _O ,	V _I = 4.88 V,	25°C		0.76	0.825	Ω
Pass-element series resistance	I _O = 250 mA		-40°C to 125°C			1.25	52
lanut regulation	V: 6 V to 40 V	50 μA ≤ I _O ≤ 250 mA	25°C			28	mV
Input regulation	$V_{I} = 6 \text{ V to } 10 \text{ V},$	5 10 V, 50 μA ≤ 10 ≤ 250 HIA	-40°C to 125°C			35	mv
	lo = 5 mA to 250 mA	$_{0}$ = 5 mA to 250 mA, 6 V ≤ V _I ≤ 10 V $_{0}$ = 50 μA to 250 mA, 6 V ≤ V _I ≤ 10 V	25°C		46	61	
Output regulation	10 = 5 mA to 250 mA,		-40°C to 125°C			100	mV
Output regulation	1 - 50 · A to 050 · A		25°C		59	79	'''V
	$10 = 50 \mu\text{A}$ to 250 mA,		-40°C to 125°C			150	
		I- 50A	25°C	41	52		
Dipple rejection	f 400 H=	ΙΟ = 50 μΑ	-40°C to 125°C	37			4D
Ripple rejection	f = 120 Hz	J 050 A	25°C	36	46		dB
		$I_{O} = 250 \text{ mA}$	-40°C to 125°C	32			
Output noise spectral density	f = 120 Hz		25°C		2		μV/√ Hz
		$C_O = 4.7 \mu F$	25°C		390		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR [†] = 1 Ω	C _O = 10 μF	25°C		300		μVrms
	001(1 = 1 52	C _O = 100 μF	25°C		175		
PG trip-threshold voltage	V _O voltage decreasing	from above Vpg	-40°C to 125°C		0.95 × V _{O(nom)}		V
PG hysteresis voltage			25°C		50		mV
DC output low voltage	I= = = 4.0 m A	\\. = 4.95.\\	25°C		0.19	0.4	V
PG output low voltage	$I_{PG} = 1.2 \text{ mA},$	V _I = 4.25 V	-40°C to 125°C			0.4	v

TCSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

electrical characteristics, I_O = 10 mA, \overline{EN} = 0 V, C_O = 4.7 μF (CSR † = 1 Ω), T_J = 25°C, SENSE/FB shorted to OUT (unless otherwise noted)

PARAMETER	TEST CONDITIONS‡		TPS72xxY			UNIT
FARAMETER			MIN	TYP	MAX	UNIT
Ground current (active mode)	$\overline{EN} \le 0.5 \text{ V},$ $V_I = V_O + 1 \text{ V},$ $0 \text{ mA} \le I_O \le 250 \text{ mA}$			180		μΑ
Output current limit threshold	$V_O = 0 V$, $V_I = 10 V$			0.6		Α
Thermal shutdown junction temperature				165		°C
EN hysteresis voltage				50		mV
Minimum V _I for active pass element				1.9		V
Minimum V _I for valid PG	IpG = 300 μA			1.1		V

electrical characteristics, I $_{O}$ = 10 mA, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), T $_{J}$ = 25 °C, FB shorted to OUT at device leads (unless otherwise noted)

DADAMETED	TEOT 0.0	NOTIONS [†]	TI	PS7201\	′	UNIT
PARAMETER	TEST CC	TEST CONDITIONS [‡]			MAX	UNII
Reference voltage (measured at FB with OUT connected to FB)	V _I = 3.5 V,	I _O = 10 mA		1.188		V
	V _I = 2.4 V,§	$50~\mu\text{A} \leq \text{I}_{O} \leq 100~\text{mA}$		2.1		
	V _I = 2.4 V,§	$100~\text{mA} \leq I_{\mbox{O}} \leq 200~\text{mA}$		2.9		
Pass-element series resistance (see Note 3)	V _I = 2.9 V,	$50 \ \mu A \le I_O \le 250 \ mA$		1.6		Ω
	V _I = 3.9 V,	$50 \ \mu A \le I_O \le 250 \ mA$		1		
	V _I = 5.9 V,	$50 \ \mu A \le I_O \le 250 \ mA$		0.8		
Outro de la mulation	$3 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$ See Note 2	$I_O = 5$ mA to 250 mA,		15		mV
Output regulation	$3 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$ See Note 2	$I_O = 50 \mu A \text{ to } 250 \text{ mA},$	17		IIIV	
	V _I = 3.5 V,	ΙΟ = 50 μΑ		60		
Ripple rejection	f = 120 Hz	I _O = 250 mA, See Note 2	50			dB
Output noise spectral density	V _I = 3.5 V,	f = 120 Hz		2		μV/√ Hz
	V _I = 3.5 V,	$C_0 = 4.7 \mu\text{F}$		235		
Output noise voltage	10 Hz ≤ f ≤ 100 kHz,	C _O = 10 μF		190		μVrms
	$CSR^{\dagger} = 1 \Omega$	C _O = 100 μF	125			
PG hysteresis voltage¶	V _I = 3.5 V,	Measured at V _{FB}		12		mV
PG output low voltage¶	V _I = 2.13 V,	I _{PG} = 400 μA		0.1		V
FB input current	V _I = 3.5 V			0.1		nA

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to CO.

 $r_{DS(on)}$ is a function of both output current and input voltage. The parametric table lists $r_{DS(on)}$ for $V_I = 2.4$ V, 2.9 V, 3.9 V, and 5.9 V, which corresponds to dropout conditions for programmed output voltages of 2.5 V, 3 V, 4 V, and 6 V, respectively. For other programmed values, refer to Figures 10 and 11.

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

[§] This voltage is not recommended.

 $[\]P$ Output voltage programmed to 2.5 V with closed-loop configuration (see application information).

NOTES: 2 When V_I < 2.9 V and I_O > 100 mA simultaneously, pass element r_{DS(On)} increases (see Figure 10) to a point such that the resulting dropout voltage prevents the regulator from maintaining the specified tolerance range.

³ To calculate dropout voltage, use equation:

 $V_{DO} = I_O \cdot r_{DS(on)}$

electrical characteristics, I $_{O}$ = 10 mA, \overline{EN} = 0 V, C $_{O}$ = 4.7 μF (CSR † = 1 Ω), T $_{J}$ = 25 °C, FB shorted to OUT at device leads (unless otherwise noted)

DADAMETER	TEST 60	NDITIONS‡	TI	PS7225\	1	UNIT
PARAMETER	TEST CO	MIN	TYP	MAX	UNIT	
Output voltage	V _I = 3.5 V,	I _O = 10 mA		2.5		V
Dropout voltage	V _I = 2.97 V,	I _O = 250 mA		560		mV
Pass-element series resistance	$(2.97 \text{ V} - \text{V}_{\text{O}})/\text{I}_{\text{O}},$ $\text{I}_{\text{O}} = 250 \text{ mA}$	V _I = 2.97 V,		2.24		Ω
Input regulation	V _I = 3.5 V to 10 V,	$50 \mu A \le I_O \le 250 mA$		9		mV
Output requilation	$3.5 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}$ $I_{\text{O}} = 5 \text{ mA to } 250 \text{ mA}$		28		mV	
Output regulation	$3.5 \text{ V} \leq \text{V}_{I} \leq 10 \text{ V}$	$I_0 = 50 \mu\text{A} \text{ to } 250 \text{mA}$	24			IIIV
Ripple rejection	V _I = 3.5 V,	ΙΟ = 50 μΑ		58		dB
Rippie rejection	f = 120 Hz	$I_{O} = 250 \text{ mA}$		46		uБ
Output noise spectral density	V _I = 3.5 V,	f = 120 Hz		2		μV/√ Hz
	V _I = 3.5 V,	C _O = 4.7 μF		248		
Output noise voltage	10 Hz ≤ f ≤ 100 kHz, $C_O = 10 \mu F$			200		μVrms
	CSR [†] = 1 Ω	C _O = 100 μF		130		
PG hysteresis voltage	V _I = 3.5 V			50		mV
PG output low voltage	V _I = 2.13 V	Ipg = 1.2 mA		0.3		V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

electrical characteristics, I_O = 10 mA, \overline{EN} = 0 V, C_O = 4.7 μ F (CSR[†] = 1 Ω), T_J = 25°C, SENSE shorted to OUT (unless otherwise noted)

DADAMETED	PARAMETER TEST CONDITIONS [‡]			°S7230	Y	LINUT
PARAMETER	l lesi co	NDITIONS+	MIN	TYP	MAX	UNIT
Output voltage	V _I = 4 V,	I _O = 10 mA		3		V
Description	$V_1 = 2.97 V$,	I _O = 100 mA		145		mV
Dropout voltage	$V_1 = 2.97 V$,	$I_O = 250 \text{ mA}$		390		IIIV
Pass-element series resistance	$(2.97 \text{ V} - \text{V}_{\text{O}})/\text{I}_{\text{O}},$ $\text{I}_{\text{O}} = 250 \text{ mA}$	V _I = 2.97 V,		1.56		Ω
Input regulation	V _I = 4 V to 10 V,	$50 \mu\text{A} \le \text{I}_{\text{O}} \le 250 \text{mA}$		9		mV
Output regulation	4 V ≤ V _I ≤ 10 V	I _O = 5 mA to 250 mA		34		mV
Output regulation	4 V ≤ V _I ≤ 10 V	$I_0 = 50 \mu\text{A} \text{ to } 250 \text{mA}$	41			IIIV
Ripple rejection	V _I = 4 V,	ΙΟ = 50 μΑ		56		dB
Rippie rejection	f = 120 Hz	$I_O = 250 \text{ mA}$	45			uБ
Output noise spectral density	V _I = 4 V,	f = 120 Hz		2		μV/√ Hz
	V _I = 4 V,	$C_O = 4.7 \mu\text{F}$		256		
Output noise voltage	$10 \text{ Hz} \le \text{f} \le 100 \text{ kHz},$	C _O = 10 μF	206			μVrms
	$CSR^{\dagger} = 1 \Omega$	C _O = 100 μF		132		
PG hysteresis voltage	V _I = 4 V	-		50		mV
PG output low voltage	V _I = 2.55 V	Ipg = 1.2 mA		0.25		V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

DADAMETER		auguziauat	TPS7	233Y	
PARAMETER	lesic	TEST CONDITIONS‡			UNIT
Output voltage	$V_{I} = 4.3 V$	I _O = 10 mA	3	.3	V
	V _I = 3.23 V,	I _O = 10 mA	1	4	
Dropout voltage	$V_I = 3.23 V$,	I _O = 100 mA	14	10	mV
	$V_I = 3.23 V$,	I _O = 250 mA	36	30	
Pass-element series resistance	$(3.23 \text{ V} - \text{V}_{\text{O}})/\text{I}_{\text{O}},$ $\text{I}_{\text{O}} = 250 \text{ mA}$	V _I = 3.23 V,	1	.5	Ω
Input regulation	$V_I = 4.3 \text{ V to } 10 \text{ V},$	50μ A ≤ I_0 ≤ 250 mA		8	mV
Output regulation	$4.3 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$	I _O = 5 mA to 250 mA	3	32	\/
Output regulation	$4.3 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V},$	$I_O = 50 \mu\text{A}$ to 250 mA	4	11	m∨
Dinala raiaction	V _I = 4.3 V,	ΙΟ = 50 μΑ		52	dB
Ripple rejection	f = 120 Hz	I _O = 250 mA	4	14] ^{ub}
Output noise spectral density	$V_{I} = 4.3 V$	f = 120 Hz		2	μV/√Hz
	V _I = 4.3 V,	$C_{O} = 4.7 \mu F$	26	35	
Output noise voltage	10 Hz ≤ f ≤ 100 kHz,	C _O = 10 μF	21	12	μVrms
	$CSR^{\dagger} = 1 \Omega$	C _O = 100 μF	13	35	1
PG hysteresis voltage	V _I = 4.3 V		3	32	mV
PG output low voltage	V _I = 2.8 V,	I _{PG} = 1.2 mA	0.2	22	V

[†]CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

electrical characteristics, I_O = 10 mA, \overline{EN} = 0 V, C_O = 4.7 μF (CSR[†] = 1 Ω), T_J = 25°C, SENSE shorted to OUT (unless otherwise noted) (continued)

PARAMETER	TEST CO	NDITIONS	TI	PS7248	′	UNIT
PARAMETER	IESI CO	TEST CONDITIONS [‡]			MAX	UNII
Output voltage	V _I = 5.85 V,	I _O = 10 mA		4.85		V
	V _I = 4.75 V,	I _O = 10 mA		10		
Dropout voltage	V _I = 4.75 V,	I _O = 100 mA		90		mV
	V _I = 4.75 V,	I _O = 250 mA		216		
Pass-element series resistance	$(4.75 \text{ V} - \text{V}_{\text{O}})/\text{I}_{\text{O}},$ $\text{I}_{\text{O}} = 250 \text{ mA}$	V _I = 4.75 V,		0.8		Ω
Output regulation	5.85 V ≤ V _I ≤ 10 V	$5.85 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}$ $I_{\text{O}} = 5 \text{ mA to } 250 \text{ mA}$		43		mV
Output regulation	5.85 V ≤ V _I ≤ 10 V	$I_{O} = 50 \mu A \text{ to } 250 \text{ mA}$	55			
Pinnle rejection	V _I = 5.85 V,	ΙΟ = 50 μΑ	53			dB
Ripple rejection	f = 120 Hz	I _O = 250 mA		46		uБ
Output noise spectral density	V _I = 5.85 V,	f = 120 Hz		2		μV/√Hz
	V _I = 5.85 V,	$C_O = 4.7 \mu F$		370		
Output noise voltage	10 Hz ≤ f ≤ 100 kHz,	C _O = 10 μF		290		μVrms
	$CSR^{\dagger} = 1 \Omega$	C _O = 100 μF		168		
PG hysteresis voltage	V _I = 5.85 V			50		mV
PG output low voltage	V _I = 4.12 V	I _{PG} = 1.2 mA		0.2		V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

DADAMETED	7507.00	NEUTIONST	TI	PS7250	Y	LINIT
PARAMETER	TEST CO	TEST CONDITIONS‡			MAX	UNIT
Output voltage	V _I = 6 V,	I _O = 10 mA		5		V
	V _I = 4.88 V	I _O = 10 mA		8		
Dropout voltage	V _I = 4.88 V	I _O = 100 mA		76		mV
	V _I = 4.88 V,	I _O = 250 mA		190		
Pass-element series resistance	$(4.88 \text{ V} - \text{V}_{\text{O}})/\text{I}_{\text{O}},$ $\text{I}_{\text{O}} = 250 \text{ mA}$			0.76		Ω
Input regulation	V _I = 6 V to 10 V,	$50 \mu A \le I_O \le 250 mA$				mV
Output regulation	$6 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}, \qquad I_{\text{O}} = 5 \text{ mA to } 250 \text{ mA}$ $6 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}, \qquad I_{\text{O}} = 50 \mu\text{A to } 250 \text{ mA}$			46		m)/
Output regulation			59			mV
Dinnle rejection	V _I = 6 V,	ΙΟ = 50 μΑ		52		dB
Ripple rejection	f = 120 Hz	I _O = 250 mA		46		иь
Output noise spectral density	V _I = 6 V,	f = 120 Hz		2		μV/√ Hz
	V _I = 6 V,	$C_O = 4.7 \mu F$		390		
Output noise voltage	10 Hz \leq f \leq 100 kHz, $C_O = 10 \mu F$			300		μVrms
	$CSR^{\dagger} = 1 \Omega$	$CSR^{\dagger} = 1 \Omega$ $C_O = 100 \mu F$		175]
PG hysteresis voltage	V _I = 6 V			50		mV
PG output low voltage	V _I = 4.25 V,	I _{PG} = 1.2 mA		0.19		V

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance

[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
l-	Quiescent current	vs Output current	5
Q	Quiescent current	vs Input voltage	6
ΔlQ [†]	Change in quiescent current	vs Free-air temperature	7
V_{DO}	Dropout voltage	vs Output current	8
ΔV_{DO}	Change in dropout voltage	vs Free-air temperature	9
V_{DO}	Dropout voltage (TPS7201 only)	vs Output current	10
rDS(on)	Pass-element series resistance	vs Input voltage	11
ΔVΟ	Change in output voltage	vs Free-air temperature	12
VO	Output voltage	vs Input voltage	13
	Line regulation (TPS7201, TPS7233, TPS7248, TPS7250)		14
	Load regulation (TPS7225, TPS7233, TPS7248, TPS7250)		15
VO(PG)	Power-good (PG) voltage	vs Output voltage	16
rDS(on)PG	Power-good (PG) on-resistance	vs Input voltage	17
VI	Minimum input voltage for valid PG	vs Free-air temperature	18
	Output voltage response from enable (EN)		19
	Load transient response (TPS7201/TPS7233)		20
	Load transient response (TPS7248/TPS7250)		21
	Line transient response (TPS7201)		22
	Line transient response (TPS7233)		23
	Line transient response (TPS7248/TPS7250)		24
	Ripple rejection	vs Frequency	25
	Output Spectral Noise Density	vs Frequency	26
		vs Output current ($C_O = 4.7 \mu F$)	27
	Companyation sories resistance (CSP)	vs Added ceramic capacitance ($C_O = 4.7 \mu F$)	28
	Compensation series resistance (CSR)	vs Output current (C _O = 10 μF)	29
		vs Added ceramic capacitance ($C_O = 10 \mu F$)	30

[†]This symbol is not currently listed within EIA or JEDEC standards for semiconductor symbology.

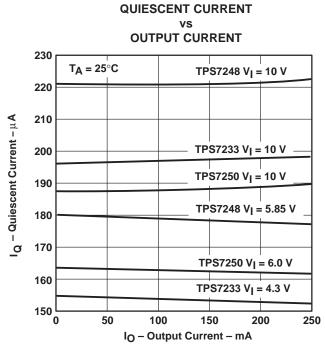
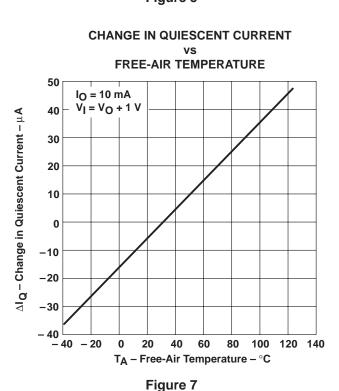



Figure 5

QUIESCENT CURRENT vs INPUT VOLTAGE

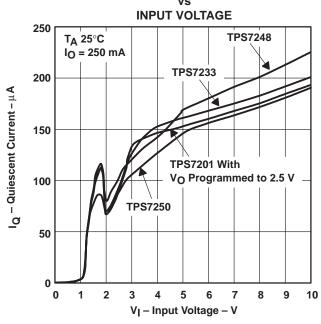


Figure 6

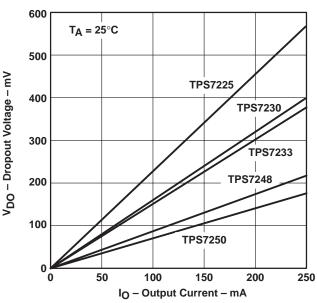


Figure 8

TYPICAL CHARACTERISTICS

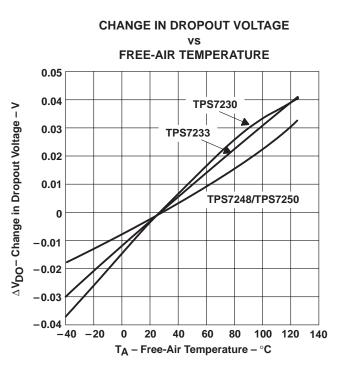
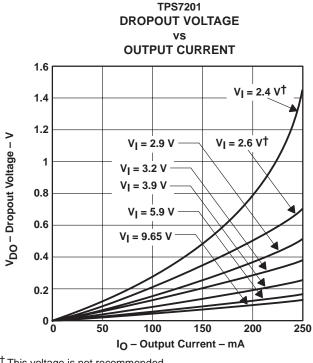



Figure 9

† This voltage is not recommended.

PASS ELEMENT SERIES RESISTANCE

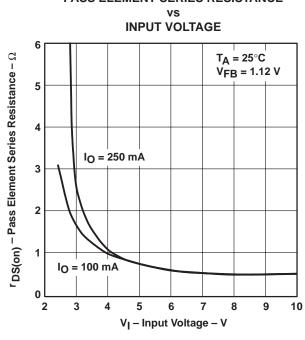


Figure 11

Figure 10

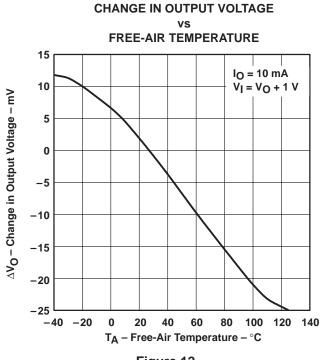


Figure 12

TYPICAL CHARACTERISTICS

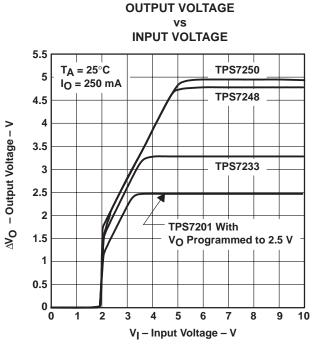


Figure 13

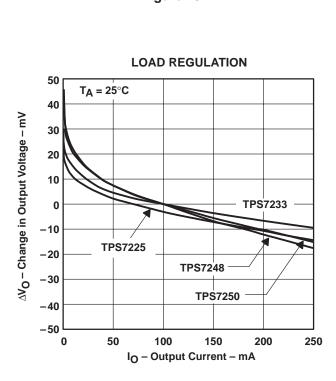


Figure 15

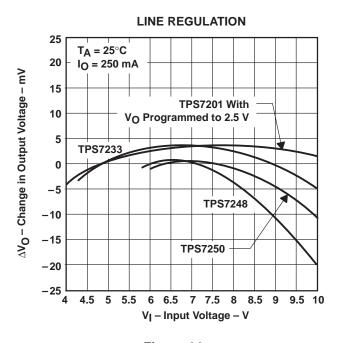
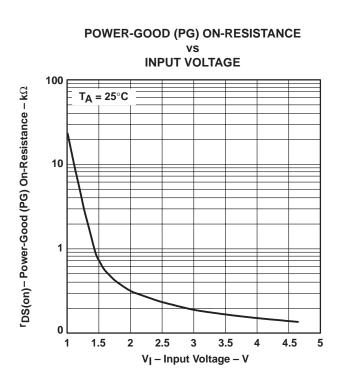


Figure 14


POWER-GOOD (PG) VOLTAGE

OUTPUT VOLTAGE† 6 T_A = 25°C PG Pulled Up to V_I With 5 kΩ Resistor V_I 0 92 93 94 95 96 97 98 V_O – Output Voltage – %

†VO as a percent of VOnom.

Figure 16

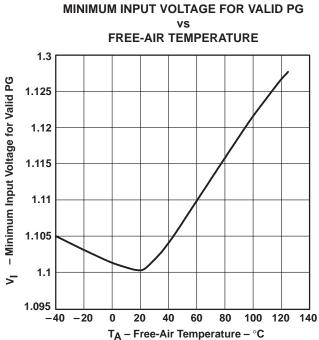


Figure 17

Figure 18

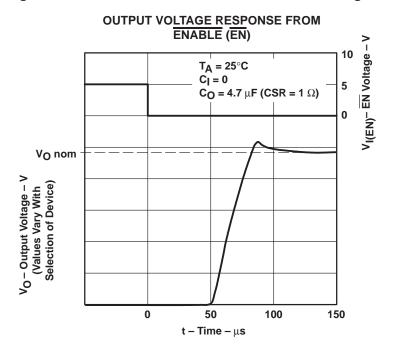


Figure 19

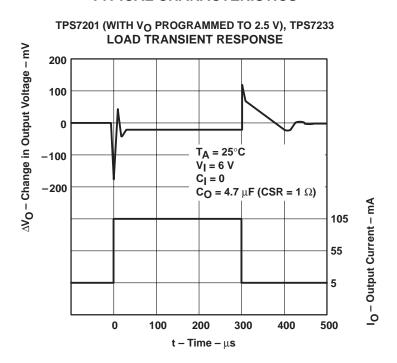


Figure 20

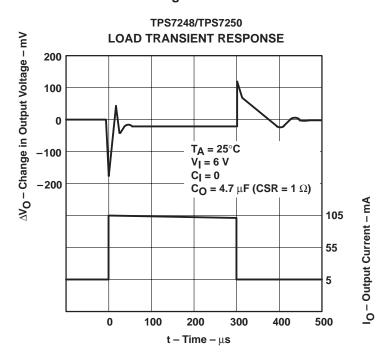


Figure 21

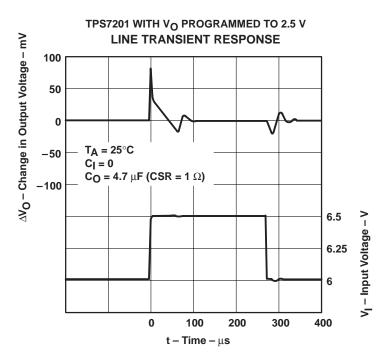


Figure 22

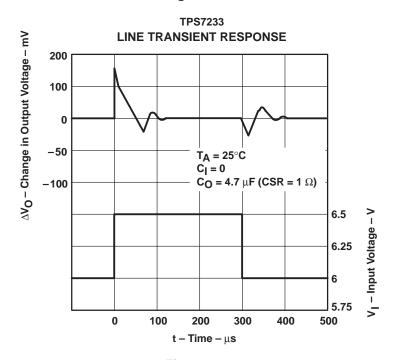


Figure 23

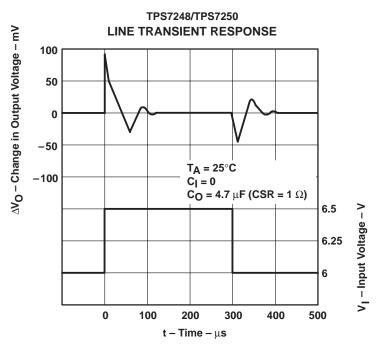
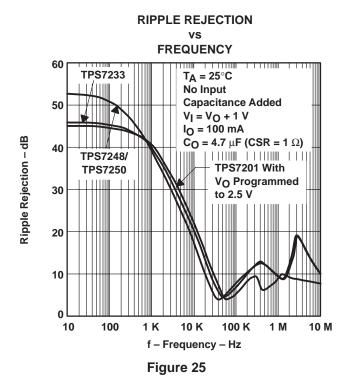
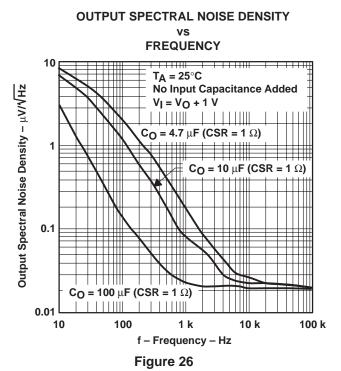




Figure 24

TEXAS

TYPICAL CHARACTERISTICS

TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE (CSR)†

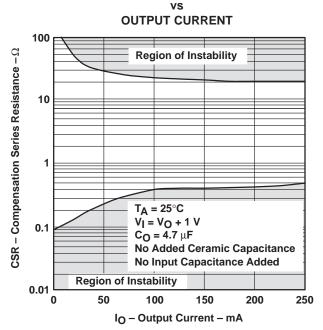
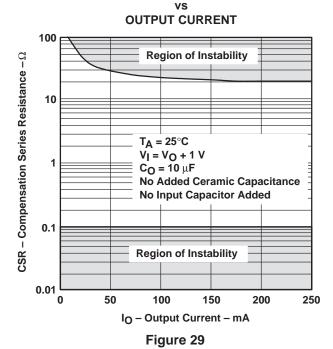



Figure 27

TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE (CSR) †

TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE (CSR)† vs



Figure 28

TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE (CSR)† vs

ADDED CERAMIC CAPACITANCE

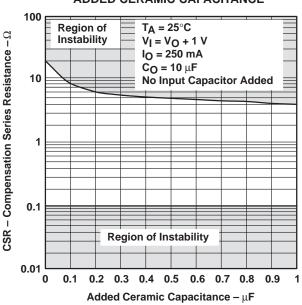


Figure 30

[†] CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_O.

TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

APPLICATION INFORMATION

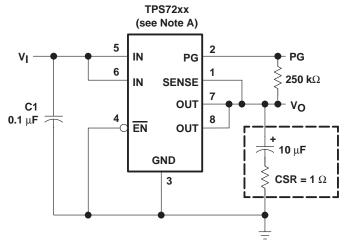
The design of the TPS72xx family of low-dropout (LDO) regulators is based on the higher-current TPS71xx family. These new families of regulators have been optimized for use in battery-operated equipment and feature extremely low dropout voltages, low supply currents that remain constant over the full-output-current range of the device, and an enable input to reduce supply currents to less than 0.5 µA when the regulator is turned off.

device operation

The TPS72xx uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP-pass-element LDO designs. The PMOS transistor is a voltage-controlled device that, unlike a PNP transistor, does not require increased drive current as output current increases. Supply current in the TPS72xx is essentially constant from no-load to maximum.

Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device switches into a constant-current mode at approximately 1 A; further load increases reduce the output voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction temperature rises above 165°C. Recovery is automatic when the junction temperature drops approximately 5°C below the high temperature trip point. The PMOS pass element includes a back diode that safely conducts reverse current when the input voltage level drops below the output voltage level.

A logic high on the enable input, $\overline{\text{EN}}$, shuts off the output and reduces the supply current to less than 0.5 μ A. $\overline{\text{EN}}$ should be grounded in applications where the shutdown feature is not used.


Power good (PG) is an open-drain output signal used to indicate output-voltage status. A comparator circuit continuously monitors the output voltage. When the output drops to approximately 95% of its nominal regulated value, the comparator turns on and pulls PG low.

Transient loads or line pulses can also cause activation of PG if proper care is not taken in selecting the input and output capacitors. Load transients that are faster than 5 μ s can cause a signal on PG if high-ESR output capacitors (greater than approximately 7 Ω) are used. A 1- μ s transient causes a PG signal when using an output capacitor with greater than 3.5 Ω of ESR. It is interesting to note that the output-voltage spike during the transient can drop well below the reset threshold and still not trip if the transient duration is short. A 1- μ s transient must drop at least 500 mV below the threshold before tripping the PG circuit. A 2- μ s transient trips PG at just 400 mV below the threshold. Lower-ESR output capacitors help by reducing the drop in output voltage during a transient and should be used when fast transients are expected.

A typical application circuit is shown in Figure 31.

APPLICATION INFORMATION

NOTE A: TPS7225, TPS7230, TPS7233, TPS7248, TPS7250 (fixed-voltage options).

Figure 31. Typical Application Circuit

external capacitor requirements

Although not required, a 0.047- μ F to 0.1- μ F ceramic bypass input capacitor, connected between IN and GND and located close to the TPS72xx, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

An output capacitor is required to stabilize the internal feedback loop. For most applications, a $10-\mu F$ to $15-\mu F$ solid-tantalum capacitor with a $0.5-\Omega$ resistor (see capacitor selection table) in series is sufficient. The maximum capacitor ESR should be limited to $1.3~\Omega$ to allow for ESR doubling at cold temperatures. Figure 32 shows the transient response of a 5-mA to 85-mA load using a $10-\mu F$ output capacitor with a total ESR of $1.7~\Omega$.

A 4.7- μ F solid-tantalum capacitor in series with a 1- Ω resistor may also be used (see Figures 27 and 28) provided the ESR of the capacitor does not exceed 1 Ω at room temperature and 2 Ω over the full operating temperature range.

APPLICATION INFORMATION

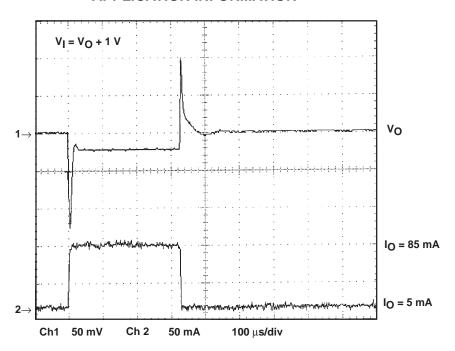


Figure 32. Load Transient Response (CSR total = 1.7 Ω), TPS7248Q

A partial listing of surface-mount capacitors usable with the TPS72xx family is provided below. This information (along with the stability graphs, Figures 27 through 30) is included to assist the designer in selecting suitable capacitors.

CAPACITOR SELECTION

PART NO.	MFR.	VALUE	MAX ESR†	SIZE $(H \times L \times W)^{\dagger}$
592D156X0020R2T	Sprague	15 μF, 20 V	1.1	$1.2\times7.2\times6$
595D156X0025C2T	Sprague	15 μF, 25 V	1	$2.5\times7.1\times3.2$
595D106X0025C2T	Sprague	10 μF, 25 V	1.2	$2.5\times7.1\times3.2$
695D106X0035G2T	Sprague	10 μF, 35 V	1.3	$2.5\times7.6\times2.5$

[†] Size is in mm. ESR is maximum resistance in ohms at 100 kHz and $T_A = 25$ °C. Listings are sorted by height.

sense-pin connection

SENSE must be connected to OUT for proper operation of the regulator. Normally this connection should be as short as possible; however, remote sense may be implemented in critical applications when proper care of the circuit path is exercised. SENSE internally connects to a high-impedance wide-bandwidth amplifier through a resistor-divider network, and any noise pickup on the PCB trace will feed through to the regulator output. SENSE must be routed to minimize noise pickup. Filtering SENSE using an RC network is not recommended because of the possibility of inducing regulator instability.

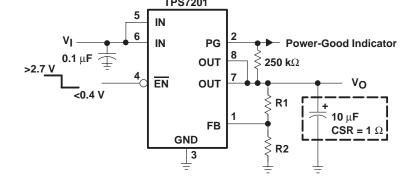
APPLICATION INFORMATION

output voltage programming

The output voltage of the TPS7201 adjustable regulator is programmed using an external resistor divider as shown in Figure 33. The output voltage is calculated using:

$$V_{O} = V_{ref} \cdot \left(1 + \frac{R1}{R2}\right) \tag{1}$$

Where:


 $V_{ref} = 1.188 \text{ V typ (the internal reference voltage)}$

Resistors R1 and R2 should be chosen for approximately $7-\mu A$ divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose $R2 = 169 \text{ k}\Omega$ to set the divider current at $7 \mu A$ and then calculate R1 using:

$$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \cdot R2 \tag{2}$$

OUTPUT VOLTAGE PROGRAMMING GUIDE

OUTPUT VOLTAGE	DIVIDER RESISTANC (kΩ)†		
(V)	R1	R2	
2.5	191	169	
3.3	309	169	
3.6	348	169	
4	402	169	
5	549	169	
6.4	750	169	

†1% values shown.

Figure 33. TPS7201 Adjustable LDO Regulator Programming

TPS7201Q, TPS7225Q, TPS7230Q TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS

SLVS102G - MARCH 1995 - REVISED JUNE 2000

APPLICATION INFORMATION

power dissipation and junction temperature

Specified regulator operation is assured to a junction temperature of 125° C; the maximum junction temperature allowable to avoid damaging the device is 150° C. These restrictions limit the power dissipation that the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_{D} , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using the following equation:

$$P_{D(max)} = \frac{T_{J}max - T_{A}}{R_{H,IA}}$$

Where:

T_Jmax is the maximum allowable junction temperature, i.e.,150°C absolute maximum and 125°C recommended operating temperature.

 $R_{\theta JA}$ is the thermal resistance junction-to-ambient for the package, i.e., 172°C/W for the 8-terminal SOIC and 238°C/W for the 8-terminal TSSOP.

T_A is the ambient temperature.

The regulator dissipation is calculated using:

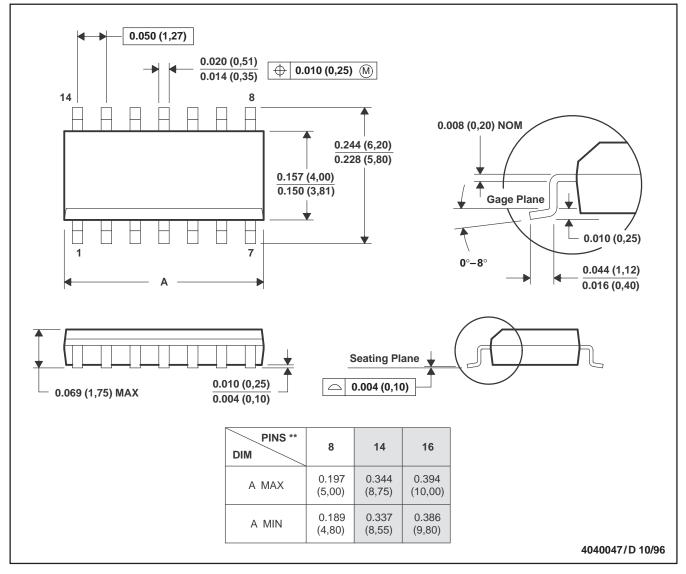
$$P_{D} = (V_{I} - V_{O}) \cdot I_{O}$$

Power dissipation resulting from quiescent current is negligible.

regulator protection

The TPS72xx PMOS-pass transistor has a built-in back diode that safely conducts reverse currents when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be appropriate.

The TPS72xx also features internal current limiting and thermal protection. During normal operation, the TPS72xx limits output current to approximately 1 A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled, regulator operation resumes.



MECHANICAL DATA

D (R-PDSO-G**)

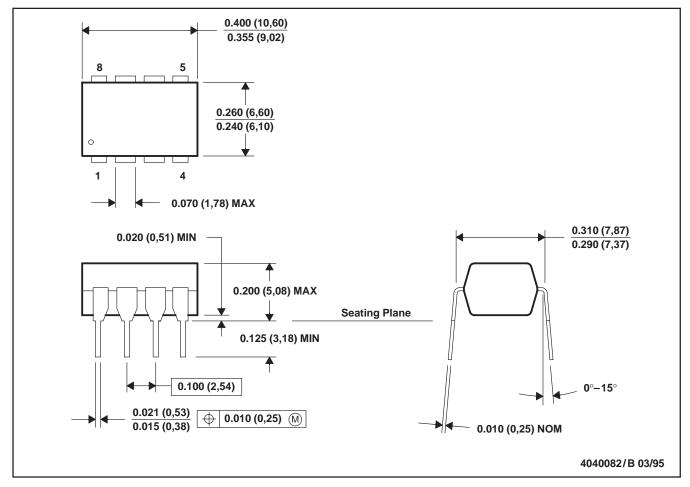
14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

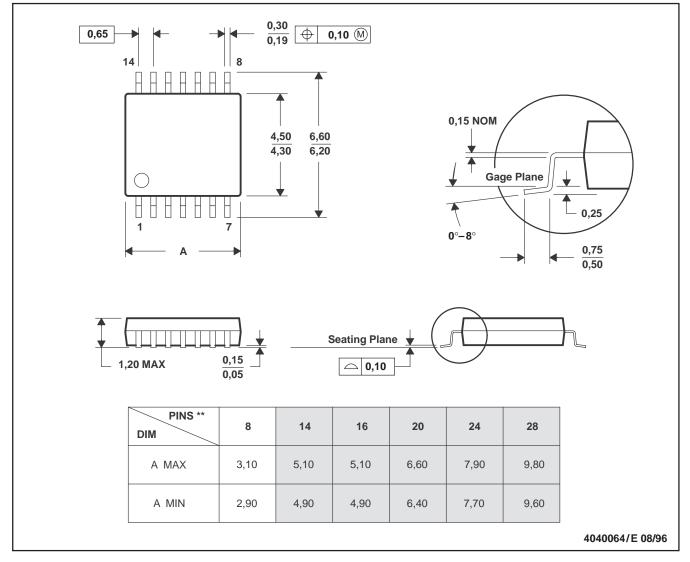

D. Falls within JEDEC MS-012

MECHANICAL DATA

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

MECHANICAL DATA

PW (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

5-Feb-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS7201QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7201QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7201QPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TPS7201QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7201QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7225QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7225QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7225QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7230QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7230QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7230QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7230QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7230QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7230QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

5-Feb-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³
TPS7230QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7233QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7233QPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TPS7233QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7233QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7248QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7248QPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TPS7248QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7248QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7250QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7250QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TPS7250QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7250QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

5-Feb-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
TPS7250QP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7250QPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS7250QPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TPS7250QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS7250QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265