

WWW.DZSC

32-Channel Vacuum-Fluorescent Display Driver

Features

- 32 output lines
- 90V output swing
- Active pull-down
- Latches on all outputs
- Up to 6MHz @ V_{DD} = 5.0V
- -40°C to +85°C operation

Applications

- Vacuum flourescent displays
- DC plasma displays

General Description

The HV518 is designed for vacuum fluorescent or DC plasma applications, where it can serve as a segment, digit or matrix display driver. Each device has 32 outputs, 32 latches and a 32-bit cascadable shift register.

Serial data enters the shift register on the LOW-to-HIGH transition of the clock input. With latch enable (\overline{LE}) HIGH, parallel data is transferred to the output buffers through a 32-bit latch. When \overline{LE} is low the data is stored in the latch. When STROBE is LOW, all outputs are enabled; if STROBE is HIGH, all outputs are LOW.

Supertex inc. • 1235 Bordeaux Drive, Sunnvvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

Ordering Information

Package Options		
40-Lead PDIP	44-Lead PLCC	
HV518P-G	HV518PJ-G	
	40-Lead PDIP	

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V _{DD}	-0.5V to +6.0V
Supply voltage, V _{PP}	-0.5V to +90V
Logic input levels	-0.5V to V _{DD} +0.5V
Continuous total power dissipation ^(1,2)	1200mW
Operating temperature	-40°C to +85°C
Storage temperature	-65°C to +150°C
Soldering temperature ⁽³⁾	260°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to GND.

Notes:

- (1) Duty cycle is limited by the total power dissipated in the package.
- (2) For operation above 25°C ambient, derate linearly to 85°C at 20mW/°C.
- (3) Distance of 1.6mm from case for 10 seconds.

Pin Configurations

Product Markings

40-Lead PDIP (P)

44-Lead PLCC (PJ)

Sym	Parameter	Min	Мах	Unit	Conditions
V _{DD}	Logic supply voltage	4.5	5.5	V	
V _{PP}	High voltage supply	8.0	80	V	
V _{IH}	High-level input voltage	3.5	-	V	V_{DD} = 4.5V, See Figure 3
V _{IL}	Low-level input voltage	-	1.0	V	V_{DD} = 4.5V, See Figure 3
I _{OH}	High-level output current	-25	-	mA	
I _{ol}	Low-level output current	-	2.0	mA	
f _{CLK}	Clock frequency	-	6.0	MHz	V_{DD} = 4.5V, See Figure 3
t _{w(CKH)}	Pulse duration, clock high	83	-	ns	$V_{DD} = 4.5V$
t _{w(CKL)}	Pulse duration, clock low	83	-	ns	V _{DD} = 4.5V
t _{su}	Setup time, data before clock	75	-	ns	$V_{DD} = 4.5V$
t _h	Hold time, data after clock	75	-	ns	$V_{DD} = 4.5V$
T _A	Operating free-air temperature	-40	85	°C	

Recommended Operating Conditions (*T_A* = 25°C, unless otherwise noted)

Electrical Characteristics

(over recommended ranges of operating free-air temperature and V_{DD} . Unless otherwise noted, V_{PP} = 80V)

Sym	Parameter		Min	Тур	Max	Units	Conditions
I _{DD}	Supply current		-	-	10	mA	$V_{_{DD}}$ = 5.0V, f _{CH} = 6.0 MHz
I _{DDQ}	Quiescent supply cur	rrent	-	-	0.5	mA	$V_{DD} = 5.5V, V_{IN} = 0V$
I _{PPQ}	Quiescent supply cur	rent	-	-	100	μA	
V	HV _{IN} operating	HV output	70	-	-	V	I _{он} = -25mA
V _{OH}	current	Serial output	4.5	4.9	5.0	v	$V_{_{DD}}$ = 5.0V, $I_{_{OH}}$ = -20µA
V	LV _{IN} operating	HV output	-	-	5.0	V	I _{oL} = 1.0mA
V _{OL}	current	Serial output	-	0.06	0.8	v	Ι _{οL} = 20μΑ
I	Logic input current high		-	0.1	1.0	μA	$V_{IH} = V_{DD}$
I	Logic input current low		-	-0.1	-1.0	μA	$V_{IL} = 0V$

Note: The total number of ON outputs times the duty cycle must not exceed the allowable package power disspation.

Switching Characteristics (V_{PP} = 80V, C_L = 50pF, T_A = 25°C, unless otherwise noted)

Sym	Parameter		Max	Unit	Conditions
t _d	Delay time, clock to c	lata output	600	ns	$V_{_{DD}}$ = 4.5V, C _L = 15pF, See Figure 1
4	Turn-on time when	from latch enable	1.5		V _{DD} = 4.5V, See Figure 2
t _{DHL}	high voltage is enabled	from strobe	1.0	μs	V _{DD} = 4.5V, See Figure 3
4	Delay time,	from latch enable	1.5		V _{DD} = 4.5V, See Figure 2
t _{DLH}	high-to-low-level, HV output	from strobe	1.0	μs	V _{DD} = 4.5V, See Figure 3
t _{THL}	Transition time, high-to-low-level, HV output		3.0	μs	V _{DD} = 4.5V, See Figure 3
t _{TLH}	Transition time, low-to-high-level, HV output		2.5	μs	V_{DD} = 4.5V, See Figure 3

HV518

Power-Up/ Power-Down Sequences

Power-up sequence should be the following:

- 1. Connect ground.
- 2. Apply V_{DD} .
- 3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
- 4. Apply V_{PP}.
- 5. The V_{PP} should not drop below V_{DD} or float during operation.

VDD 0-

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Parameter Measurement Information

Input Timing Voltage Waveforms

Figure 2

Figure 3: Input Timing Voltage Waveforms

Note: For testing purposes, all input pulses have maximum rise and fall times of 30 nsec.

Truth Tables

Input				
Data In	CLK	Data Out		
н	Ł	Н		
L	Ł	L		
Х	No Change	*		

Output			
Data In	LE	STB	HV Outputs
Х	Х	Н	All Low
Н	Н	L	High
L	н	L	Low
Х	L	L	*

* Previous state.

* Previous state.

Typical Operating Sequence

Clock			
Data In	VALID	IRRELEVANT	
SR Contents	INVALID	VALID	
Latch Enable			
Latch Contents	PREVIOUSLY STORED DATA		NEW DATA VALID
Strobe			
HV Output		VALID	

HV518

Pin Descriptions

40-Lead PDIP (P)

Pin	Function
1	VPP
2	Serial Out
3	HVOUT32
4	HVOUT31
5	HVOUT30
6	HVOUT29
7	HVOUT28
8	HVOUT27
9	HVOUT26
10	HVOUT25
11	HVOUT24
12	HVOUT23
13	HVOUT22
14	HVOUT21

Pin	Function
15	HVOUT20
16	HVOUT19
17	HVOUT18
18	HVOUT17
19	Strobe
20	GND
21	Clock
22	ĪĒ
23	HVOUT16
24	HVOUT15
25	HVOUT14
26	HVOUT13
27	HVOUT12
28	HVOUT11

Pin	Function
29	HVOUT10
30	HVOUT9
31	HVOUT8
32	HVOUT7
33	HVOUT6
34	HVOUT5
35	HVOUT4
36	HVOUT3
37	HVOUT2
38	HVOUT1
39	Data In
40	VDD

44-Lead PLCC (PJ)

	()
Pin	Function
1	VPP
2	Serial Out
3	HVOUT32
4	HVOUT31
5	HVOUT30
6	NC
7	HVOUT29
8	HVOUT28
9	HVOUT27
10	HVOUT26
11	HVOUT25
12	HVOUT24
13	HVOUT23
14	HVOUT22
15	HVOUT21

Pin	Function
16	HVOUT20
17	HVOUT19
18	N/C
19	HVOUT18
20	HVOUT17
21	Strobe
22	GND
23	Clock
24	Ē
25	HVOUT16
26	HVOUT15
27	HVOUT14
28	N/C
29	N/C
30	HVOUT13

Pin	Function
31	HVOUT12
32	HVOUT11
33	HVOUT10
34	HVOUT9
35	HVOUT8
36	HVOUT7
37	HVOUT6
38	HVOUT5
39	HVOUT4
40	HVOUT3
41	HVOUT2
42	HVOUT1
43	Data In
44	VDD

40-Lead PDIP (.600in Row Spacing) Package Outline (P)

Note 1:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbo	ol	Α	A1	A2	eA	В	B1	eB	D	D1	E	E1	е	L
Dimension (inches)	MIN	.140	.015	.125	.600 BSC	.014	.030	.600	1.980	.005	.600	0.485	.100 BSC	.115
	NOM	-	-	-		-	-	-	-	-	-	-		-
	MAX	.250	.125	.195		.022	.070	.700	2.095	.625	.625	0.580		.200

JEDEC Registration MS-011, Variation AC, Issue B, June, 1988. **Drawings not to scale.**

44-Lead PLCC Package Outline (PJ) .653x.653in body, .180in height (max.), .050in pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature. 2. Exact shape of this feature is optional.

Symbol		Α	A1	A2	b	b1	D	D1	E	E1	е
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	
	NOM	.172	.105	-	-	-	.690	.653	.690	.653	.050 BSC
	MAX	.180	.120	.083	.021	.036	.695	.656	.695	.656	DOO

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993. Drawings are not to scale.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

